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Characterization of probability distributions

by Poincaré-type inequalities

Louis H. Y. CHEN

Department of Mathematics, National University of Singapore,
Lower Kent Ridge Road, Singapore 0511, Republic of Singapore

Ann. Inst. Henri Poincaré,

Vol. 23, n° 1, 1987, p. 91-110. Probabilités et Statistiques

ABSTRACT. - We define a functional related to a Poincaré-type inequality
and use it to characterize the infinitely divisible distribution on the Eucli-
dean space. Some related results including a limit theorem are proved.
This leads us to the problem of uniquely determining the distribution of
a random vector X in terms of the constant c and the class of functions g
for which the inequality E [g(X) ]2  cE ~ with Eg(X) = 0 becomes
an equality. We give a solution to this problem in some special cases and
consider a discrete analog of it. Our results generalize substantially known
results in the literature.

List of key-words : Poincaré-type inequality, infinitely divisible distribution, weak limit
theorem, characterization of probability distributions.

RESUME. - Nous definissons une fonctionnelle reliée a une inégalité
de type Poincaré et nous l’utilisons pour caractériser les lois infiniment
divisibles sur l’espace euclidien. Nous démontrons des résultats relies

comprenant un théorème limite. Cela nous conduit au problème de deter-
miner uniquement la loi d’un vecteur aléatoire X en donnant la constante c
et la classe des fonctions g pour lesquelles l’inégalité E [g(X) ] 2  cE ~ 2
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92 L. H. Y. CHEN AND J. H. LOU

avec Eg(X) = 0 devient une égalité. Nous donnons une solution a ce pro-
bleme dans quelques cas spéciaux et nous considérons un analogue discret.
Nos résultats généralisent substantiellement les résultats connus dans la
littérature.

1. INTRODUCTION

In [4 Chernoff proved that if X has a normal distribution with variance
~2 > 0 and g is an absolutely continuous function such that E [g(X) ]2  oo,

then Var [g(X) ] x 62E [g’(X) JZ and equality holds if and only if g(x) = ax + b
for some real numbers a and b. Borovkov and Utev [1 ] defined the func-

tional Ux = sup var [g(X)] 03C32E[g’(X)]2 for any random variable X with 
variance

03C32 > 0, where the supremum is taken over a suitable class of absolutely
continuous functions g, and proved that if Ux = 1 then X has a normal
distribution. Combining the result of Chernoff and of Borovkov and Utev,
one obtains an interesting characterization of the normal distribution:
X is normally distributed if and only if Ux = 1.

The Chernoff inequality has been generalized to higher dimensions and
then to the multivariate infinitely divisible distribution (see Chen [2 ], [3 ]).
It is therefore natural to ask whether the above characterization of the

normal distribution can be extended to the multivariate infinitely divisible
distribution. In Section 2 we give a positive answer to this question using
a much simpler method than that of Borovkov and Utev.

In connection with the characterization theorem, Borovkov and Utev
obtained a list of properties of the functional Rx (which is related to Ux
by Ux = Rx/Var (X)), and proved a limit theorem involving Ux. We
generalize these results in Section 3.

The proof of the characterization theorem leads us to the following
question which is analogous to the well known « Can one hear the shape
of a drum ? » (see Kac [5 ] and Remark (1) in Section 4) : If c is given and
the inequality E [g(X) ] 2  Vg(X) 2 where Eg(X) = 0 becomes an

equality for g belonging to a given class of functions, does this uniquely
determine the distribution of the random vector X ? In Section 4, we show
that the answer is positive in some special cases.

In the last section, we consider a discrete analog of this problem. The
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93CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS

m

inequality in this case becomes Var [g(X)]  c E[0394ig(x)]2 where

0394ig(x) = g(x1,...,xi + 1,...,xm) - g(x1,...,xi, ... , xm).

