
ANNALES DE L’I. H. P., SECTION B

A. N. BORODIN
On the distribution of random walk local time
Annales de l’I. H. P., section B, tome 23, no 1 (1987), p. 63-89
<http://www.numdam.org/item?id=AIHPB_1987__23_1_63_0>

© Gauthier-Villars, 1987, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1987__23_1_63_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On the distribution of random walk local time

A. N. BORODIN

Leningrad Branch Steklov Institute of Mathematics,
Fontanka 27, Leningrad, 191011, USSR

Ann. Inst. Henri Poincaré,

Vol. 23, n° 1, 1987, p. 63-89. Probabilités et Statistiques

ABSTRACT. In the paper we investigate the large deviations and the
asymptotic expansions as n - cx~ for the distribution of the number of

times a recurrent random walk with integer values hits the point r up to
time n. 

’

RESUME. Dans le present article sont étudiées les grandes deviations
et les expansions asymptotiques en supposant que n -~ oJ pour la distri-

bution du nombre de visites de la marche aléatoire récurrente à valeurs

entières au point r en n pas.

Mots-clés : Random walk, local time, distribution, large deviations, asymptotic expan-
sions.

1 INTRODUCTION AND RESULTS

In the paper we consider the asymptotic behaviour as n - o0 of the

distribution of the number of times a recurrent random walk hits the point r
up to time n.

be i. i. d. random variables, E~ 1= o, = D, ~p{t) = E exp 1 ).
We shall assume that ~ 1 have an integer values and ( = 1 if and only

k n

if t is a multiple of 2x. Let vo = 0, vk = ~r, r) = ’~ ~r~(vk). Here
I=1 i k=1
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64 A. N. BORODIN

and in what is the indicator function of set A. The function

cp(n, r) is the so called local time of the random walk vk at point r for n steps.
The local time of Brownian motion w(s) (Ew2(s) = Ds, D > 0) is a

jointly continuous process t(t, x) that satisfies

for all t > 0 and any measurable set A a. s.
Denote by [a the integer part of a. It is known [2] that the two-para-

meter process tn(t, x) = n- ~~2cp( [nt ], [x~ ]) converges weakly as n -~ o0
to Brownian local time t(t, x). In particular

It seems to be of interest to give a more detailed description of the asymp-
totic behaviour of P(tn(l, x)  y). In the paper we consider the large devia-
tions and the asymptotic expansions for the distribution of tn(l, x). To
solve these problems we apply the saddle-point method. There are a greate
variety of works using this method for solving different asymptotic problems
of probability theory. We do not dwell on the history of this question since
one can find it in [4 ~ and in monographs [5 ] [10 ]. For x = 0 an optimal
rate of convergence in (1.1) was reported in [1 ]. For arbitrary x as a con-
sequence of « Strong invariance principles for local times » [3 ] we have
an estimate Cn -1 ~4 ln n.

Since the problem of asymptotic behaviour of the distribution of tn(l, x)
is symmetric with respect to the replacement ~ ~-~ 2014 ~ ~ ~ ~ ~
1 = 1, 2, ..., we consider only non-negative x. In view of the lattice cha-
racter of the objects involved in the consideration, x, y later will be such
that x = = 

THEOREM 1.1. 1 satisfy Cramer’s condition

Then there exists ~ > 0 and a power series
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65ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

convergent for

REMARK 1.1. - The coefficients for k, l  m + 2 are determined
by the first m + 2 moments of ç 1 and by the numbers

with 0 ~ p  (m - 1)/2, where are defined from the equality

REMARK 1. 2. 2014 Let  = Then

and

where is well-known Cramer’s power series (see, for example, [9],
Ch. 7, § 2).

THEOREM 1. 2. Let condition (C) be satisfies. Then there exists E > 0
such that for 0  x  0  y  

where ,u(x, y) is the same power series as in theorem 1. l.

THEOREM 1 3. - Let for some 0  03B4  1 and integer 0

Vol. 23, n° 1-1987.



