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ABSTRACT. — We present an a. s. limit theorem to construct Watanabe-
Dawson “‘superprocesses’ starting from a projective system of branching
Markov processes.

Risumi. — Cet article présente un théoréme de limite presque sire
permettant d’obtenir des super-processus de Watanabe-Dawson a partir
d’un systeme projectif de processus de branchement markoviens.

Branching Markov processes are generally considered as measure valued
processes. However, as stressed by Neveu [N1], even in the case of the
simplest Galton-Watson processes, the genealogy of the points can be also
usefully described and a formalization in terms of trees of paths can be
given as explained in the following. We will consider a family of such
processes indexed by te R*. The paths start at a point x with a number
of points following a Poisson law of mean Yt~ /%, and points are moving
as independent Markov processes of semigroup P, and branching at
exponential times of expectation T according to a reproduction law {¢}
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92 Y. LE JAN

defined by the generating function :
Ggw=Ygq u"=i1 1—u)*P+u
o1+ ’

B being a parameter in 10, 1].

Denote Z, the induced multiplet-valued process and Z{, the multiplet
of the ancestors of Z® at time s<t One can check, as in [N2] that
(Z"), , teR*) and (Z*", te R™) have the same distributions.

Taking a projective limit, we can define the processes simultaneously in
such a way that the above identities hold almost surely, for all T and
h>0.

By a martingale argument, it appears that the measure ¥~ 'g'/# Z¢_ P,
converges a.s. towards a measure p, as £|0, and that (u, t>0) is a
Markov process.

If Uf(x)= —Log(E (e"#)), we have
Uf=Pf—“’_BfP((U ()P ds
L. f. 1+B o s t—s

We recover a class of the measure valued process defined by Watanabe
and Dawson, called superprocesses by Dynkin and studied by many
authors : see [W], [Dal, [D], [F1], [1], [P], [LG], [R].

When B=1, this construction is closely related to the one given by Le
Gall in [LG1], using the Brownian excursion to generate the branching
system cf. [NP], [LG2].

These results have been announced in [LJ].

Remarks : (a) Considering a general semi-group P, instead of, for exam-
ple, diffusions, has some drawbacks (measurability problems need more
care) but also advantages. It allows to apply the theory to path-valued
processes.

(b) The three first paragraphs introduce basic notions and technical
(mostly measure-theoretical) preliminaries.

(¢) Proofs of intuitively obvious properties have been only briefly sket-
ched.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



PROJECTIVE LIMITS OF BRANCHING MARKOV PROCESS 93

1. PATHS WITH EXPONENTIAL LIFETIME

Let E be a Polish space, with & its Borel o-field. Let P,(x, dy) be a
semi-group of markovian kernels on E. Let F be the space of mappings ®
from a finite interval ]S(®), T(®)] into E. Denote X, its coordinates
(w()=X,(®)). Let #° be the o-field generated by the sets
{Tzi>S}N{X,eA}, teR S €é) and set F=F v {X;'(A), Aed}.
T and S are % °-measurable. The restriction of & to

EBI=T~1() NS (s) is o(X,, s<uzi).

Kolmogorov’s theorem allows to construct a unique system of probabili-
ties P, ,, on E®Y, o (X,, uels, 1) such that :

[p)x,s,t(m {XuiEAi })ZP“i_S]Al R P“n“"n»l 1An(x)

for s<u; = ...=<u,=tand A;eé.

Using a generating semi algebra (cf. [N3], § [-6) of &, composed with
sets of the form {S<#,}N{4=T}NN{X,eA,}N{X;eB} with

f<ty<...<t, A; and B belonging to &, and the monotone class
theorem, it appears that :

(1) Forany AeF, P, (ANE™Y) is a measurable function of (x,s, 1).
For any parameter 1>0, we can define a probability P% . on (F, %),
carried by { S=s1}, by setting '

PL,S(A)%J eI (AN ER gy,
0
For any weF and ue]S(w), +oof -0, T(w)]), define k, (o), (0,0) to
be the restriction of o to [S(®), T (@) Au], (S(®) vu, T (w)]).

For 0<h<T(w)—S(w), let e,(w) be the restriction of ® to
IS(®), T(w)—A], i. e. ky (g)— 0.

The following measurability properties are easy to check :
(2) Forany AcF and ueR, k; ' (4) and 0, 1 (A) belong 10 7.
(3) Forany BeZ° and he #™, e; * (B) belongs to F°.
If ® and @' belong to F and S(w")=T(w), the path ww’ is defined on
1S (@), T(w")] by : oo’'=w on ]S (»), T (0)], oo =w’ on S (o), T ("))
(4) Forany Ae 7, {(0, ®'), 00’ € s/ } is F (®F measurable.

The following properties can be easily checked.

Pl (Markov property).

Forany A, Be %, 1>s5eR, xcE,

PL (k7 (AN (B) =E; (k' (A) P, (6, 'B))

Vol. 27. n° 1-1991.



94 Y. LE JAN

P2 For any Ae #° and h>0, P% (e, ' (A))=e ""PL (A)

P3 For any Ae # and t,, 1,>0,

J{ oo’ eA} PY (do) PR @), T ([@0)=Pa2(A).

2. BRANCHING PATHS

Let U be the space of empty or finite sequences of positive integers,
. e. “words”. There is a natural composition law on U as well as a
lexicographical order induced by the order on N—{ 0 }. Define the
mapping © from U—{@f} onto U by n(...j)=/j;...j,—1. Set
lji - - -Ju| =n, and | & | =0, to define the lenght of a word.

Following Neveu [N1], we define trees as sets of words 8 containing
and such that if uje 8, for jeN—{0} and ue U, then ued and also uied
for any i<j.

Define the height |8 of a tree as the length of the longest word it
contains. If & is a tree, and u€ 6, then T, ;6= {veU, uveB} 1S a tree.

Set v(@)=sup(jeN— {0}, jed)if 8+ { &}, and v({ & })=0.

Let T be the space of branching paths a= (a,, &,) defined by a tree o,
and a mapping &, from q, into F, such that T (&, (n(w)))=S(E, ) for
any ueo,— .

F is imbedded in F in a canonical way. If meF, we identify it with the
clement o’ of F such that o’o= { &} and &, (F)=o.

We set v (o) =v(a,), |o|= |-

If uea,, T, is defined by (T,a),=T, (o) and &y . (v) =&, (uv).

Set T, (w)=T (&, ), X, )=Xr (&) and S,()=S(&,w) for any
uea, We define also ()= sup T, (1), o(a)=S, (D).

ueagy

Let  be the smallest c-algebra on F containing the sets
A, o= {aeF, uen(ay) and X, (w)eA},
for all uc U, Aed& and
[, 5= {aeF, ueoyand &, (u)eB},

for all ue U, Be #°.
(5) IfEe#,BY={q, ica,and TaeZ}e#.
(IfE=A, A, EP=A,, , etc.)

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



PROJECTIVE LIMITS OF BRANCHING MARKOV PROCESS 95

Set 9}9= {{o, £, (D)eA} Ae F° }, and define by induction the o-
algebra # ) generated by subsets of F of the form :

{{cx, v(e)=0and & (FeA,}
U U {ov(@=i & (F)eA,; and TjaueE, ; for j<i},
i=1
A e F° AeZ, Ei,jeﬁ(,,ﬂ,}.

(Z  describes the history until the n-th generation).

By (5), ﬁ'*(n)gﬁ for every n. Moreover A, Aeﬁ"”u‘ +1y and
I, B€% () Hence
(6) & is the c-algebra generated by the algebra \ ) F .

Let ¢ be a probability on N with ) kq(k)<oo. We shall extend the
0

probabilities P%, | to F as follows :

ProposiTiON 1. — There exist a unique system of probabilities P34 on
(F, &) such that :

(a) For any Ee &, PL 4(E) is measurable in (x, s).

(b) P34 induces P% , on (F,.F°).

(c) For any Ac #°, Be&, neN— {0}, B, ... B €F m
1 m (n)

PLi({o, &, (D) eA, X, (F)eB, v()=m and ToeE, for im})

=q(m) Ec,s<1;\ 1{XTEB) H E&;’, T(E‘i))'

i=1

Proof. P49 can be defined by induction on each 7 w by (©]. The o-
additivity of the projective limit follows from the existence of a compact
class (cf. [N3], § I-6) generated by sets of the form

{uem (o)} N{X,(weK},
{ucogt N{a<S,W=bIN{e=T,w=d}N N {X,Ew)eK;}
i=1

with K, K;e K (E); where K (E) denotes the class of compact subsets of E.

N. B. — Set, for any neN, z,= {ueag,|u|=n}
z, is a Galton Watson process of reproduction law ¢. Hence, if
Y kq(k)<1, a, is almost surely finite for any (x, s, 1).

Vol. 27, n® 1-1991.



96 Y. LE JAN

continuous time Galton Watson process with reproduction law q and time
constant T.

We extend k, to {a, o(a)<t} as follows : (k,o)o= {uea,, S,(w)<t}
and &ktu tE—w N

To extend 6,, set Z,(a)= {veay,, 1€[S, (), T, (@)}

If ue Z, (), define 0, , (a) as follows :

0,.00=T,0, and, if PB=6, 0 we define & (=6E,(w) and
& (v)=¢&, (uv) for any ve T oy — .

Similary set |Z,| ={ueoa,, S,)<t<T,()}: Under P34 |Z,,| is a

Measurability properties

(7) For any EeZ, k[ * (8) is & measurable.
Indeed : k7' A, o= A, a N { T, ()<t} [since uen (k) if T, (w)<1]

kfl(ru,n)zru,k,“l(B)ey-

Set #,= {k['E,EeF .
®) For any ueU and Ec¢ ¥ {oce , ueZ,() and 0, ,()eE} belongs
to F.
(Indeed for example {ueZ, SN0 (T, 5= {ueZ,}NT,, s if v#, and
{ueZ, FN0 i Tg 5= {ueZ, }ﬂl"“e 1m))

For ueZ, set X(t, )=X(n(w) if t=S() and X (1, u)=X, (& ) if
t>S(u). Then, we have

PROPOSITION 2. — For any s<t,u,, u, ... u, and &, ..., B, e,

(m {u GZ } met u,(‘—‘)l’/ ): l_[ l{uisit}Egil(lt,ui),l(Ei)'
i=1

Sketch of proof. First one shows that for any Ac.# and Ec %,

Py i{ (@D ek T (AN, L EN{1<T (@)}
=E k7" (AN{1<T} EL4(8)

by using the Markov property P1.

Then, one proves the Proposition by induction on the “degree”
|uy |+ |uz|+ ... +|u,|, using the branching property ¢ in proposition 1

to reduce the degree after choosing test set, in &, of the form k! (A),
with Ae # ) for some n.

N. B. A stronger version of this proposition has been proved in [C],
when P, is the heat semigroup.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



PROJECTIVE LIMITS OF BRANCHING MARKOV PROCESS 97

3. GENERATING FUNCTIONAL

For any positive bounded measure p on E and fe&*, 0<f(x)<1 for
every x, set :

fr=exp (Logfdp).

Define Z, (o) =( Z £X 1, )

ueZ; (o)

The law of Z, is determined by the generating functional
O (H)=EL4(f®)  (>9).
Applying proposition 1(c¢), we have

1 t
©® D} (N=e TP L+ —J e” P (P_,(/)ds

TJo

g being the generating function of q.
(9) can be written in the equivalent form

(10) () =P+ % f PG @, ()~ %, () ds

0

Indeed, assuming (9), (10) is equivalent to the identity
1(* L[

(1=e"™Pf+ j (1—e )P, G(@; () ds= —J (P, (@5(f)) ds
TJo TJo

Replacing ®:(f) by its expression in (9) in the second member, we get
the first one by performing an integration.
The semigroup property

(an Dfy =0 D5

follows from the branching markov property (proposition 2).
For any f, 0<f<1, equation (10) has a unique solution ®; (f) verifying

o (N=f 0P (N=1

[Set a,= 0 (f)—®3 (f). Then

t
a= j (P,(G ({2, — G (®2,) ds
0

Vol. 27, n° 1-1991.



98 Y. LE JAN

and

1 t
Jall.=t [ Naloa+ Seaon o
(o]

hence a,= 0].

The semigroup property follows also from the uniqueness.

(Set ®P =, for t<s and @ =®,_ ~®_ for =+, and check ®F verifies
the same integral equation as ®@,.)

Note also that for any bounded ge&*, and >,

d _
E;%(J\g dzl>= _EE(szs(e sg) | e=0"

Differentiating (10) and solving the resulting linear integral equation yields

(12) [E:;,z(JgdZ)—exp< - "(1)—;) £

Note also that P32 ({<)=®;_,(0+).
In the following we shall be particulary interested in the laws of repro-
duction gg, B€]0, 1]defined by the generating functions

Gp (W)= ~—B(1—u)”ﬁ+u uel0, 1] (¢f-[Z), [H)).

Then equation (10) can be solved for f=u (const.) to yield

1—u

() =1- :
1 L+ (1—uP)'/®

T \1/8
In particular ®;(0+)=1— () .
T+t

4. ERASURE

e, extends to {{—o>h} as follows :
(ey)o={uecagy, {(0)—h>S, (1)}
and &eh W)=k (- ,,g (u) for any ue(e,a),.
(13) Forany EcF,e; ' (E)e#.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



PROJECTIVE LIMITS OF BRANCHING MARKOV PROCESS 99

Indeed

e A a= AL aN{E—h>T, ()}

e 'Tus={L—h>S,} NT, 215
where I', y-1,p={{—h21} NT, pe&.
PRrOPOSITION 3. — For any Be %,
P2i(er ' E)=1P21" @)

with

M=P, (C>s+h)=1-0;(0+)

and

1 /
® (k)= T g 1= ) A k-2 5., )
q" (k) I—Kh(zgkq()<k)< W My h 0k>

The proof given by Neveu in [N2], p. 106-107, can be easily generalized
to this context, using the caracterization of P%% given in proposition 1
and property P2 to prove the identity for E€ # ), by induction on n.

To start the recurrence, we need to compute P:%(e, ' {£ ) eA}) for
AeZ,.

We show that for £>0,

Pei(e, ' {E(@)eATN {u=k}))=l§kq(l)<£)(1 — M) AL PE (A

Then, if p denotes the law of {-c under P* 1,
Prile ' {EoeAfN{v=0})
=24 fhdp(zl) e Jh dy () By o (eh a2, (A))
° ° =some constant) P}, ((A) by P,.
It follows that
PLile, ' {E(@)eA D=1, PLL(A)
and
Pile, "{E(@eAT N {v=0})=%,q? (0) P ((A).

Then one proves the recurrence on events of the form
k

{E@eATN{v=kiN N T E)
i=1
with k>0, Ae #, and E;e &,

Vol. 27, n® 1-1991.



100 Y. LE JAN

In particular, if =g,

1/8 1— 1+8
1=dy=( — and  @Pw=-— 790 T,
T+h t+h 1+B

Set Z, ;=Z~e,_, for t>5. Then

Z, (0= Z EX s, ) 1 ¢ (05, y2) 21}
ueZg(a)

Hence for any ¢, <t,<...<t, fi, ..., [,€E",

[1/%0= ] [fl X (ty, u))e,;}u(l(;z,z}ﬂzf,.lx,,,:i>+e;l}u(1{52,2,)].
i=1 i=

ulel

By the branching Markov property, it follows that for 7, <1,

[E;,qto[ﬂ (fiZt"’ ri)]zq)tl—t() R‘tr21*t1 e an71 (.f;l) (x)
i=1

h—Ih—1

with R (g) =f(®,(g) — @,(0+)+ D, (0+).
Hence, it is easy to check that, for >0

o) _ Zys 1
tE;:thlo(z,,s,s<t—h»=["—(w@ s
1-®,(0+)
This formula says that the conditional law of Z, given Z, ;= is identical

to the conditional law of Z, _ given Zy=p and that each point of p
survives until £ —s. In particular

1
14 £ dZ,\c(Z, ,s<t—h)|=——— P, egdZ, ,_
(14) ,O(Jg :‘ “, )> 1—<D{,(O+)j W84l -

5. REDUCTION

We define a reduction operation R on trees, by induction on the height.
It amounts to extending the lifetime of particles whose offspring is only
one particle. R (3) will be defined together with a mapping N; from R (8)

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



PROJECTIVE LIMITS OF BRANCHING MARKOV PROCESS 101

into N, as follows :

- R{ZH=({ T}, Ng,(2)=0;

— if veR(8), N;(v)=inf(m,v1me€d and v(T,;=3)#1) () and vieR (5)
if and only if N (v) <o and i< (T,; n; ) O)

In the following, we assume g(1)#1 so that N(v)<o a.s. when
veR (o).

Set

o={aeF, N(v)<oo for any ve R (a,) }-

Foe#, is stable under k,, 6, , etc. and has full measure under all P;
Hence all the results we have obtained are still valid on F,. From now
on, we shall work on F, only.

R can be extended to F, as follows: if aeF,, (Ra),=Ra, and
N (@)

Ere ()= TI £, (v1%) for any ve Ra,, (where the product refers to the conca-
i=0
tenation of paths).

ProrosITION 4. — R P} %1=PR & with

=_" = K)—q(1)8, (k
Tr =4 and gy (k)= ()(Q() q(1) 8, (k).

Sketch of proof. Note first that for any Ae #,

N(2)
Ei’fi( I1 &(li)€A>=P§'§s(A) by P3.

i=0

Then prove that P34 (R™!(8))=P®(E) for E in #,, by induction
on n.

CoroLLARY. — For any E€ F,
T\ L
PrBR tee, ' @)= —| PL"®®.
’ Tt+h

[An easy computation shows (g§")g = gj.]

(1) 1™ means 1 written m times.

Vol. 27, n° 1-1991.



102 Y. LE JAN

6. SUPERPROCESSES

Let p be a probability on (E,&), ¥ and & be positive parameters. Set
PL= j u(dx)P%% (B will be fixed in the following). Let =, be a Poisson
point process in Fy, with intensity ye~'/® P%. For any Fe # ¥,

(15) Log (B (¢~] F omntdmy) — yye= 1P 2 (o7 — 1),

m;, describes the evolution of a population starting at time 0 with a Poisson
distribution of intensity ye~'Pu, and with reproduction law g,. Each
particle has an exponential lifetime of average £ and moves independently
of the others according to the law determined by the semigroup P,.

From the corollary to proposition 4, it follows that Ree,n;, and nﬁ“‘
have the same distribution.

Taking a sequence ¢,|0 and applying the Ionescu-Tulcea theorem, it
appears one can define the processes m;, simultaneously, so that

(16) Ree,né=ni"" for any g, he R* —{0}.

n

Set Z&k= jZ[ () my, (do). (For fixed e, it describes the position of the
population living at time ¢.)
Similary, set Z&: ¥ = f Z, () (da). (It describes the population at times

s whose offspring shall be alive at time ¢.)
By (16), we have for any t>#A>0,

(17 Zpr =Ziwe

Hence, from identity (14), for any bounded function f, and 0<mn<e,
E(<ZM% P, f> | o (Z;:%,y=¢)) can be computed and is equal to

(-0 (0+) " <Zek Pf>.

t—g>
(If 1 is a measure and f a function, {p, f>=jfdu.)

One uses the fact that for any o-field A< %, and bounded measurable
function F, E (JF dr*|o(n°(8),Ee %)) =n°(E; (F| ,%’)).:l

1/p
Moreover (1-®@}_, (0+))= (ﬂ) . Hence, we have, for f positive,
€

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



PROJECTIVE LIMITS OF BRANCHING MARKOV PROCESS 103

(18) For any sequence €, 0, Yir " (f)y=g,P Yy~ <Ziw® P, f> is a positive

t—e,
martingale which has to converge a. s. for all f towards a limit Y* (f), clearly
independent of the sequence g,

Using a dense countable Q-vector subspace V of C (E), we define a random
measure p, such that

<W.f>=Y!(H a.s.foranyfin C(E).

Since |E(p, (f )| =pP, (|f
measurable function f.

), the a. s. equality extends to any bounded

THEOREM. — |, is a Markov process whose law is determined by the
semigroup Q, verifying :

- Long,(u, dv)eXp<— del)):JU,(f)du

for any positive bounded measurable function f, where U,(f) is uniquely
determined by the equation

Utfzptf_ %les(Ut—s f)1+p) ds.

Proof . For any bounded fin &7, set

U, (u, /)=~ Log E(exp(— Y} (/)
Ui (u, /)= — Log E(exp (= Y7 * (/).

By (15), we have, Us(y, /)= — é[Efl(e"' Zi-:P: S — 1), where ' =g'/P 1,
Hence Ut (i, /)< || f]| o for all ¢, & and more generally
U (N -Ui@| £ If 2l
Also, if we set Ui (f) (x)="U; (s,, f), we have

Ut (/) = |1 (d0) US() (),
and
(19) Ui(f)=é(1—<1)§~g(e‘9' PT)).

By (18) since e™* is convex, Uf(p,f) decreases with &. By dominated
convergence its limit has to be U, (, f).

Vol. 27, n° 1-1991.



104 Y. LE JAN

From (19) and (10) applied to ®;__ and g= g,

1 , -B | Sd
U)=-P_ (- "f@*LJ P, (Ui, (N P ds.
4 1+BJo

Set U, (f) (x)=U, (../)-

Since, for any g, and e <g,,

t—g,
j "B, (Ue_, ()M ds-+ (L] 1P e
0

-

gjt_eps(Uf_s(ﬁ”“)d@J P (UL, () ) ds

0 0

-B t
we obtain U,(f)=P,.f v J P,(U,_,(f)' *B)ds by dominated conver-

1+BJo
gence.

Uniqueness can be shown in the same way as for equation (10).
We also have the semigroup property U,, ,=U,° U,

We still have to show that p, is a Markov process, which is equivalent
to prove that

- LogE(exp(—_z Y,,.(fi)>)=U,1 i+ Upa (fat )

i

for 0<t,<...<t,and bounded f,e&*.
The first member equals

—1lim LogE (exp( - 8:[2 (Z,_. (@), P f;)m (doc)))

el O

.1 . .
=lim (=@, P, (e 2 L)
el 0

=:i?:) O P fi+ Ve, ®fot ... =
with
VH() =~ log @ (e )
and

~ 1 . .
TN = E(=e ™ H)=La-aje )
€ €

Annales de 'Institut Henri Poincaré - Probabilités et Statistiques



PROJECTIVE LIMITS OF BRANCHING MARKOV PROCESS 105

(note that Us=0¢_,-P)). We can replace V¢ by U¢. Indeed,

- 1
Vit -TO: N 0=
2¢

ey | s T

when €’

1
< -
2
Moreover, | U¢(f)—UO:(g)| < || f—g|| - Hence,
(*) thtl E(P&f1+Uf2 tl(Paf2+"'))'

£} 0

Finally since

|G:(N—PSf] < B)J- P(1-®_ (e /) "Pds
+P, l_jf ‘ P(eU )P ds| +
1+B “fHZ € —TieT1 e
s e T oo
(*)~lllII})U§1 @i+ 0, Rt )
=1imU;:1(fl+U§2*tl(«fZ+
el 0
=U, (/i +U,_,, (fa+.. D).
Q.E.D.
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