Throughout the paper all functions are real-valued unless otherwise

stated. We denote by or respectively the class of Ck functions
on an open set Q which are bounded or have compact support. The trans-

pose of a matrix C is denoted by C*. All vectors are taken to be column
vectors and we write x = (xi, ..., xm)* for a column vector. The usual
inner product of two vectors x and y is denoted by (x, y) and the norm
of x by ) x ~ .

2 CHARACTERIZATION
OF THE INFINITELY DIVISIBLE DISTRIBUTION

In their proof of the characterization theorem [l, Theorem 3 ], Borovkov
and Utev used the properties of the functional Rx and an ingenious construc-
tion to characterize the normal distribution by the method of moments.
In this section, we show that the proof of Borovkov and Utev can be substan-
tially simplified and the theorem generalized to the multivariate infinitely
divisible distribution. This is done by reducing the problem to a system
of first order partial differential equations whose unique solution is the
characteristic function of an infinitely divisible distribution. In our proof,
the use of Rx is avoided.

Let X = (Xi, ... , Xm)* be a random vector with distribution y and

mean vector b such that Var (X~)  oo for i = 1, ..., m. Denote by L2(X)
the class of Borel measurable functions g defined on ~m such that

E [g(X) ]2  oo and Q(X) the class of such functions such that Var [g(X) ] > 0.
Define = n L2(X) n Q(X).

Let E == ..., T~) == (ii~) be an m x m positive semidefinite matrix
and J1 a measure on such that it has no atom at 0 and

|x|2 (dx)  ~. Define

where

Vol. 23, n" 1-1987.



94 L. H. Y. CHEN AND J. H. LOU

THEOREM 2 .1. Suppose > 0 for j =1, ..., m.

Then U(X, 03A3, ) > 1 and U(X, 03A3, ) = 1 if and only f the distribution y
is infinitely divisible with characteristic function given by

for t E 

Proof - The fact U(X, ~, ,u) > 1 follows trivially from the definition (2 .1)
and the substitution g(x) for any j = 1, ..., m. The necessity of

U(X, ~, ~c) = 1 is implied by Theorem 4 .1 of Chen [3 ]. For the sufficiency,
let where and j =1, ..., m. Then U(X, E, ,u) =1
implies that for ~. E R,

This yields

Since this inequality holds for all i~ it follows that

Substituting f ~(x) = and then Im in (2 . 3), we obtain

for t E [Rill and j = 1, ..., m, where y is the characteristic function of y.
Since y(0) = 1 and the characteristic function of the infinitely divisible
distribution never vanishes, (2.4) has a unique solution which is given
by (2.2). This proves the sufficiency of U(X, ~, ,u) = 1 and hence the theo-
rem.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



95CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS

Two special cases of Theorem 2.1 are of interest. We state them without
proof.

COROLLARY 2 .1. - Let X = (Xi, ..., Xm)* be a random vector such
that Var (X~) = > 0 for j = 1, ..., m. Define

where ~ is an m x m positive semidefinite matrix with ..., 6~ as its

diagonal elements. Then U(X, ~) > 1 and U{X, ~) = 1 if and only if X has
a multivariate normal distribution with covariance matrix ~.

For the next corollary we defined ~PX to be the class of functions

g : ~m ~ (~ such that E [g{X) ]2  oo and Var [g(X)] > 0 where X is a
random vector taking values in ~m.

COROLLARY 2. 2. - Let X = (X 1, ..., be a random vector taking
values in ~m such that Var (X~) _ ~,~ > 0 for 1, ..., m. Define

..., l, ..., ..., x;, ..., xm). Then UX = 1
if and only if each Xj has a translated Poisson distribution and X1, ..., Xm
are independent.

3. SOME RELATED RESULTS

Although we have avoided the use of Rx in the proof of Theorem 2.1,
its properties proved and used by Borovkov and Utev [1 ] are nevertheless
of interest in themselves. Borovkov and Utev also proved a limit theorem
involving Ux. The objective of this section is to generalize these results.

As in section 2, let = n n Q(X). Let 03A3 = (03C4ij) be an

m x m positive semidefinite matrix and J1 a measure on such that  has

no atom at 0 and f |x|2 (dx)  ~. Assume that 03C4ij + ,u(dx) > 0

Vol. 23, n° 1-1987. 4



96 L. H. Y. CHEN AND J. H. LOU

for j = 1, ..., m. For each random vector X = (Xi, ..., Xm)*, define

U(X, ~, ,u) by (2.1). Also define

Note that U(X, E, ,u) and Uo(X, E, ,u) correspond to Rx and rx in [1 ] res-
pectively. Although C1(1R) is smaller than the class of absolutely conti-
nuous functions, there is no loss of generality in our definition of U(X, E, ,u),
when specialized to one dimension, in view of i) of Theorem 2 in [1 ].
We abbreviate and to and Uo(X,E)

respectively if j1 is the zero measure. Also write

The following lemma is a generalization of Lemma 1 in [1 ]. We omit
its proof here as the proof of the latter carries over easily to this general
case

LEMMA 3.1. - Let and C1(lRm) n L2(X). Suppose

THEOREM 3 .1. i) U(X, ~, ,u) = Uo(X, it, ~c).
ii) Let g E If U(X, 03A3, )  oo and  ~, then 

and Var [g(X) ]  U(X, ~, 
iii) If U(X, ~)  ao, then the distribution of X has a continuous (but

not necessarily absolutely continuous) component.
iv) If U(X, ~, ,u)  oo and there exists a (0  a  1) such that

- 1)|03B6| (d03BE)  oo, then E [exp {t1X1 + ... + ]  co for

| ti I  i = 1, ..., m, where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



97CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS

and

v) Let C be an m x m nonsingular matrix and b E Then

is the covariance matrix of X.
vii) If X and Y are independent, then

viii) X" ijT distribution to X, then

Proof - We note that Lemma 4 . 2 of Chen [3 ] is true for any proba-
bility distribution y if D = ~. By an application of this lemma, i) follows.
For ii), let gn = + g2)1/2. Then gn  g pointwise,  n,

and ~. So gn satisfies the condi-
tions in Lemma 3.1 and ii) follows. By letting g depend on one variable,
part iii) of Theorem (2) in [1 ] implies that each Xi has an absolutely conti-
nuous component and this proves iii). To see that the distribution of X
may be singularly continuous, let m = 2, Xi have the standard normal
distribution and X2 = Xi. Then by the Chernoff inequality,

for g E C1(~2) such that E [g(X) ]2  oo. The proofs of v)-viii) are easy
extensions of those of the corresponding parts of Theorem 2 in [1 ], and
are therefore omitted here. But we remark that for vii) and viii) Lemma 4. 2
of [3] ] is used.

It remains to prove iv). Since

Vol. 23, n° 1-1987.
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it suffices to consider each Xi separately. Abbreviate U(X, E, ,u~ to U.

By taking g to depend on one variable, we have

for L2(Xi) and i = 1, ..., m. Let Xi be an independent copy
of Xi and let Wi = Xi - Xi. Then for g E we have

This yields

By Lemma 4.2 of [3], (3.1) holds for g E n By Jensen’s
inequality and Fubini’s theorem as in the proof of Theorem 4 . 3 in [3 ],
and then by a change of variable, (3.1) yields

where

1 - °°Let ei = ~ii + ~ii + - ~‘f’i~t~ + ~i~ t} and define Yi~m 2 w

to be a random variable independent of Wi and distributed as i where

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



99CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS

Then (3.2) may be written as

By ii) and induction, U  oo and the condition (eat~~ -1) ~ ~ (  o0
~m

imply that all moments of Xi exist for i = 1, ..., m, which in turn implies
the same for Wi for i = 1, ..., m. We now prove by induction that for

1,

By a simple calculation, EeaYi = 8i 1 iii + a 1 Rm 03BEi sinh which~ (~ m 

is finite by virtue of the condition (ea ~ ~~ - 1) ~ ~ ~  oo, and so

b~ = max ( 1, ~m
For the rest of the proof, we drop the subscript i for brevity, but will

pick it up whenever it is necessary to avoid ambiguity. Since EW2 = 2Ue  c,

(3.4~ holds for n = 1. For n > 2, (3.3) yields

where we have used the fact that all odd moments of W vanish. By the
induction hypothesis 

’

Vol. 23, n° 1-1987.
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If n is odd, then EWn - 0. On the other hand, if n is even, then

EWn 2  n ! bc a2 n/2] 2 n!) 2 bc a2 n  4n1/2(2n!) 22n(bc a2) n 

c 2 -1 2n!)( bc a2 n.

In either case the right hand side of the last inequality in (3. 5) is less than
(2n and (3 . 4) is proved. By Jensen’s inequality,

So for

This implies that E exp E exp  oo . As

iv) is proved. Hence the theorem.

For the next theorem, let Xn = ..., be a random vector

with mean vector bn and 0  Var  oo for i = l, ..., m. Let ~n be
an m x m positive semidefinite matrix and ,un a measure on ~( f~’~) such

that it has no atom at 0 and Rm |x|2 n(dx)  oo .

THEOREM 3.2. - Assume the diagonal elements of 03A3n + 

are respectively i = 1, ..., m. Suppose as n ~ oo, b,
~ and x converges weakly to x where without loss

of generality ,u may be assumed to have no atom at o. ~n, -~ 1

as n -~ oo, then ~(Xn) converges weakly to the infinitely divisible distribu-
tion y whose characteristic function is given by (2.2~ as n - oo.

Proof - Since bn --~ band ~n --~ ~, the distributions of Xn, n > 1
are tight. Hence it suffices to prove that every weakly convergent subse-

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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quences of { ~(Xn) ~ converges to y. Suppose Xn. =~ X. Then for g E 

By Theorem 3 .1 i), U(X, ~, 1. By Theorem 3.1 iv), { is uniformly

integrable for i = 1, ..., m and so the diagonal elements 

are Var (Xi), i = 1, ..., m, where X = (Xi, ..., Xm)*. It follows from

Theorem 2.1 that U(X, ~, f-l) = 1 and so the distribution of X is y. This

proves the theorem.

4. MORE ON CHARACTERIZATION.

THE CONTINUOUS CASE

In Theorem 2.1, although the infinitely divisible distribution is charac-
terized by using the functional U(X, E, ,u), the proof depends crucially on
the knowledge of the functions for which the inequality becomes an equa-
lity. One may therefore restate a special case of Theorem 2 .1 as follows :
If the inequality E [g(X)]2 :( where Eg(X) = 0 becomes an
equality for g(x) = xi, i = 1, ..., m, then X has the multivariate normal
distribution with zero mean vector and covariance matrix cI. This leads us to

the following question : If c is given and the inequality E [g(X) ] 2  cE ~ pg(X) ~ 2
where Eg(X) = 0 becomes an equality for g belonging to a given class of
functions (not necessarily linear), does this uniquely determine the distri-
bution of X ? The objective of this section is to give an answer to this ques-
tion. We show that the answer is positive in some special cases but negative
in general.

As in Section 2, we reduce the problem to a system of first order partial
differential equations. But unlike that in Section 2, the method here is

more akin to a method of normal approximation due to Stein [~ ].

LEMMA 4 .1. - Let I = (a, b) be an open (possibly infinite) interval. Let

X be a random variable taking values in I, and y the distribution of X. Suppose
for all absolutely continuous functions g on I such that E [g{X) ]2  oo and

Eg(X) = 0, there is a constant c such that E [g(X) ]2  cE [g’(X)]2 and

Vol. 23, n° 1-1987.
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equality holds if g(x) = where t/r E C1(I). If 0) = 0, then X is
absolutely continuous.