66 A. N. BORODIN

Then there exists E > 0 such that for n -1 ~2  x  n - ~ ~2  y  En 1 ~2,

where  ‘’, and ,um(x, y) is some junction, which can be

represented for  ~, ( y  E in the form

and

Here and later ~’~, Qk, Rk, J = l, ?, ..., are some polynomials of degree
at most k, Po = C~o = Ro = 1, and the functions o( ~ ) depend on ~, m,
and the distribution 

THEOREM 1. 4. Let condition (1. 5) be satisfied. Then there exists E > 0
such that for n 1~2  x  n -1~2 c 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



67ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

and for n 1 ~ 2  

where  Cjmx|v|-03B4, j = 2, 4, and y) is the same function as
ij~ theorem 1.3.

REMARK 1..3. - The coefficients at xkyl in the decomposition of y)
coincide with those for ,u(x, y) and the polynomials Pk, Qk, Q3k~
j = 2, 3, 4, and Rk, j = 1, 2, are determined by the first k + 2 moments
of 03BE1 and by the numbers bp with (k - 1)/2. The way of construc-
tion of y) and of the polynomials is described during the proof.

2. PRELIMINARY RESULTS

Denote xn,,.(i,) = E exp /’)). Then

Vol. 23, n° 1-1987.



68 A. N. BORODIN

For any complex z  1 define

From (2.1) it follows that

Since is analytic in  1 then for 0  E  1

Applying the inversion formula one obtains

For sufficiently small z the point mo = 1 - will lie inside the circle

) 1. By the residue theorem

and, consequently, for sufficiently small E

In view of the fact that

the left-hand side of (2.4) is analytic in z (  1. The function go(z) is ana-
lytic in I z [  1 also and thus it has for any 5 > 0 in 1 2014 5 at most
the finite number of zeros. Then by the uniqueness of analytical continua-
tion the equation (2.4) holds for all z ~  1 and 0 if z (  1.
Moreover for any 8 E [ - 7r, x)

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



69ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

because if it is not the case then passage to the limit in (2 . 4) as z --~ eie leads
to a contradiction. 

D
Using the assumptions cp(s) = 1 - - s2 + o(s2), s -~ 0,

2

we can choose A > 0 so small that the open domain ~ restricted by the
contour consisting of the line segment (1, 1 + the large circular arc
(center 0 ) from 1 to 1 + De - ~’~~4 and the line segment 1),
has no common points with the curve E [ - ~, ~ ~. By the inversion
formula we have

Hence the function is analytic in the open domain 9t.
Now we should distinguish the conditions (C) and (1.5). If ~ 1 satisfies

Cramer’s condition (C) we set = Then has an analytical
continuation to the strip IRe z  a. If ~~ satisfies only (1.5) we set

~(t} = qJm(it), where for some positive A

In this case the function is analytic in the complex plane. The cons-
tant A will be chosen according to the property: for any pi > 0 we can
choose A such that

Moreover one can prove that for any 0 ~ p  m -~ 2 and s ]

Consider the equation

Since ( 1 /~(t))’ ~ ~ - o = 0 and ( 1 /~(t))" ~ t = o = o then for any sufficiently
small A > 0 there exists such p > 0 that for any z, ( z - 1!  A, equa-
tion (2.10) has in I t  p exactly two solutions [6, Ch. 4, § 7]. They can
be constructed as follows. Let

Vol. 23, n° 1-1987.



70 A. N. BORODIN

and i(u) be the inverse function to x(t), i’(0) = ~/2/D, 1"(0) = 2,u/3D2.
Under condition (1.5), m = 0, we have p = In other cases

p = Then the solutions of (2.10) are given by

Here 03C9 = |03C9| exp - 2 arg 03C9), - 03C0  arg 03C9  7T. Define the contour

consisting of the line segment (1,1 + ~eL~~4), the large circular arc (cen-
ter 1) from 1 + to 1 + ~e - ~"~4 and the line segment ( 1 + ~e - t~~4, 1).
Let R be the open domain restricted by this contour. It is easy to prove
that we can choose A so small that for any z e ~t, z ~ 1,

Note that above ~ was chosen so that the set 91 has no common points
with the curve s E [ - ~c, ~ ].

LEMMA 2 .1. - There exists such y > 0 independent of A that for any
real v and t satisfying o  3 t ~  ~ v - t (  y holds

This lemma is easily proved with the help of application of Taylor’s
formula, and we omit the proof.

i 16 ~ sign s 11 5
Let = a + |s| e 16 . Since 

16 
03C0 > 803C0 then one can choose

p3 > 0 so small that ya(s) E t_(R) for all oc E [ - p 3, 0 ] and |s (  p3. For

6 E (o, 0) let E + (a) - min { s : |039303B1(s) I - 1 -E- 6, s > 0 },

Now one can choose (7 and 03B11 so that for all a E [Xi,0] ] and s~ [-~-(03B1), ~+(03B1)]
holds ra(s) E 91. In addition by the choice of 6 and a 1 one can obtain that
for all oc E [a ~, 0 ] the inequality c2fi where Ci 1 and c2
are some positive constants, be valid. This can be done in view of the relation

Where there is no ambiguity, we shall denote E + (a) and 8 (a) by 8. Denote
the large circular arc (center 0) from to E - (a)) by C~(a).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



71ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

Let C~(a) be the open domain restricted by the contour consisting of 
s E [ - 8,8] ] and It is clear that C~(a) c 

It will be proved that go(z) -~ oo as z -~ 1, z E C~(o). Then in view
of (2.6) and the fact that go(z) is analytic in U we can choose 7 so small
that go(z) has no roots in 3(0). Thus the integrand in (2 . 5) is analytic in 6(0)
and we may therefore deform the contour in (2. 5) into = ha + 
Consequently

Analogously to (2.12) from (2.3) for r 7~ 0 we obtain

q- 1

From (2.12)-(2.14) using the equation 
one can find k=0 

’

and for r ~ 0, ~ ~ 1

Now we shall prove that and E is sufficiently small then the integral
along in (2.13) is for some v > 0. It is majorized by

Since 0 for z E then sup ( go(z) ~ -1  C~. Using the expres-
sion for we obtain 

Here and in what follows C with or without indexes stands for different
constants. Denote i = q/n. Choose io so small that (1 + ~)/(1 + 1 + 62
for T ~ To. Then for i  To we have the following estimate for (? .17)

Vol. 23, n° 1-1987.



72 A. N. BORODIN

The same estimate is true for the integrals along in (2.12) and (2.14)-
(2.16).

It is clear that is defined for t E t _ (~). In the integral (2 .13) taken
over ha we make the change t = t-(z) of the variables. For the integral (2.13)
taken over Ca(a) we use the estimate stated above. Then for r ~ 0

Analogously

and for r ~ 0, q  1

3. PROOFS OF THEOREMS 1.1 j 1. 2

Let us construct the analytical continuation of function from t _ (~)
to the ring 0  j t ~  ~ 1 for small Si. The point t = 0 is the pole of the
first order.

If t E t _ (~) then by (2 .11 ) the equation

has in  p) n (Re 0), where p is defined earlier, the unique solution
v = t. For some 0  y  a, where a is taken from condition (C) consider
the rectangular contour L = Li + L2 + L3 + L4, Li = [ - ix, 
L2 = (ix, y), L3 == [i~ - y, - y], L4 = ( - y, 

- In view

of (2 . 7) we can choose E 1 and y, 0  y so small that for I t  81 1

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



73ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

the equation (3.1) inside the contour L has the unique solution v = t.
By the residue theorem

Since the function - erv(03C8(t) - 03C8(v))-1 is periodic with period 203C0i then the

integral along L2 + L4 is zero and

For 0  3 ~ t ~  ~ v - t ~  y, if y is sufficiently small, 
Then taking into account (2 . 7) we may choose 0  y so that for

for some d > 0. Thus the integral in the right-hand side of (3.2) is ana-
lytic function in |t|  ~1.

