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ABSTRACT. - We study the stability of a solution of a multidimensional
symmetric (Stratonovich) stochastic differential equation

and of its "canonical extension" when the driving càdlàg semimartingale
Z is perturbed in SP.

Key words : Stability of solutions of SDE, discontinuous driving semimartingales, Stratono-
vich integrals, approximation of SDE.

RESUME. - Nous étudions la stabilité de la solution d’équation différen-
tielle stochastique symétrique (de Stratonovitch) multidimensionnelle du

type Xt = x + et de son « extension canonique » lorsqu’on

perturbe dans SP la semimartingale càdlàg Z.

Mots clés : Stabilité de la solution d’EDS, semimartingales directrices discontinues, inte-
grale de Stratonovich, approximation d’EDS.
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INTRODUCTION

Consider a multidimensional stochastic differential equation

or in matrix notation,

where Z = Z (t) _ (Z 1 (t), Z2 (t), ..., Zr (t)), t >_ 0, is an r-dimensional cad-
lag semimartingale, (x), i = l, 2, ..., d, j =1, 2, ..., r), x E Rd,
is a sufficiently smooth matrix function : (Rd). The small circle o
denotes the symmetric (Stratonovich) integral, with the standard notation
meaning the Ito integral. We are concerned with the behaviour of a
solution of ( 1) when Z is perturbed in SP. Ever since Wong and Zakai [24]
showed the instability of one-dimensional Ito equations, this type of

problem is usually considered for stochastic differential equations in the
symmetric (Stratonovich) form. A very strong topology in the space of
semimartingales is needed for the stability of solutions of Ito equations
(Emery [5], Protter [21], Metivier-Pellaumail [16]; this topology is too

strong to permit the approximation of Z by finite variation (FV) processes.
On the other hand, one cannot expect to obtain the results of stability
only under assumptions of a uniform type of convergence of driving
semimartingales because such a stability is not valid even in the determinis-
tic case. Therefore additional conditions on f or the perturbations of Z
naturally appear. In the first case it is usually the condition of commutation

of corresponding vector fields: (Allain [I],
n d xn d xn /

Freedman-Willems [6], Sussmann [23], Doss [3], Krener [11], Marcus [13]).
In the second case only certain classes of FV approximations are allowed
(Nakao-Yamato [20], Protter [22], McShane [14], Marcus [13],
Konecny [10]. Ikeda-Nakao-Yamato [8] considered a wide class (slightly
extended in Ikeda-Watanabe [9]) of piecewise smooth approximations of
multidimensional Brownian motion and the behaviour of solutions of

corresponding equations. They obtained an equation for a limit of these
"approximating" solutions which, in general, does not coincide with the
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initial one. The particular importance of this result is, in our opinion,
that: the general situation is exhibited; at the same time a typical sub-class
of so-called symmetric approximations is specified when the above men-
tioned limiting equation does coincide with the initial one. In this spirit
in [12] we obtained a general result when a continuous driving semimartin-
gale is approximated by continuous semimartingales. We extend here this
result for discontinuous driving semimartingales. It appears that in order
do require minimal assumptions on the jumps of the driving semimartinga-
les it is convinient to replace (1) by another equation [coinciding with ( 1)
in the continuous case]. In the spirit of McShane [14], [15] and Marcus [13]
this equation can be considered as a sort of "canonical extension" of ( 1)
or a corresponding Ito equation (note that in [13] the canonical extension
is defined only for f satisfying a commutation restriction).

NOTATION

All processes considered in this paper are assumed to be càdlàg (right
continuous with left limits) and adapted to a given filtration satisfying the
"usual hypotheses" on a fixed probability space. For a fixed time interval
I = [O, T], OToo, or I=[0, oo[ [ we denote by SP, the Banach

space of all processes X such that where

(we shall use the same notations for multidimensional pro-
teI i

cesses, the dimension being clear from the context). We also use freely the
notation of HP semimartingales, (cf Emery [4], Della-

cherie-Meyer [2], Meyer [19]), and the inequalities for norms of semimar-
tingales : [, q, re [1,00], p -1= q -1-~- r -1, then

For ease of notation we shall write X, Y y instead Xc, Yc ~. If
X and Y are semimartingales, then symmetric ( Stratonovich) integral

.

X~Y = is defined by
. o
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(Meyer [18]; we prefer to write X oY rather than X _ ~ Y). We define here
yet one more "symmetric" stochastic integral by

where

This integral is "symmetric" in the following sense. It can be inter-

preted as the limit in probability of "Riemann type" sums

03A31 2 (Xti+l and therefore does not depend on the direc-

tion of time. Nevertheless we use it only for the formulation of results in
the more symmetric and short way.

FORMULATION OF RESULT

First we consider an equation different from ( 1) :

where

Let Xs = Xi, ..., S > 0, be a solution of an analogous equation
with Z replaced by a semimartingale Zs = (Zi, Z2, ..., We are inter-

ested in the behaviour of X~ as Z~ ~ Z° = Z, ~ -~ 0, in SP. But first intro-
duce some technical boundeness assumptions on the family b >_ 0~.
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Let Z=Z (0) + Ms + As, ~ >_ o, denote a decomposition of Zs into an
r-dimensional local martingale Ms and an FV process A~. Let

2_  o0 1- ~ +l.
~’ q

Bl. Ms] are uniformly bounded in L~, i. e.,

B2. S (Zs, Zs) are uniformly bounded in L2q;

w w .. v , i

able family of random variables, j, k =1, 2, ..., r.
Bl and B2 imply a uniform boundedness of  Zs, and [Zf, Z~] in

Lq and a uniform boundedness of Mf in H2 q (but not of Zs !). B3 does
not allow FV parts of zf to increase too quickly (in comparison with rate
of convergence of to 0).

Introduce the notation

THEOREM 1. - Let the following conditions be satisfied:

where j, k = 1, 2, ..., r, are FV processes. Then (under hypotheses
B1, B2, B3) X in SP, ô - 0, where X is a solution of an equation

COMMENTS AND REMARKS. - ( 1) In the formulation of theorem 1 Z1k can
be replaced by their FV parts . 

_

but we wanted to state our results in terms of given driving semimartingales
Z, Zs.

(2) As will be seen from the proof, under the hypotheses of theorem 1
the processes Ajk are, in fact, continuous; moreover, and, in

Vol. 23, n° 4-1987.
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particular, This can be easily seen from

(3) We shall say that ~Zs, ~ > 0~ is a symmetric approximation of Z if
Cl and C2 are satisfied with Hence, one can say that the

equation (5) is "stable under symmetric perturbations of Z".

(4) In the case of continuous Z and Zs the theorem also slightly
generalizes theorem 1 in [12] where q = 00 (p’ = p) is taken.

(5) It is clear that the local version of the theorem is true: if the

hypotheses of theorem 1 are satisfied locally, then X in SP locally.

(6) To compare with known results (cf Protter [22], Marcus [13] and
the articles referenced there) we should like to underline the following:

(a) A commutation restriction on f is not assumed (and this is the

reason for the appearance, in general, of the processes Ajk in the limiting
equation); .

(b) the number of jumps of Z and Zs is permitted to be infinite; two
components of Z and Zs are allowed to jump at the same time;

(c) continuous processes Z as well as their continuous parts can be

approximated by processes with jumps.

(7) The condition Cl implies the uniform convergence (in probability)
of 0394Z03B4j 0394Z03B4k to 0394Zj0394Zk but not of S (Zs, Zk) to S Zk). If the latter is
assumed we have the same result for the equation ( 1) :

THEOREM 2. - Assume the hypotheses of theorem 1 and, in addition, the

hypothesis

Let X~, b > 0, be a solution of an equation (2) with Z replaced by Zs.
Then Xs --~ X, where X is a solution of an equation

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



581STABILITY OF SOLUTIONS OF SDE

PROOF OF THEOREM 1

It suffices to prove the theorem for I = [o, We shall use the notation

g (x; y)=g (x) - g ~Y) and

for functions g:Rd--+-R and processes X = (X 1, X 2, ..., Xd) in Rd. We
shall also use the convention of summation over repeating indices. By Mf
and Af, M k and A1ketc. we shall always denote the martingale and FV
parts of semimartingales Zs, Z1k etc. All constants C, C1, C~, ... do not
depend on 03B4 > 0 and may be different in different expressions.
We shall need some auxilliary representations for f ~ (X~),

etc. Using Itô’s formula we have

where we denoted = Dn f ~ From (7) we also have

Vol. 23, nO 4-1987.
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Using the stochastic integration by parts formula

and (8) we have

Consider

Using (8) one can see that the first term in ( 11) is equal to

Therefore using ( 10) we obtain

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where

Let B be an increasing process that "controls" all Z’, j =1, 2, ..., r, in
the following sense:

for any locally bounded process H and any stopping time T (cf
Metivier-Pellaumail [17], proposition 2).