Proof. Decompose y into y = a,u + (1 - a)v, where ,u and v are pro-
bability measures on I such that Il is absolutely continuous with respect
to the Lebesgue measure and v is singular, and 0 ~ x ~ 1. Let A be the

set of points of increase of v. Then

where the last inequality follows from the observation that is a Borel

measurable derivative of ~. Hence we have (1 - a) = 0. This

implies that either a = 1 or ~r’(x)v(d~x) _ ~. If = 0, then

~r’ - 0 v-a. e., that is v(~’ - 4) = 1. The assumption y{~r’ - 0) = 0 then
forces a to be equal to l. In this case, y = ,u and is therefore absolutely
continuous with respect to the Lebesgue measure.

LEMMA 4 . 2. - Under the condition o, f ’ Lemma 4 . l, suppose further
that 03C8’ never vanishes on I. Then the density function o.f X is given by

fX = / I a. e., where = 1 03C8’ exp - - C 03C8 03C8’) and , 4’ , is an indefinite

integral of 03C8 .
~~r’ .

Proof : - Let h be an absolutely continuous function on I such that
E [h{X) ] 2  ~ . Put g = ~,(h - Eh(X)) -~- i/r, ~, E IF~ in the inequality. By the
same argument as in the proof of Theorem 2.1, we obtain

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



103CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS

whenh(x) === (x - where xo E I, the above identity can be rewritten
as

Taking both integrals as functions of xo and then taking Borel measurable
derivatives with respect to xo on both sides, we have the following identity

*’ ^’ U

r~
for almost all xo w. r. t. the Lebesgue measure. Let H(,~) _ ~~ y)~X( y)dy._ We

x

observe that H is absolutely continuous and is a version on I. Now

This implies H is differentiable everywhere on I and

Solving for H we obtain a solution given by u to a multi-

plicative constant. It is now clear that f ’x = 03C6 / I a. e., where I is
the normalizing constant to make fX a density function.
For the following theorem, let ~ --. I1 x .. , x Im where each Ii = b~)

is an open (possibly infinite) interval. Let X = (X 1, ... , Xm)* be a random
vector taking values in ~. For ~ri E and c > o, define

where ~~ is an indefinite integral of ~~ .
~, i 

e eg a 

i

THEOREM 4.1. - Suppose that there is a constant c such that for atl
g E C1(S2) with E [g{X) ]~  oo and Eg(X) = 0,

and that equality holds if g(x) _ for i = 1, ..., m, where E 

Vol. 23, n° 1-1987.



104 L. H. Y. CHEN AND J. H. LOU

i = 1, ..., m. Assume that does not vanish on Ii for i = l, ..., m. Then
m

X is absolutely continuous with density function given by fx(x)= 

where 03C6i(xi) = (xi) / Iii.

Proof By letting g depend on one variable, (4 . 2) and [l, Theorem 2 f)] ]
imply E [g(X i) ]2  cE [g’(Xi) ]2 for all absolutely continuous g defined on Ii
such that E [g(Xi) ]2  oo and Eg(Xi) = 0, i = 1, ..., m. By Lemmas 4 .1
and 4.2, Xi is absolutely continuous with density function It remains

to prove that Xi, ... , Xm are independent. Let f E CB(SZ) and substitute
g = ~.( f - E f (X)) + in (4 . 2) where ÀE (~. By the same argument as in
the proof of Theorem 2.1, we obtain

N
for i = 1, ..., m. For each i, let vi E Co(Q) such that = 0. The diffe-

rential equation Ii

where f is defined on Q has a solution given by

where the second equality follows from the condition Iivii = 0. Since

vi e Co(Q), we have f e C0(03A9) and hence f e C§(Q) by virtue of the equation

Substituting (4. 4) in (4 . 3), we obtain Evi(X) = 0. Now let u, hi E Co(Q),
and let Kl c= K2 c= Q be two compact sets such that on Ki, hi= 0 on K2,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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hi 
and 0  hi  1 on K2 - K 1 and Ii hi 03C6i~ 0. By letting vi = u - 

I= 
, we

obtain Ii

Now let Ki 1 increase to Q. Then (4 . 5) yields

By approximating functions of by those of (4.6) also holds
for u e Now take u to be a function of ..., xi) for f = l, ..., m.
Then it follows that Xi, ..., Xm are independent with joint density function

rn

given by fx(x) = This proves the theorem.

i= 1

By applying Theorem 4.1 to a number of inequalities, we obtain the
following corollaries.

COROLLARY 4.1. 2014 Let y be a probability measure on ~((!~m). Then

. = (2703C003C32)-m/2 exp (-|x|2 )dx if and only if the following inequalityB ~~ /

holds : For such that and 

62 Vg and equality holds if and only if g(x) = a*x

Proo~ f - Combine Theorem 4 .1 with j3, Corollary 5.1].

COROLLARY 4.2. - Let y be a probability measure on ~(!RT) such that
m

= 0. Then exP ( - 4 .~C e 2 dx, Where
i= 1

0, ocl, ..,, and only if the following inequality holds : For 

such that  oo and Rm+gd03B3 
= 0, Rm+|~g|2d03B3 and

Vol. 23, n° 1-1987.
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m

equality holds f and only if g(x) = 403B1i03B8) for al, ..., am E R.

Proof - Combine Theorem 4 .1 with [3, Corollary 5 . 5 ].

COROLLARY 4. 3. Let y be a probability measure on [o, ~ ]m) such
that y(~ [o, ~ ]m) = 0. Then

where ai > 0, 03B2i > 0 and 03BB = ai + 03B2i for i = 1, ..., m; if and only if the

following inequality holds: For g E C1( [0, such that g2dy  o0

and = 0, 
J[o,n]m

and equality holds f and only if

Proof - We first give a sketch of the proof of the inequality (4. 8) under
the assumption (4. 7). Let Xi and X~ be independent random variables
having the gamma distributions h(a, 8) and r(/3, 8) respectively. Write
X = (Xl, X2)*. By [3, Corollary 5.3], we have for g E C1(~+) such that
E [g(X) ] 2  oo and Eg (X) = 0,

Equality holds if and only a x - a + a (x2 - 03B2 03B8) for a e [R.
Let Yi = Xi/(Xi + X2) and Y~ = Xi + X~. Then Yi and Y~ are inde-
pendent, Yi has the beta distribution B(a, ~8) and Yi + Y2 the gamma
distribution I-’(~,, 0) where ~, = a + /~. Let f ’ E ~ 1 ( [o, 1 ]) such that E, f ’(Yl ) = 0.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



107CHARACTERIZATION OF PROBABILITY DISTRIBUTIONS

Substituting g(X) = Y2 f (Y1) in (4 . 9), we obtain, after some calculations,

which reduces to an equality if and only if f( y) = ~ y 2014 - j for a E (~.
By suitable transformations in the spirit of [3, Corollary 5 . 5 ], (4.10) yields
the one dimensional special case of (4.8) under the assumption that

y(dx) = x dx. A martingale argument as in
22

Chen [2 then extends it to the higher dimensions. Combining this with
Theorem 4.1, we prove the corollary.
We now give an example to show that Theorem 4.1 is false if the dimen-

sion of the class of functions g for which (4.2) becomes an equality is less
than the dimension of the domain Q even though other conditions of
the theorem are satisfied.

Example. Let X1 and X2 be independent random variables with X1
distributed as N(0, 1) and X2 as N(0, ~2) where 0  62  1. Then by
[3, Corollary 5.1 ], for g E Cl([R2) such that E [g(X) ] 2  oo and Eg(X) = 0,
E [g(X} ] 2  E Og(X) ( 2 and equality holds if and only if g(x) = ax1 for
a E f~. Clearly the distribution of X = (X 1, X2)* is not uniquely determined.

Remarks. 1) In characterizing the distribution of X by the inequality
E [g(X) ]2  cE [~, suppose, in addition, the distribution of X is

given to be uniform on a bounded domain Q. Then the inequality becomes

2  c f ! Vg 2 where 1 is the first eigenvalue of the Laplacian A on Q
in the Neumann problem, and the class of functions for which the inequality
becomes an equality is the first eigenspace. Furthermore, finding the distri-
bution of X is equivalent to finding the shape of Q. Hence the problem
of characterizing the distribution of X becomes that of determining the
shape of Q given the first eigenvalue and the « form » of the functions in
the first eigenspace of A on Q. This is analogous to the problem « Can one
hear the shape of a drum? » (see Kac [5 ]) where the shape of Q is to be
determined given all the eigenvalues of A on Q. The answer to this question
has been shown to be negative for dimension of Q greater than or equal
to 4 in both the Dirichlet and the Neumann problem (see Urakawa [7]).

2) In the case Q is an arbitrary open set and the class of functions for

Vol. 23, n° 1-1987.



108 L. H. Y. CHEN AND J. H. LOU

which the inequality becomes an equality is also arbitrary, the following
question remains unanswered : Under what conditions is the distribution
of X uniquely determined ?

5. MORE ON CHARACTERIZATION.

THE DISCRETE CASE

In this section we consider a discrete analog of the problem in Section 4.
Let X = (Xi, ... , Xm)* be a random vector taking values in ~’~ and let

= P(XI = z). Define ei = (0, ..., 1, ..., 0). where the number 1 occu-

pies the position. Suppose for g : ~m -~ I~ such that E [g(X) ]2  00

and Eg(X) = 0, we have
tM

and equality holds if and only if g(x) _ for i = l, ... , r~i, where

each f~. We show that if + 1) - 0 for

then the distribution of X is uniquely determined and X1, ... , Xm
are independent.
By the same argument as before, we have the identities

for i = 1, ..., m, where f ’ : ~m -~ If~ and is bounded. By choosing f to
be the indicator function ..., xm) e ~m : xi = z ~, (5 . 2) yields

Let a. be the supremum of the set of zeros of 0 + - It is easy to seec
from (5.3) that - ~  ai  oo. If ai > - ao, then > 0 and
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If aj = - co, then pi(0) > 0 and

Note that (5 . 3) implies that 1) and + - have the
c

same sign for xi > ai. Without loss of generality we assume that ai > - o0
for i = l, ..., m’ and that ai = - oo for i = m’ + 1, ..., m.
Now let f be the indicator function of ~ (x i, ... , E 

..., xi) _ (xl, - .., xi) ~. Substitution of this in (5.2) yields a diffe-
rence equation whose solution implies that Xi is independent of (Xl, ... , Xi- I O
By induction on i, X 1, ..., arc independent. Hence we have the following
theorem.

THEOREM 5 . l. - Suppose the inequality (5 .1 ~ holds and equality is

achieved when g(x) = for i = 1, ..., m, where each ~ ~ (~. If
never vanishes for i = 1, ..., m, then X1, ..., X m are independent and

their individual density functions are given by (.~ . 4~ and ~S . 5) .

Combining this theorem with [3, Corollary 5 . 2 ], we have the following
corollary.

COROLLARY 5 .1. - The random variables X 1, ..., Xm are independent
each having the Poisson distribution with mean ~. if and only if the following
inequality holds : For g : 7~m --~ ~ such that E [g(X) ]2  oo and Eg(X) = 0,

Added in Proof A. A. Borovkov and S. A. Utev pointed out an error in
the proof of Theorem 3 . 2 and gave a correction of it as follows : The uniform

integrability of { ~ni ~ be proved by substituting g(x) = + x2)1~2
in the Poincaré-type inequality for Xn instead of using Theorem 3.1 iv).
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