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ABSTRACT. - Based on simple ideas introduced by J. Nash, it is shown
that certain estimates on the transition function for a symmetric Markov
process are equivalent to certain coercivity conditions involving the associa-
ted Dirichlet form.
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INTRODUCTION

A large number of properties which are peculiar to symmetric Markov
semigroups stem from the fact that such semigroups can be analyzed
simultaneously by Hilbert space techniques as well as techniques coming
from maximum principle considerations. The feature of symmetric Markov
semigroups in which this fact is most dramatically manifested is the central
role played by the Dirichlet form. In particular, the Dirichlet form is a
remarkably powerful tool with which to compare symmetric Markov
semigroups. The present paper consists of a number of examples which
illustrate this point. What we will be showing is that there exist tight
relationships between uniform decay estimates on the semigroup and
certain Sobolev-like inequalities involving the Dirichlet form.

Because of their interest to both analysts and probabilists, such relation-
ships have been the subject of a good deal of research. So far as we can
tell, much of what has been done here-to-fore, and much of what we will
be doing here, has its origins in the famous paper by J. Nash [N]. More
recently, Nash’s theme has been taken up by, among others, E. B. Da-
vies [D] and N. Th. Varopoulos [V-I] and [V-2]; and, in a sense, much of
what we do here is simply unify and extend some of the results of these
authors. In particular, we have shown that many of their ideas apply to
the general setting of symmetric Markov semigroups.

Before describing the content of the paper, we briefly set forth some
terminology and notation. Careful definitions can be found in the main
body of the paper.

Let E be a complete separable metric space, ~ its Borel field, and m a
( a-finite, positive) Borel measure on E. be a strongly
continuous symmetric Markov semigroup on The semigroup
{Pt: determines a quadratic form C on L2 (m) through the definition

[Here ( . , . ) denotes the inner product in L2 (m), and we are postponing
all domain questions to the main body of the paper.] 6 ( f, g) is then

defined by polarization. ~ is called the Dirichlet form associated with

the semigroup ~Pt : t > 0~. It is closed and non-negative, and therefore it

determines a non-negative self adjoint operator A so that 0N ( f, f ) = (I, Af).
One easily sees that Pt = e - t A, and so the semigroup is in principle

determined by its Dirichlet form. Our aim here is to show that at least as
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247SYMMETRIC MARKOV TRANSITION FUNCTIONS

far as upper bounds are concerned, this is also true in practice; the

Dirichlet form 6 provides a particularlly useful infintesimal description of
the semigroup ~Pt : t > 0~.

Finally, to facilitate the description of our results, we assume in this
introduction that the semigroup {Pt: t > 0~ posseses a nice kernel p (t, x, y).

In section 1 we carefully define the objects introduced above and spell
out their relations to one another.

In section 2 we begin by characterizing the semigroups for which one
has uniform estimates such as

in terms of Dirichlet form inequalities of a type first considered by
J. Nash [N]:

and indeed, our method of passing from (0.3) to 0 . 2) is taken directly
from the work of Nash. [Our own contribution is that (0.2) and (0.3)
are actually equivalent. Several applications here and elsewhere [K-S] turn
on this equivalence.] ]
Once these basic facts have been established, the rest of section 2 is

devoted to Dirichlet form characterizations - again involving Nash type
inequalities - of cases when p (t, x, y) decays differently for small times
and large times. The characterizations again have a pleasantly simple form.
(Theorem (2. 9) and Corollary (2.12) are the main new results here.) Some
applications of these results are given in section 2, others are described in
section 5.

At the end of section 2, we discuss Varopoulos’ result [V-2] characteriz-
ing (0.2) when v > 2 in terms of a Sobolev inequality

Together the two characterizations yield the surprising result that (0.3)
and (0.4) are equivalent for v > 2. However, because (0.2) and (0.3) are
equivalent for all v>O, and because (0.4) either does not make sense or
is not correct for v _ 2, we find it more natural to characterize decay of
p (t, x, y), as we have throughout this paper, in terms of Nash type
inequalities.
The uniform estimate (0.2) and all the estimates in section 2 are really

only on-diagonal estimates for the kernel p (t, x, y). Indeed, a simple
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application of the semigroup law and Schwarz’s inequality yields

In section 3 we take up an idea of Davies [D] to obtain off-diagonal decay
estimates.

Davies’ idea is to consider the semigroup (Pt : t >_ o) defined by

for some nice function B)/. Clearly this semigroup has a kernel pW (t, x, y)
which is just x, y) ~’’~. In general, Pt will not be symmetric,
or even contractive, on L2 (m). Nonetheless, when p (t, x, y) satisfies (0 . 2),
one might still hope that for some number and some number C

independent of 1,

It would follow immediately that

and one would then vary i to make the exponent as negative as possible.
Davies worked this strategy out for symmetric Markov semigroups

coming from second order elliptic operators. In this case, the associated
Dirichlet form C ( f 1) is an integral whose integrand is a quadratic form
in the gradient off Davies used the classical Leibniz rule to, in effect,
split the multiplication operators e -’if and e’if off from Pt so that symmetric
semigroup methods could be applied to {Pt: t > 0~ .
Here we develop Davies’ strategy in a general setting, treating also the

non-local case. (That is, the case when ~Pt : t > 0~ is not generated by a
differential operator.) We are able to do this because, under very mild
domain assumptions, a generic Dirichlet form 6 behaves as if C ( f, 1) were
given by the integral of a quadratic from in V f In particular, C satisfies a
kind of Leibniz rule. (Of course, there is no "chain rule" in the non-local
setting, and so it is somewhat suprising that there is a Leibniz rule, even
in the absence of any differentiable structure.) We develop this Leibniz
rule at the beginning of section 3; where we use ideas coming from
Fukushima [F] and Bakry and Emery [B-E]. Even though a good deal of
further input must be supplied to prove our generalization of Davies’
result, it is this Leibniz rule which allows us to take apart the product
structure of Pt. Thus the principle underlying our generalization is really
the same as the one which he used.

.. > Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



249SYMMETRIC MARKOV TRANSITION FUNCTIONS

At the end of section 3 we give a brief example of the application of
our result to a non-local case.

In section 4 we develop analogs of the results of section 2 in the discrete
time case. In places this involves considerable modification of our earlier
arguments. In fact, we do not know how to extend the results of section 3
to the discrete time case. Our direct treatment of the discrete time case

appears to be both new and useful. In a recent paper [V-I]. Varopoulos
gave a very interesting application of continuous time decay estimates to
determine the transcience or recurrance of a Markov chain. He was able

to apply continuous time methods to this particular discrete time problem
essentialy because it is a question about Green’s functions. Other problems,
however, seem to require a more direct approach.

In section 5 we give an assortment of applications and further illustra-
tions of the results described above. For example, Theorem (5. 20)
discusses a discrete-time situation for which the results of section 4 appear
to be essential.

The authors are grateful to an extremely consciencious referee who
forced us to clarify several murky points.

1. BACKGROUND MATERIAL

Let E be a locally compact separable metric space, denote 
the Borel field over E, and let m be a locally finite measure on E. Given
a transition probability function P(t, x, .) on (E, ~), we say that

P (t, x, . ) is m-symmetric if, for each t > 0, the measure

x, dy) m (dx) is symmetric on We will

always be assuming that our transition probability functions are continu-
ous at 0 in the sense that P ( t, x, . ) tends weakly to ~x as t decreases to 0.
Note that if denotes the semigroup on B(E) (the space of
bounded -~-measurable functions on E into IR) associated with P(t, x, . )

i. e. x, dy) for t>O and f E B (E) , then for all

f E Bo (E) (the elements of B (E) with compact support):

Thus, for each p E [ l, oo ), ~ Pt : t > 0~ determines a unique strongly continu-
ous contraction semigroup {Pf: on LP(m).
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In particular, when p = 2 we write Pt in place of P; and observe that
is a strongly continuous semigroup of self-adjoint contractions.

Then the spectral theorem provides a resolution of the identity ~E~, : ~. >_ 0~
by orthognal projections such that

Clearly, the generator of {Pt: t > 0~ is - A where .

Next define a quadratic form on L2 (m) by

[We use ( f, g) to denote the inner product of f and g in L2 (m).] The
domain @ (6) of 8 is defined to be the subspace of L2 (m) where the

integral in (1. 3) is finite. Since 1 ~ 1-e-’~ t ) increases to À as t decreases to
t

0, another application of the spectral theorem shows that ~r ( f, f ) 
as t ! 0, where

and that

is the domain of the square root of A.] The bilinear form
8 is called the Dirichlet form associated with the symmetric transition

function P(t, x, . ) on (E, m).
It is clear from (1.4) that 8t (I f I, f I ) _ ~~ ( f; ~). Taking the limit as t

tends to zero, it is also clear that 8 possesses this same property. What is
not so clear, and is in fact the key to the beautiful Beurling-Deny theory
of symmetric Markov semigroups, is the remarkable fact that this last

property of 8 essentially characterizes bilinear forms which arise in the
way just described. For a complete exposition of the theory of Dirichlet

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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forms, the reader is advised to consult M. Fukushima’s monograph [F].
A more cursory treatment of the same subject is given in [L.D.] starting
on page 146.

2. NASH-TYPE INEQUALITIES

Throughout this section, P ( t, x, . ) will be a symmetric transition proba-
bility function on ( E, ~, m), and ~ Pt : t > 0 ~ , ~ P~ : t > 0 ~ , ~ E~ : ~, >_ 0 ~ , ~,
and A will denote the associated objects introduced in section 1. Further-

more, we will use ~ f to denote the LP (m)-norm of a function f and

I K to denote sup {~ K f ~q: f E Bo (E) with f ~p = 1} for an opera-
tor K defined on Bo (E).
As the first step in his famous article on the fundamental solution to

heat flow equations, J. Nash proved that if a: [RN - [RN Q9 [RN is a bounded
smooth symmetric matrix valued function which is bounded uniformly
above and below by positive multiples of the identitity, and if p (t, x, y)
denotes the non-negative fundamental solution to the heat equation

then p (t, x, y)  (t, x, y) E (0, oo) x ~N x where
K can be chosen to depend only on N and the lower bound on a ( . ).
The proof given below that ( 2 . 2) implies ( 2 . 3) is taken essentially

directly from Nash’s argument. 
’

for some A ~ (0, oo), then there is a B E (0, which depends only on v and
A such that

Conversely, if (2. 3) holds for some B, then (2. 2) holds for an A depending
only on B and v.

Proo,f: - We first note that it suffices to consider

f (A) (~ L~° (m) n L~ (m) + when proving the equivalence of (2 . 2) and
(2. 3). It suffices to consider non-negative functions because {Pt: t>0}
preserves non-negativity and ~ ( ~ ~ ( f f). Furthermore, if

n), then
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Assume that ( 2 . 2) holds, and let with

I fill = 1 be given. Set ft = Pt f and u (t) = Then, by (1.2) and

where we have used the fact that I fill = 1. Hence,

and so, From this and the preceding paragraph, it is

clear that where C depends only on v and A. Next,
since Pt is symmetric, ( ( Pt, ( 2 ~ ~ _ ~ ~ Pt ~ ~ 1 -~ 2 by duality. Hence, by the
semigroup property, ( ( P~ I I 1 ~ ~ _ I ~ Pr~2 ~ ~ i -~ 2 - B est/t"~2, where again B

depends only on v and A.
To prove the other assertion, assume (2.3). Choose

and set Then

where we have used ( 1. 2) to conclude that

( f, (~I + A) fs) _ ~ ( f, f ) + ~ ~ ~ f ~ I 2 f or all s >__ o. After segregating all the

t-dependent terms on the right hand side and then minimizing with respect
to we conclude that (2 . 2) holds with an A depending only on v and
B. Because of the remarks in the first paragraph, the proof is now

complete. D
The estimate (2.3), as it is written, ignores the fact that since

~ ~ for all is a decreasing function of t. However,
it is clear that when b > o, (2 . 3) is equivalent to

where B’ = B e~.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(2.4) Remark. - The basic example from which the preceding theorem
derives is the one treated by Nash. Namely, let E = I~N and set

Then it is easy to identify 221 f or the associated Dirichlet f orm SO as
the Sobolev space WZ of L2 (RN)-functions with first derivatives in

and to show that In particular, since it

is clear from the explicit form of P° (t, x, dy) that i _ (4 ~n t) -N~2,
we can apply the preceding theorem to conclude that

On the other hand, and this is the direction in which Nash argued, an
easy application of Fourier analysis establishes (2. 5) for this example:

for all R > 0, and therefore (2. 5) follows upon minimization with respect
to R.

Next, suppose that a : [RN - TN @ ~N is a smooth, symmetric matrix
valued function which satisfies a ( ~ ) >_ oc I for some a > o. Then the funda-
mental solution p (t, x, y) to (a Vu) determines a symmetric transi-
tion probability function P ( t, x, dy) = p (t, x, y) dy on ( f~N, dx), and the
associated Dirichlet form 6 is given by

While one now has no closed form expression for P(t, x, dy), it is clear

that 6 ( £ f ), and so from (2. 5), we see that S satisfies (2. 2)
with A = Hence, ) I ~ ~ ~  K/tN~2, where K E (0, oo) depends on N
and a alone. Obviously, this is the same as saying that p (t, x, y)  
The utility of Theorem 2. 1 often lies in the fact that it translates a

fairly transparent comparison of symmetric Markov semigroups at the
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infinitesimal level into information relating their kernels ; clearly this is

the case in Nash’s original work.
Our next result is motivated by the following sort of example. Define

p (t, x, on (0, oo) x f~N x where

is the Cauchy (or Poisson) kernel for IRN. Then it is easy to check [cf. the
discussion in section 1)] that the associated Dirichlet form 6 is given by

In addition, by either Theorem (2.1) or a Fourier argument like the one
given in (2 . 4), one sees that (2. 2) holds with 8=0 and v = 2 N. Next,
consider the Dirichlet form

where c > 0 and ri E Bo ( f~N) + is identically equal to I in a neighborhood
of the origin and is even. (Note that, by the Levy-Khinchine formula,
there is, for each t > 0, a unique probability Ilt on (~N such that

where c’ = 2 Moreover, it is an easy exercise to check that the

convolution semigroup symmetric on dy) and has
C as its Dirichlet form.) One can exploit translation invarience by using
the Fourier transform to rewrite ~(f, f) as

Note that is asymptoticly proportional to

) 2 for § small and to i ~ ~ I for § large. Then proceeding as in the

Fourier analytic derivation of (2 . 5), one sees that there exists a C E (0, oo)
[depending only on N, c, ~~~~, and the supports of ~ and (1-~)] such

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques
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that :

From (2 . 6), we see that if ~ ( f, f IIi then

where C’ depends only on C and N. At the same time, if f ) _ 
then, by taking R = 1 in ( 2 . 6), we obtain and therefore

that

Combining these, we arrive at

where A depends only on N and C. Applying Theorem (2. 1), we conclude
that

Because the Ilt from which the preceding {Pt: t > 0 ~ comes is nothing
but a truncated Cauchy kernel, one expects that ( 2 . 7) is precise for

1]. However, Central Limit Theorem considerations suggest that it
is a very poor estimate for t > 1. In fact, because the associated stochastic

process at any time t and for any n E Z+ is the sum of n independent
random variables having variance approximately proportional to t/n, the
Central Limit Theorem leads one to conjecture that the actual decay for
large t is B The point is that too much of the information in (2 . 6)
was thrown away when we were considering f ’ s for which

~ ( f, f )  I) f Iii. Indeed, from (2 . 6) we see that

The next theorem adresses the problem of getting decay information from
conditional Nash type inequalities like (2. 8).

(2. 9) THEOREM. - Let v E (0, oo) be given. If
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for some A E (0, oo~ and if I) __ B E (0, oo), then there is a C E (0, oo)
depending only on v, A, and B such that

Conversely, (2 .11) implies that (2 . 10) holds for some A E (o, oo) depending
only on v and C.

Proof - As in the proof of Theorem (2. 1), we restrict our attention
n L1 (m)+ when deriving these relations.

Assume that (2. 10) holds and that i ~  B, and set T = B/2. Let
~ (A) n LI (m) + with II fill = 1 be given and define

Then, by ( 1. 2) :

Hence, by ( 2 . 10), I I fr ( I 2 + 4/v  A ~ ~ ft~ .f ’t) ~ ~ f ~ ~ i w - A ~ ( ft~ .fr)~ since

~ ~ f ~,1=1. Starting from here, the derivation of for some
C’ depending only on N and A is a re-run of the one given in the passage
from (2. 2) to (2. 3). One now completes the proof of (2. 11) by first noting
that, from the preceding, and second that

The converse assertion is proved in the same way as we passed from
(2. 3) back to (2. 2). D
The following statement is an easy corollary of the Theorems (2. 1) and

(2.9) and the sort of reasoning used in the discussion immediately preced-
ing the statement of ( 2 . 9) .

(2.12) COROLLARY. - be given. If

for some A E (0, oo) and all f E L2 (m) B ~ 0 ~ . then there is a B, depending
only on y, v, and A, such that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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(2. 15) Remark. - As a consequence of Corollary (2. 12), we now
have the following result. Let ~ P~ : t > 0 } have Dirichlet form 6 and suppose
that

where M: f~N x o ~ 
- [o, ml has the properties that M (x, ~ ) is a

locally finite Borel measure on Q~N B ~ 0 } for each x E M ( ~ , r) is a

measurable function for each M (x, - r) = M {x, r), and

Next, suppose that M (x, dy) > (y) 
ly « 

for some ~ E B 
+ and

ae(0, 2). If for some E > 0, then by comparison with the Dirichlet
form of the symmetric stable semigroup of order a, we have

II t > o, where B depends only on N, a, E, I ry ~ ~ ~, and C.
On the other hand, again by comparison, if 11 E Bo ( f~N) and 
on some ball B(0,r), satisfies (2. 14) with ~. = N/2,
v = 2 N/a, and some B depending only on N, a, E, r, I ~ ~ ~ ~ ~, and supp(,,).
We conclude this section with an explanation of the relationship between

Nash inequalities like (2. 2) and the more familiar Sobolev inequalies.

(2 .16) THEOREM. - Let v E (2, oo ) be given and define p E (2, oo ) by the
equation p = 2 vi(v - 2) (i. e. 1 /p =1 /2 -1 /v). If (2 . 2) holds for some choice
of A and b, then

for some A’ E (o, oo) which depends only on A and v. Conversely, (2. 17)
implies (2. 2) for some A E (0, oo) depending only on A’ and v.

Proof - At least when 8=0, Varopoulos proved in [V-2] that (2 . 3)
with v > 2 is equivalent to (2.17) with p = 2 v/(v - 2) ; and so, since his

proof extends easily to the case when S > o, Theorem (2.16) follows directly
from Varopoulos’ theorem and Theorem (2. 1). I]
The passage from (2. 17) to (2. 2) provided above is, however, far from

being the most direct. If (2. 17) holds, then by Holder’s inequality:
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where p’ denotes the Holder conjugate of p. The preceding inequality
clearly shows that ( 2 . 17) yields ( 2 . 2) with A = (A/)4/p’. In view of the
crudeness of this argument for going from (2. 17) to (2. 2), it should come
as no suprise that Varopoulos’s proof that one can go from (2.3) to

(2. 17) involves somewhat subtle considerations. In particular, what comes
easily from (2 . 3) is a weak-type version of (2 . 17) ; and one applies
Marcinkiewicz interpolation to complete the job. D

Although it may be of very little practical value, it is nonetheless

interesting to examine what happens to Theorem (2. 16) in the critical case
when v = 2. It is easy to see that the naive guess that one can simply take
p = oo is blatantly false. Indeed, although the argument just given shows
(2. 17) with p = oo implies (2 . 2) with v = 2, it is easy to construct examples
(e. g. the standard heat-flow semigroup on L~2) for which (2. 2) holds but
(2.17) fails. What we are about to show is that, just as in various other
situations, the appropriate substitute for L 00 is a certain B.M.O. (bounded
mean oscillation) space. To be precise, define

Then { 0 } is the strongly continuous semigroup on L2 (m) generated
by - (2 A) 1~2, and corresponds to the m-symmetric
transition probability function

Now suppose that

Then dearly !! Qy~ i ~ ~ B~, ~ > 0 ; and so, by interpolation and duality,
~ Qy 2 ~ oo ~>0. At the same time,

Hence, if

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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for f ECb(E), ( 2 .18) implies that -

Similarly, if

then

and in both ( 2 .19) and (2.21), the Ce(0, oo ) can be chosen to depend
only on the corresponding B.

In other words, it appears that (2. 19) and (2. 21) are likely candidates
for the Sobolev inequality connected with v = 2. However, before this claim
can be given very much credence, we must find a reasonable class of
examples for which it is possible to push the argument in the opposite
direction. Unfortunately, we have not been able to carry out this program
except in the case when P(t, x, . ) determines a continuous-path process
which is Feller continuous. That is, let {Px: x E E ~ be the Markov family
of probability measures determined by P ( t, x, . ) on the Kolmogorov path-
space (0). Throughout the rest of this section we will be assuming that:
(C) oo ) ; E) has Px-outer measure 1 for all xeE and that

x E E )2014~ Px IfiE weakly continuous in M1 (S~E) ; and we will be thinking
of Px as living on QE.

(For information about conditions guaranteeing (C), see [F].) Next, set

and f or z = (x, oo ) define where 

denotes the standard Wiener measure on starting from y. Using

to be the position of co E Q at time t >__ 0, define

Given anfECb(E), define

Then one can easily check that
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In particular, (Xt, 1Ft, RJ is a bounded continuous martingale and
X i --~ ~~ -~’ (x (~)) ( a. s., Rz) as t - m. Next, set

where Q + denotes the non-negative rationals. Then

where X * = supERz [ |X~ ( |Ft]. In addition, by (2 . 22),
Q+

(a. s., RJ, and so

We next note that for all }-stopping times 6 _ i

To this end, first note that (2.25) is trivial when o and r are constants

from Q +. Second, extend (2.25) to the case when o and t take on only a
discrete set of values from ~ +. Finally, complete the proof by replacing
o and t by ( [2n ~] + 1 )/2~‘ and ( [2’~ i] + 1 )/2n, respectively, and passing to
the limit. Because is continuous, we can apply Theorem (107) on
page 191 of [D-M] to conclude from (2. 25) that

for all ~,, where X**= and from ( 2 . 26) it is an easy
t z o

step (cf [St]) to the existence of a universal Ke(0, oo) such that

Note that, by Doob’s inequality and (2. 23),

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Hence, by (2. 22) and (2. 24),

Finally, since _ X * *, the preceding together with
(2. 22) and (2. 27) yields

(2.29) THEOREM. - Assume that condition (C) holds. Let Eo denote the
projection onto the Oth eigenspace of A. Then (2. 18) is equivalent to (2. 19)
and Eo = 0 ; and (2. 20) is equivalent to (2. 21) and I ( I2 .~ ~ _ C. Moreover,
the B in (2 .18) or (2 . 20) [the C in (2. 19) or (2 . 21 ) and ( ~ ~] depends
only on the C in (2 . 19) or (2 . 21 ) and I Eo I I 2 ~ ~ [the B in (2. 18) or (2 . 24)].
Proof. - for all t > o, it is

clear that (2. 18) implies that Eo = 0 and that (2 . 20) implies that

Thus we need only check that (2 . 19) and

Eo = 0 [(2. 21) and ~ Eo ~2 ~ ~  oo] implies (2. 2) [{2. 2) with S=1].
By ( 2 . 28),

Noting that m is { Qy; y > 0 )-invariant, integrate both sides of the preced-
ing with respect to m (dx) and thereby obtain

Now let y T oo and conclude that

If (2 .19) holds and Eo = 0, then (2 . 30) clearly implies (2 . 2) with v = 2,
s = o, and some A depending only on C. On the other hand, if (2 . 21)
holds and D = I ~E0~2 ~ ~  ~, then (2 . 30) yields

from which (2. 2) follows with v = 2, ~ =1, and some A depending only
on C and D. [I]
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3. DAVIES METHOD

FOR OBTAINING

OFF DIAGONAL ESTIMATES

So far we have discussed the derivation of estimates having the form

II -~ oo _ B ( t). When such an estimate obtains of course, for each t and
m-a. e. x, the measure P ( t, x, . ) must be absolutely continuous with respect
to m, and so the semigroup {Pt: t > 0~ posseses a kernel p (t, x, y); that is,
for m-a. e. x, we may write

In this section we discuss pointwise estimates on the kernel p (t, x, y).
To do so conveniently, we will suppose that our semigroup ~P~ : is a

Feller semigroup; that is, that each Pt preserves the space of bounded
continuous functions. Under this hypothesis, whenever I ( Pt ~ ~ 1 ~ ~  B ( t)
we have that for every t and x,

Then in view of the fact that P ( t, x, . ) is an m-symmetric transition

probability function, p (t, ~ , *) =p (t, *, . ) (a. e., m x m) for all t > o, and

for all ( t, x)e(0, oo ) x E. (One may always delete the Feller condition in
what follows if one is willing to insert extra a. e. conditions.)
We now enquire after the decay of p (t, x, y) as the distance between x

and y increases. The results of section 2 do not address this question.
Indeed, under the Feller hypothesis, we have by the Schwarz inequality
and the above that
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Hence, while an estimate on yields a uniform estimate on

p (t,., *), it is really just an estimate on p (t, . , *) at the diagonal.
In the introduction we briefly sketched an extremely clever method

E. B. Davies [D] introduced for obtaining off- diagnal estimates provided
the semigroup is generated by a second order elliptic operator. Our primary
goal in this section is to show how one can generalize Davies’ idea and
apply it in a more general non-local setting.

In order to explain what must be done, consider, for a moment, a

typical situation handled by Davies. Namely, let E = [RN and suppose that

~ ( f, f ) = where a : ~N ~ ~NQ ~N is a smooth, symmetric

matrix-valued function, uniformly bounded above and below by positive
multiples of the identity; and let (Pr : t > 0~ denote the associated semigroup.
Instead of studying the original semigroup directly, Davies

proceeded by way of the semigroup (P; : t > 0~ where

and What he showed then is that if t>O,
then, for each p > 0, there is a Bp E (0, oo) such that

where As a consequence, he concluded that

for all ~r E Co and then got his estimate by varying i.
As we will see shortly, the key to carrying out Davies’ program is to

obtain the inequality

for smooth non-negative f’ s and any pE[l, oo ). Although, in the case
under consideration, ( 3 . 2) is an easy exercise involving nothing more than
Leibniz’s rule and Schwarz’s inequality, it is not immediately clear what
replaces (3.2) in the case of more general Dirichlet forms. In particular,
we must find a satisfactory version of the Leibnitz rule [ef (3.8) below]
and a suitable quantity to play the role of and we must then show
that a close approximation of ( 3 . 2) continues to hold.

(3. 3) WARNING. - Throughout this section we will be assuming that for
any Dirichlet form $ under consideration, Co (E) (6) is dense in Co (E).
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In this section we make frequent use of the fact that (cf section 1) for

Set ~ ) ~1 L°° (m). We then have the following lemma, which is
taken, in part, from [F].

(3. 5) LEMMA. - If cp is a locally Lipshitz coninuous function on (~1 with
cp (0) = 0, then, for all In particular, in an algebra.
Finally, for all f; g 

Proof - The proof that cp comes down to checking that

and since cp Of (v) - cp (x) I _ M I , f (x) I, where M is the Lipshitz norm
of cp on range (/B this is clear. The fact that is an algebra follows by
specialization to and polarization. Finally, to prove (3.6), note
that

and therefore, by the symmetry of mt, one sees that
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After dividing by 2 t and letting t 1 0, one gets ( 3 . 6) .

Given two measures ~. and v on (E, recall that 1~2 is the measure

which is absolutely continuous with respect to Jl + v and has Radon-

Nikodym derivative ( fg) 1 ~2, where f and g denote the Radon-Nikodym
derivatives of u and v, respectively, with respect to u.+v.

( 3 . 7) THEOREM. - Given f, g E ~ b and t > o, define the measure ( f, g)
by

Then, there is a measure r ( f, ,~ to which rt (,f, ~ tends weakly as t ,~ 0

the total mass of r ( f, , f }. Furtherm ore, if r ( f; g) is defined by polarization,
then ri (,f, g) tends weakly to r (.f; g) and r ( f, g) i _ (h (,f; ~ r (g, g))l2,
where I 6 denotes the variation measure associated with a signed measure a.
Finally, if f; g, then one has the Leibnitz rule:

Proof - Clearly I~’t ( f, j) (E) - 6 as t t 0. Thus we will know that

ft ( f, j) converges weakly as soon as we show that lim fg (x) rt (I, f) (dx)
exists for each g E Co (E). In turn, since we have assumed that

is dense in Co(E), we need only check this for

g (~) (~ Co (E); and for such a g we can apply ( 3 . 6) .
Clearly both g) -~ r (, f, g) and the inequality

follow from the definition of g) via polarization. Finally, to prove
( 3 . 8), observe that
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Hence, by the symmetry of mt, (3. 8) holds with ~t and r, replacing 6 and

r, respectively; and ( 3 . 8) follows upon letting t i O .
a

Clearly we can unambiguously extend the definition of ~ and r to
and and ( 3 . 8) will continue to

hold even though elements of ~ need not lie in L2 (m). We now
define to be the set of such that

e - 2 ~‘ I-’ (e’~, e‘~)  m, e2 ‘~ I-’ (e -’~, e -’~)  m, and

( 3 . 9) THEOREM. - Choose and fix 03C8 E ~. Then, for all f E 

Moreover, all p E [ l, oo ):

Proof - By polarizing (3.6), we see that:

Hence, after applying (3.8) to the second term on the right of the prece-
ding, we obtain:

Note that
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In particular, when p =1:

At the same time,

and so ( 3 .10) now follows from ( 3 . 12) with p = 1 and the preceding.
To prove (3 . 11) when p > 1, we re-write the right hand side of (3. 13)

as:
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Using ( 3 . 14) together with this last expression, we see that:

In order to complete the derivation of (3. 11), we need two more facts.
The first of these is that

and the second is that

To prove ( 3 . 16), use (3.8) to check that

and use G(f2P-2, ~) = lim 8t(.fp-2, ~) >__ 0 to conclude that the first part
r 0

of (3 . .1~ holds. The second part follow from the fact that for all x and y,
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together with (3.4) and Lemma (3.5). The proof of (3.17) is equally easy.
Namely, replace 6 and by tfft and note that

(We do not actually use the second part of ( 3 . 16) here, but because it is
interesting that there is a two sided bound, we include the short proof
here. The second part of (3.17) has appeared already in [L.D.] and [V-2];
only the first part is new.)
Combining ( 3 . 12) and (3.15) with (3.16) and ( 3 . 17), we now see that

of which (3. 11) is an easy consequence.

Now suppose that 6 satisfies the Nash inequality

Given 03C8~~ and f~+ Then, by (3.10) and (3.11), one
has that

and
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for p E [2, oo ) . Clearly the first of these implies that

At the same time, when combined with ( 3 .18), the second one leads to
the differential inequality:

The following lemma, which appears in [F-S] and whose proof is repea-
ted here for the sake of completeness, provides the key to exploiting
differential inequalities of the sort in (3. 20).

(3. 21) LEMMA. - Let w: [0, 00) -~ (0, (0) be a continuous non-decreasing
function and suppose that u ~C1 ([0, oo); (0, oo)) satisfies

for some positive E, p, and ~, and some p E è2, oo). Then, for each p E (0, 1],
u satisfies

Proof. - Set and note that

Hence

and so, since w is non-decreasing
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But, for’ p E (0, 1],

Noting for allpe[2, oo ), we conclude from
the above that u satisfies (3. 23).

D
We are now ready to complete our program of estimating .~ ~.

To this end, pick set pk = 2k for keZ+, and
define IIPko Also define

By ( 3 .19), Wi t). Moreover, by ( 3 . 20), satisfies ( 3 . 22)
with E =1 /A, P=4/v, ~, = 9 I-‘ (~r) 2 ..~ ~/pk, and W=Wk’ Hence, by ( 3 . 23), we
see that

for any pE(O, 1]. Putting this together with our estimate on wi, we arrive
at the conclusion lim wx (t)  C where C = C ( ~3) E (0, oo); and,

k -~ 00

after replacing p by p/9 and adjusting C accordingly, one easly passes
from here to

for all pe(0, 1]. Finally, this estimate is obviously unchanged when W is
replaced Thus, since it is clear that Pr ~‘ is the adjoint of Pf, we
also have that

for all pe(0,l]. Hence, since

we now have



272 E. A. CARLEN, S. KUSUOKA AND D. W. STROOCK

for all pe(0, 1], where the C in (3 . 24) is the square of the earlier C.

(3.25) THEOREM. - Assume that (3. 18) holds for some positive v, A,
and 8. Then pet, x, dy) = p {t, x,y)m(dy) where, for each pE(O, 1] and all

(t, x, y) E (o, oo ) x E x E:

with oo) depending only on v and

Proof - From ( 3 . 24) with gs = 0 we see that p (t, x, . ) exists. Moreover,
since I-’ (~r) = I-’ ( - ~r), ( 3 . 24) for general says that

and clearly (3. 26) follows from this.
D

(3 . 28) COROLLARY. - Assume that (2 . 14) holds for some B E (o, oo) and
(or, equivalently, that (2 . 13) holds for some A E (0, oo) and

the same ~ and v). Then for all (t, x, y) E (0, oo) x E x E and each p E (4, 1]:

where K E (o, depends only on B (or A), y, and v.

Proof - From (2. 14) we have [cf. the proof that (2. 3) implies (2.2)]
that

Hence, if 8e (0, 1], then II B ~~~‘-‘’»2 t-"~Z (~ + t ~ ( f ,~ for all

te(0, 1 /c5]. In particular, by taking

we conclude that there is a B’e(0, oo), depending only on B, ~,, and v,
such that
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if

On the other hand, by taking t =1 /b in ( 3 . 30), we see that

and therefore that

if

Combining this with ( 3 . 30), we conclude that

where Ae(0, oo) depends only on B, ~,, and v.

Finally, given t E (o, oo), ( 3 . 29) follows from ( 3 . 32) with 8=1/(1 v t)
and Theorem (3. 25). 0

4. THE DISCRETE TIME CASE

All our considerations thus far have applied to symmetric Markov
semigroups in continuous time for the simple reason that Dirichlet conside-
rations are most natural in that context. However, it is often important
to work with a discrete time parameter; and so in the present section we
develop the discrete-time analogs of the results in section 2. Unfortunately,
we do not know how to extend the results of section 3 to this setting.
Throughout this section II (x, dy) will denote an m-symmetric transition

probability on (E, ~). Also, we will use II , f’ (x) to denote

dy); and, for n >_ 1, the transition function dy) and the

operator nn are defined inductively by iteraction. Note that 
for co). Finally, set M (dx x dy) = II~ (x, dy) m (dx) and associate
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with II the Dirichlet form

Obviously there is no "small time" in the discrete context and therefore
we only seek an analog of Theorem (2.9).

(4. 1) THEOREM. - Let v E (o, (0) be given. If

for some A E (0, ~) and if ~03A0~1 ~ ~  B E (0, oo), then there is a C ~ (0, oo)
depending only on v, A, and B such that

Conversely, (4. 3) implies that (4. 2) holds for some A E (0, oo) depending
only on v and C.

Proof - We begin by observing that

In particular,

and so

Now suppose that (4. 2) holds and that I I II I y ~ ~ _ B. Then

and so, by (4.6), for n S:No =[B]+1 and

Hence, if f~L1 (m) + with and then, by
(4.2) and (4.4)
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Next, choose N1 ~ N0 so that for all

n2N1, and set C=BNi/2. Clearly, u" for 1 _ n _ N1. Moreover, if
and u,~ then either un _ C/{ n + 1 )"~2 or

C/(n + I )‘’~2  un In the first case, since 

__ C/( n + 1 )’’~2. On the other hand, in the second case, we apply (4 . 7)
to obtain:

Hence, by induction on we see that for all 

Obviously, this implies and therefore, by the
usual duality argument, (4. 3) follows.
To prove that (4. 3) implies (4.2), we use (4.4) and (4. 5) to conclude

and therefore, if (4.3) holds, that

The passage from here to (4.2) is

just the same sort of minimization procedure as was used to get (2.10)
from (2.11). D
As a typical application of Theorem (4. 1), we present the following.

Take E = IRN and suppose that n is a transition probability with

II (x, y) dy, where ~ is a symmetric measurable function on
into [0, B] for some Be(0, oo). Assume, in addition, that

X2 ( ~ , *) > p ( . - *) almost everywhere, where p is an even function in

satisfying

for some positive a and E.

(4 . 9) COROLLARY. - Referring to the preceding, there is a C E (o, oo),
depending only on N, a, E, and B, such that ~" (x, ~ )  a. e. for all
x E and n > 1.

Proof - Note that
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Hence, by (4. 8).

for all Re(0, 1]; and from here it is an easy step to (4. 2) with v = 2 N/a
and an AE(O, oo) depending only v, s, and N. we

can now apply Theorem (4.1) to get the required conclusion. D

Finally, we turn to an idea introduced by Varopoulos in [V -1]. Namely,
let II (~c, ~ ) be an m-symmetric transition probability and define

for pE[l, oo). We then have the following variation on Theorem 4 on
page 235 of [V -1], which, in conjunction with Theorem (4.1), provides a
useful criterion for finding out when (4. 3) holds.

(4. 10) THEOREM. - Given vE[l, (0), let v’ denote the Holder conjugate of
Then

implies that

where C2 E (0, ~) depends only on v and Cl.

Proof - First observe that, for any a E [ 1, oo ) 

and therefore
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Now suppose that ve[3, oo ) and set a = 2/( 2 - v’) . Then a e ( 2,4],
and 1 /p =1 /2 -1 /v. GivenfECo(E)+, apply (4.13) and

conclude that Hence,
for all/eCo(E)B Since 

quality extends to To get (4.12) from here, we repeat the
argument suggested in the paragraph following the proof of Theorem
(2 .16).
Next suppose that ve[1,3). Then, taking a = 3/2 in (4.13), we have:

I ~ f ~ I 3;, i2 _ 3 f ~ ~ 2, n II Since, by Holder’s inequality,
where 8=3 v/2(v+2) E(O, 1), (4.12) follows

immediately. Q

5. ASSORTED APPLICATIONS

We conclude this paper with an assortment of applications of results
from previous sections and with some remarks on natural extensions of
these results.

Most of these applications, like most of those already discussed, exploit a
relatively transparent comparison of Dirichlet forms to yield an interesting
comparison of the associated semigroups. By way of counterpoint, the
following application of Theorem (2. 1) exploits a relatively transparent
"multiplicative" property of Markov semigroups to establish an interesting
"multiplicative" property of the associated Dirichlet spaces.

Let and E(2) be two locally compact metric spaces equipped with
measures mi and m 2, and with symmetric transition probability functions
P~ 1 ~ ( t, x 1, . ) and P(2) (t, X2, .), as in the first section. Let ~~ 1 ~ and ~~2~ be
the corresponding Dirichlet forms.

Clearly

is a transition probability function on (E~1~ x E~2), ~E~1~ X E~2~), which is

symmetric with respect to m = m 1 x m2’ It is further clear that

P(t, (xl, x2), . ) tends weakly to ~~xi, x2} as t tends to zero, and so (5 . 1)
defines a transition function of the type we have been considering. Let 6
be the corresponding Dirichlet form; then it is easy to see that as Hilbert
spaces (the inner product on @ being ( ~ , ~ ) + ~ ( . , . ) , etc.)
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Now suppose that ~~1~ and ~~2~ each satisfy a Nash type inequality
(2. 2) for some positive V1 and v2. One may naturally ask whether 8 then
satisfies (2 . 2) for some v depending on v 1 and v2.

It may seem that this question invites an approach using, say, Holder’s
inequality or Minkowskii’s inequality to take apart tensor products directly
in (2.2). We know of no such argument. However, the equivalence of
(2. 2) and (2. 3) provides an easy positive answer to the question.

(5.4) THEOREM. - Let ~~1?, and 8(2) be related as above, and suppose

Then with v = u 1 + v2, b = b 1 + S2 and some A E (0, oo ), depending only on
A~~~ v A~2~ :

Furthermore, provided v~ and v~ are the smallest values for which (5.5)
holds, vl + v2 is the smallest value of v for which (5. 6) holds.

Proof - t > 0 ~ t > 0 ~ be the semigroups corres-
ponding to ~~ I ~ and By ( 5 . 5) and the second half of Theorem ( 2 1),

Then, by Segal’s lemma [S].

and so, by the first half of Theorem (2.1), we have (5. 6). The optimality
of 03BD1 + 03BD2 is easily seen by applying Q to the product fl Q f2
where each h is chosen with very close to

~.

A particularly interesting case occurs when v > 2 in (5. 6). Then Theorem
(2. 17) says that a Sobolev inequality holds for ~. This provides an easy
way to see that Sobolev inequalities hold for certain Dirichlet forms, and
even to find the largest possible p (smallest possible v) for which the

inequality holds.
For the simplest sort of example, take [0,1], take m 1 to be xdx,

and define ~~ 1 ~ by
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for f E Cb ([0, 1]) and then closing. Regarding f as a radial function on the
unit disk in R2, one recognizes 8(1) as the restriction to radial functions
of the Dirichlet form associated with the Neumann heat kernel on the

unit disk in f~ 2, ~~ ~ ~ therefore satisfies ( 5 . 5) with v 1= 2. Next take E(2) to
be the unit cube in i, take m 2 to be Lebesgue measure, and take ~~Z~
to be the Dirichlet form associated with the Neumann heat kernel on 
Then with E = x E~2} C and with ~, ~~1~, ~t2~ related as above, for
any 

Then clearly Theorem (5 . 4) applies with vl = 2 and v2=N-l, and so
8 satisfies (5.6) with v = N + 1, and does not satisfy (5.6) for any smaller
value of v. Therefore when N > 2 ~ satisfies a Sobolev inequality

with 1 /p =1 /2 -1 /( N + 1 ); (5.10) fails for any larger value of p. (The LP
norms are computed with respect to x~ dx.) Of course, if we remove the

factor x 1 from the integrals, ( 5 . 10) then is satisfied with 1/p =1 /2 -1 /N.
Including the degenerate weight x 1 in our integrals raises the effective
dimension v by one from N to N + 1.
The same result obtains in less special situations. Let M be a smooth,

compact N -1 dimensional submanifold of Let p be a weight function
on ~N satisfying, for some X > 0, and all x

By standard results in, for example, Fukushima’s book [F]; the closure of

defined first for f ~ C~0(RN) is a Dirichlet form. Employing a simple
partitioning argument, familiar comparison arguments, and otherwise only
increasing the complexity of notation; the argument above yields the

following result: For some A’, ~ E (o, satisfies the Sobolev inequality
( 5 .10) with 1 /p =1 /2 -1 /N + 1.
We next turn to an application of the results in section 4). Take E c ZN

equipped with the usual metric and a measure m bounded above and below
by positive multiples of counting measure. Suppose that E is everywhere
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connected to infinity, by which we mean that for each xeE, there is an
infinite, one sided, loop free chain Ex in E of nearest neighbors starting
at x. (One may always erase loops if need be.) Now let n(x, .) be an m-
symmetric transition function on E, define 03C0(x, y) = 03C0(x, {y})/m({y}),
and assume that

for some 1] and all x and y in E which are nearest neighbors. One
naturally feels that the associated random walk must spread out at least
as fast as a simple random walk on the half line with transition probabili-
ties J.L, since starting at x, it can always spread out along Ex. That is, one
expects the return probabilities IIn (x, ~ x ~ ) to decay like C/nl/2. We are
indebted to N. Varopoulos for pointing out to us that we could replace
our original rather cumbersome proof with the easy one which follows.

( 5 .14) THEOREM. - Let E c: ZN, nand m be given as in the preceding
discussion. Then there is a C  oo depending only on m and p so that

(5.15) II" (x, ~ x ~ ) _ C/n~~2 for all x E E and n E Z + .

Proof - Let 6 denote the Dirichlet form associated with n2 as in

section 4, and note that 8 (f, [cf the notation used in Theo-

rem (4.10)]. Given xeE, choose {xk : k ~ 0 } ~ E so that is a

nearest neighbor of and oo as k - ~. Then, for any f E Co ( E),
00

(.f {x) ~ ~ ~ ~.f (x2 ~k + p -f (x2 k) ( ~ C ~ n2 for some C E (0, oo). In other
k=0

words, and so (5.15) now follows from Theorems (4.1)
and (4.10). D
Next we turn to off diagonal bounds and applications of section 3. The

trick to applying the results of section 3 is to find, for given x, y, and t, a
W which maximizes, or nearly maximizes, Hence, in
situations where one can guess the correct behavior of the transition

function - and can therefore make a good choice for j - Theorem ( 3 . 25)
is a good source of pointwise bounds.

In our next example, E is the integers, and m is counting measure.
Suppose that p : Z x Z ~ [0, oo) is a symmetric function and that

p (m, n) - p (n - m) where p : Z --~ [0, oo) is an even function which posses-
ses a moment generating function M (~,). That is, suppose that for some
E > 0 and some B  oo .
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Then in particular, if we write ~2 = M (~,) 

It is easy to see that

is the Dirichlet form corresponding to a uniquely determined family
P ( t, m, . ) of probability transition functions with

For this reason, p ( . , . ) is called a jump rate function.
In general it is very difficult to pass from the infinitessimal description

(5.19) of the transition function to a useful closed form formula for it.

However, just as in section 2 with the truncated Cauchy process, Central
Limit Theorem considerations suggest that (at least when (5.17) is fairly
sharp) in the Gaussian time-space region (where t is much larger than

P ( t, m, {m + n}) is very nearly (203C003C32 t)-1/2 e-n2/2 03C32 t. We will now
prove that there is in fact a pointwise upper bound of this form in the
appropriate time-space region.

First pick some large N and some and define the even function

WN, « by

and

Clearly, Next observe that, writing W for a,
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Then, by Taylor’s theorem,

whenever

To use this estimate in Theorem (3. 25) we need to know that 6 satisfies
a Nash type inequality. This will follow easily from a comparison argument
if we impose

(5 . 23) THEOREM. - Referring to the preceding, there is a C E (0, oo),
depending only on p, such that for all p and S from (0, 1)

for all (t, m, n) E (0, oo) x Z x Z satisfying

Proof - By the preceding,

so long as |03B1| _ E 4. In articular, if t >_ 
4 
2 n - m , then we can take

a = m - n 03C32t and thereby obtain

Hence, if in addition, t >_ ~ n - m , then we etb6
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At the same time, after comparing 8 to the Dirichlet form corresponding
to the standard random walk on Z, one sees that

Hence, by Theorem (3. 25), we arrive at (5. 24). D
Note that since p and 8 are arbitrary elements of (0, 1), we get close to

what the Central Limit Theorem suggests is the best possible rate of
Gaussian decay - though of course the factors out front diverge as p tends
to zero.

We give one final example of an interesting situation where we can give
a good estimate for the quantity D (T; x, y) defined in (3. 26). Namely,
consider the case when E = IRN equipped with Lebesgue measure. Let

..., be a collection of vector fields on and

let C be the quadratic form on L2(IRN) obtained by closing

in L2 Again applying standard results from [F], one sees that this
closure exists and that the resulting 6 is the Dirichlet form associated

with the unique transition probability function P(t, x, . ) for which the
corresponding Markov semigroup { Pt : t > 0 ~ satisfies

d

for all where 1.== - ~ VII Vk and we think of Vk as the
k=l

N

directional derivative operator L (By V&#x26; we mean the formal

d

adjoint of the Vk as a differential operator.) Set Vk (x) Q Vk (x)
k=1

and note that an equivalent expression for L is V. (a V). In particular,
when a ( . ) >_ E I for some E > o, it is well known that
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where ( t, x, y) E {o, oo ) x [RN x [RN --~ p {t, x, y) is a smooth function which
is bounded above and below in terms of appropriate heat kernels (cf [F-
S] for a recent treatment of this sort of estimate). Moreover, it is known

that, in this non-degenerate situation, lim t log (p (t, x, j~)) == 2014 ~ (x, y)2/4,

where d (x, y) denotes the Riemannian distance between x and y computed
with respect to the metric determined by a on (cf [V]). These considera-
tions make it clear that we should examine the relation between d (x, y)
and the quantity D(T; x, y) introduced in section 3).

In order to make it possible to have our discussion cover cases in which
a is allowed to degenerate, we begin by giving an alternate description
of d (x, y). Namely, define H = Hd to be the Hilbert space of

h E C ( [o, oo); [Rd) satisfying h (o) = 0 and

Given h e H, let Y" (., x) e C ( [0, oo); (~N) be defined by

Finally, define d (x, y) = h E H and Yh (1, x) = y ~. It is then quite
easy to show that, in the non-degenerate case, d (x, y) is the Riemannian
distance between x and y determined by the metric a. More generally, one
can show that d (x, y) depends on the Vk’s only through a.
We next observe that, from (3.6):

In particular,

Hence,

where
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On the other hand, since by Schwarz’s inequality,

In order to complete our program, we will show that the opposite inequa-
lity holds when d (x, ~ ) is continuous at y.
To begin with, suppose that a ( . ) > E I for some E > 0. It is then easy to

see that Next, for given x°, and 

define with

d

where V~ _ ~ it is easy to see that for

some Ce(0, oo ) . Hence,

In other words, when a ( ~ ) > E I, equality holds in (5 . 28).

(5 . 29) LEMMA. - If d (x, . ) is continuous at y, then d (x, y) = D (x, y).

Proof - Given s>0, define dt and DE relative to the vector fields
~ V1, ..., Vd, ..., Then the corresponding 
and so, by the preceding, In addition, it is clear that DE  D.
Finally, for each E > 0, choose

so that x) = y y), and let x) where
YkE ( . , x) = Y~kE~ °~ ( . , x). Then,

At the same time, since yE - y as E ~, o; and so, by conti-
nuity, d (x, Ye) --~ d (x, y).
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(5. 30) Remark. - The identification of d with D in the non-degenerate
case was known to Davies [D]. In addition, Davies suggested that the two
are the same in greater generality, but did not provide a proof.

( 5 . 31) THEOREM. - Suppose that either ~ satisfies ( 1. 2) or f Pt : t > 0 ~
satisfies ( 1. 3) for some v E (0, oo ), ~ E [0, 1 ], and A or B from (0, oo ). Then,

where (t, x, y) E (0, oo) x x - p (t, x, y) E [0, oo) is measurable and

satisfies

for all (t, x) E (0, oo) x [RN and almost every y E where CP E (0, oo) depends
only on v, p, and A or B. In particular, if d (x, . ) is continuous, then D (x, y)
in (5. 32) can be replaced by d (x, y).

(5.33) Remark. - Using results of various authors about subelliptic
operators, one can show that the preceding theorem applies to a large
class of degenerate examples. For instance, if the vector fields

..., satisfy Hormander’s condition in a sufficiently uniform
way, then one can check not only that 6 satisfies ( 1. 2) but also that the
associated p (t, x, y) is smooth and the corresponding d (x, . ) is Holder

continuous. A closer examination of this situation will be the topic of a
forthcoming article [K-S], in which complementary lower bounds on
p (t, x, y) will be obtained when t E [1, oo).
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