LEMMA 1. - Let us denote

~A~ - FV part A It - total variation process of the FV process A).
Then

Proof - It is clear that

Using Ito’s formula for any g E Cb (Rd) we have

Vol. 23, n° 4-1987.
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and therefore

Thus

Consider I3 : since

and hence

using B2 we have

It is clear that is integrable. The families of r. v.’s ~ ~ Ik* (p, ~ > 0~,
k = 4, 5, 6, are uniformly integrable. Consider, for example, k = 4. If 
and hence p’ > p we have by (3), (4):

If q = oo and hence p’ =p we have for any 0152>P

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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and

[here C= sup I hj (x) ; is integrable because MEHoo C SP and
x, i, j

One can easily show by analogous argument the uniform integrability
of { I6* ~p, ~ > 0 ~, using the boundedness of [M~],  Zk >~ and S (Zf) in Lq
and the condition B3. The same is true and therefore

sup Summarizing the above we have (13).
s>o

LEMMA 2. - Let f and Y be two increasing nonnegative processes such
that and Y ~ - K for some constant K. If for every Markov
moment T

then 

Proof - In fact, this "Gronwall type" proposition is a special case of
lemma 2 of Grigelionis-Mikulevicius [7]. The proof (slightly modified
for our case) is reproduced here for the sake of completeness. Denote

Then we have

Using the "classical" Gronwall lemma we obtain

inequality The passing to the limit as t ’Q K then gives

Let us return to the proof of the theorem. Consider

By lemma 1 it is sufficient to prove that the second term on the right side
of ( 18) tends to 0 0 for every K  00. In the proof of lemma 1 we

Vol. 23, n° 4-1987.
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have seen that I~* converge to 0 in LP, I~ is in LP and

~ ~ Ik* Ip, b > o, k = 4, 5, 6 ~ is uniformly integrable. Therefore finally it is

sufficient to prove that

f or every K  00. Note that

For typographical reasons we shall often write T instead of In

order to use lemma 2 we shall try to get an estimate for

~,~’ ~ (t) = sup (as an exception to our convention, f s is left
Sf A T

continuous with right limits). Let T be an arbitrary Markov moment.
Consider It :

[we use the notation Analogously,
St i

It is easy to check that Zk. Therefore

For I9 we have
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Analogously, by hypothesis Bl,

The estimate for is obtained as in ( 19):

Now it only remains to consider

As before,

and

where by Mijk we denote the continuous martingale part of (X).
Now consider I ~ ~4. First we shall note that, in fact, the processes Ajk

are continuous. This is seen from the equality

which yields

Vol. 23, n° 4-1987.
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in probability and hence sup =0. Therefore

and thus

where we have used B2 and the boundedness of 
The latter can be easily seen from the expression for analogous
to (9), and the inequality 

Summarizing the estimates ( 14), (16), ( 17), ( 19)-(27), we obtain for f03B4 a
desired final estimate

with a certain increasing process As such that for some constant
K (not depending and E {~) tending to 0 as ~ -~ 0. Finally, by
lemma 2 we have

and the proof of theorem 1 is complete.
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Remark. - The proof of theorem 2 is almost the same. The

only difference is that the term IS becomes equal to X~) ~ ~ ZJ, Zk )C
and the processes Z1k have to be replaced by the processes

which also converge to A jk under the addi-
tional hypothesis C3.

EXAMPLE

In [12] several examples of approximations of continuous driving semi-
martingales by continuous semimartingales are presented. Protter [22]
considered the approximation of a discontinuous driving semimartingale
by FV processes, but the continuous and discontinuous parts were approx-
imated separately. Theorem 1 does not exclude the possibility of an

approximation of continuous driving semimartingale by the processes with
jumps:

PROPOSITION. - Let Z = ~ Zt, t E [0, T] ~ (T  (0) be a continuous r-dimen-
sional semimartingale such that Zi E H8 P, i =1, 2, ..., r, for some p E [2, oo [.
Denote

> 0 ~ is a symmetric approximation of Z. More precisely, the
conditions B1, B2, B3, C1, C2 are satisfied with = 0 and p’ = q = 2 p.

Proof - The conditions B2 and B 1 follow from the inequality

([2], p. 320). For B3 let us note that the martingale part of Z~ is 0 and
therefore

The condition C 1 is evidently satisfied. It remains to consider C2. Since
Zk] = 0, we have

Vol. 23, n° 4-1987.
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and since

it suffices to check that S(Z03B4j, Z03B4k) ~  ZJ, in S2p. It is known that

sup I S (Z1,  Z,, in probability (cf [2], [18]).
t_T

The estimate

([2], p. 320) then assures the convergence in S~ p.

Example. - Using the example of a symmetric approximation given in
the proposition one can easily construct a simple example of a non-

symmetric approximation Let Z and Z be two continuous semi-

martingales satisfying the conditions of the proposition. Define an approx-
imation of Z by

where is the symmetric approximation of the proposition applied
to Z - Z. Then from the proposition we see satisfies Bl,
B2, B3 and C 1 with pI =q=2p. We also have

Thus C2 is satisfied with

which, in general, is not 0. The constructed approximation is symmetric
only if the coordinates of martingale parts of Z and 2 "commute" in the
following sense: .
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