Consider the question how we can calculate the coefficients in a power
series expansion about t = 0 for function Lo(t). We should find the expres-
sion for .

Let I/ == L2 + L3 + L4. Then using Cauchy’s theorem obtain

where fp(v) is chosen so that the integrand in ( ... ) is analytic function
inside the contour L. Moreover fp(v) must be chosen such that the last
integral in (3.4) can be easily calculated. Let us prove an auxiliary propo-
sition.

PROPOSITION 3.1. - For any B, G, L = G - B and integer N ~ 0,

Vol. 23, n° 1-1987.



74 A. N. BORODIN

Proof. - Equation (3. 5) for N = 0 is almost obvious. We suppose that
(3 . 5) holds for some N and every p > 0 and show that it then holds for
N + 1. Using the formula, which is easily proved by induction on s

and (3. 5) for N = 0 we have

Changing the order of summation in the last sum and again applying (3. 6)
we obtain (3.5) for N + 1.

Setting in (3.5) B = 1 - G = Ds2/2, N = 2p + 1 and using the
decomposition (1. 3), m = 2p + 1 one can verify that the function

is integrable. Finally substituting v = - is in (3.4) we find

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



75ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

So we have

Hence

Define H(t) = i In U(t) + In where p = Here and later
= + i arg - ~c  arg ~.

Consider the saddle-point equation

Since dH dt is analytic function in the variables (03B2 r, t) in a small neighbour-
hood of the point (o, o, 0), dH dt - - - o o, 03B2=03C4=t=0 

- I3, then the

equation (3 . lo) has (see, for example, [8 ], Gh. l, ~ B, 4~ in some neigh-
bourhood of the point (0, 0) the analytical solution

The function H(t) for t E R~ is real, therefore to will lie on the real axis.
Taking into account (3.9) one can find

The fact that to is a multiple of (/3 + TD) one can prove as follows. It is
sufficient to set f3 = - iD in (3.10) and to prove that in this case the equa-
tion (3.10) will have the solution equal to zero. Using (3.9) we obtain

We now proceed to the proof of (1.2). Denote H2 == H"(to)/2,

Making use of (3.2) we receive

Vol. 23, n° 1-1987.



76 A. N. BORODIN

From (2.18) it follows that for some A > 0

Here we apply Cauchy’s theorem and simple estimates for the integrals
along ll - to + iE), 12 = (to - iE, Yto( - E)) =

This estimate is due to the fact that in the definition of ya(s) the angle of
the slope was chosen such that it belongs to (x/2, 3x/4) or to ( - 37T/4, 2014 x/2).

Using Taylor’s theorem we have

Combining this with (3.15), (3.14) and letting r = x/, q = y~, we
obtain (1.2) for x ~ 0. If x = 0 we should use the formula (2.19) instead
of (2.18). Here, in the saddle-point equation (3.10), one should take {3 = 0
and set

To prove theorem 1.2 for 0, y > 1/~ we start from (2.21). Simi-
larly to the previous case we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



77ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

Further

Let

The following formula is well-known

(2k - 1)!! ] .

where 20142014.-.., . From (3.19), ~ = 1, we obtain

Then applying (3.12), (3.14) and the estimate 1/R(y)  C(l + y) we have

Now from (3.17) it follows that

This is the required relation (1. 4) if one let r = = y/.
’ 

Let us verify (1.4) for x ~ 0, y = 0. From (2.22) we derive

This relation is similar to (2.21) when i = 0 and so it can be treated ana-

logously. Note only that in this case the saddle-point equation

Vol. 23, n° 1-1987.



78 A. N. BORODIN

where g(t) = In tf(t) + f3t, is coincide with that for limit theorems for large
deviations for sums of i. i. d. random variables (see [9], