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ABSTRACT. - Let T be a compact metric space. Let be a
Gaussian process with continuous covariance. Assume that the variance
has a unique maximum at some point t and that Xt has a. s. bounded
sample paths. We prove that

if and only if

where T,={teT; E(X~)-h2~.

Key words : Gaussian process on abstract sets, Borell’s inequality.

Soit T un espace compact metrique, et (X)teT un processus
gaussien a convariance continue. Supposons que (Xt) soit p. s. borne et
que 1’ecart type de Xt ait un maximum unique en un certain point t. Nous
montrons que

Classification A. M. S. : Primary 60G 15, 60G 17.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques - 0294-1449
Vol. 24/88/02/307/09/~ 2,90/@ Gauthier-Villars



308 M. TALAGRAND

si et seulement si

1. INTRODUCTION

Let T be a compact metric space. Let be a (real separable)
Gaussian process with mean zero and continuous covariance. Asume that

(Xt) has a. s. bounded sample paths, so Sup Xt  oo a. s. We want to
teT

determine when the tail of the distribution of Sup Xt is minimal in some
sense. Let 03C32 (t) = EXt , and 03C3 = Sup a (t). If Y is standard normal, we

teT

have for all u

We want to characterize the Gaussian processes for which the following
occurs:

Our work is motivated by several recent papers ([1], [2], [7]) that give
sufficient conditions for (*) in specific situations. These results rely on
conditions on the covariance function, and appropriate computations. On
the other hand, we will approach the problem from the abstract point of
view, and our result will be an elementary consequence of (a weak form
of) Borell’s inequality. (See [8] for a previous use of Borell’s inequality in
the study of Sup 

THEOREM. - Condition (*) is equivalent to the following two conditions
(I) There exists a unique i in T such that ~ (i) = a.

(II) If, for h > 0, we set

we have
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309SMALL TAILS FOR THE SUPREMUM OF A GAUSSIAN PROCESS

Both of these conditions seem rather easy to check in practice. (In
particular condition (II) is completely elucidated by the theory of [9].) As
an illustration, we prove the result of [1]: let o be a Gaussian process
with mean zero and stationary increments, and such that Xo=0. Assume
that the incremental variance function ~2 (t) is convex and that
lim 0’2 (t)/t = o. Then condition (*) holds on each interval [0, i] for i > 0.
t -~ 0

First (I) is obviously satisfied. We now check (II). Since

for t E Th, we have a2 (t) >_ a2 (i) - 2 h2. Since a2 is convex, it has a left
derivative at each point, so for t in Th we have for some
constant K. Since the process has stationary incremants, to check (II) it is
enough to show that

This is done in a few lines of computations using, e. g., the bound of
E Sup I Xt by Dudley’s entropy integral (see e. g. [6], p. 25).

2. PREPARATION

In this section we list some facts that our proof will use. Let

cp (x) _ (2 ~) -1~2 exp ( - x2/2) be the standard normal density function. Let

We denote by Ki, K2, ... positive universal constants. The first two
lemmas are elementary.

Proof - (1) is well known, and implies the crude inequality (2). (3)

Vol. 24, nO 2-1988.
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follows from the explicit form of cp. To prove (4), we note that since (p (x)
decreases for x ~ 0, we have

bY ( 1).

LEMMA 2. - Let (w")" > o be a sequence with w" > 0 and 2 wn

for each n. Then

Proof. - This is an obvious consequence of the fact that for x > 0;

The following is well known and goes back to [4] and [5].

LEMMA 3. - If P(Sup Xt ~ A) ~ 1/2, then KSA.
We finally state the version of Borell’s inequality [3] that we need.

LEMMA 4. - Let (Y t) be a separable Gaussian process. Assume thal

w) ~ 1/2, and let Then for u >_ w

In particular, for all u

3. PROOF OF THE THEOREM

Changing Xt in 0’ - 1 Xt we can assume a =1. The necessity of condition
(I) follows from the following elementary observation, whose proof we
leave to the reader. If the couple (Y, Z) of random variables is jointly
Gaussian, and if

then lim P(Max(Y, Z) > u)/t~r (u) = 2.
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We now on assume (I). For simplicity of notation, we set a (t) = E (Xt X~),
The process (Zt) is hence independent of X,. We have

so we have

This shows that condition (II) is equivalent to the following condition
( III) lim Sup 

h -+ 0 

Proof that (*) ~ (III). - Let s > 0 be small enough that 2 E2  1, and
let w ~ 1 be such that

Fix u >_ w. If we condition equation (6) with respect to Xt, we have

We set T’={teT; a (t) >_ 0~, and

This is obviously an increasing function of y. For y > u, taking t = i, we
see that ~ (y) =1. It follows from (7) that

Using (4), we have

This shows that 11 (v)  1/2. So we have

Vol. 24, n° 2-1988.
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We observe that for h > 0, a (t) >- 1- h2, we have

It follows that

Suppose now that h ~ s/w, and take w. We have

and h2u=Eh, so (8) becomes

It follows from lemma 3 that E ( Sup 3 E h Ks and this concludes

the proof.

Proof that (~ and imply (*). - We take ~ > 0 with r~  2 - 4. Let
a > 0 be such that a - 2 - 3, and that

For n >_ 0, we define the following subsets of T :

We note that

Since the covariance is continuous and T is compact, condition (I)
implies that

Take now w large enough that w) ~ 1 /2. For u >_ w, it follows
from Lemma 4 that

This implies that
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To prove (*), it is enough to show that for some universal constant K,
we have

We first note that from (9) we have

so in particular

Since for t in A" we have so

It follows from ( 10) that, for y >_ 0, we have

Since B~ c An, it follows from (12) and (5) that

We set

Vol. 24, n° 2-1988.
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We have

For y _ 0, we have

so we have J (u) _ P(Sup u). Since Sup EZ~  l, we see by lemma 4
Ao t e Ao

that lim J (u) = o.
u -. o0

From ( 13), we have, since A o = U Bn,

Making the change of variable y = u - z, and setting

we get

Using ( 1) and (3), we have

so

We note now the important fact that, since a2  2 - 3, ~  2 - 4,
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Using (2), we get after a short computation, that for some constants K6,
K7,

And from ( 15) we have

Since it follows from lemma 2 that for some universal

constant K, we have I (u)  K ~ 2 ~ (u). Together with (14), this proves

( 11), and concludes the proof.
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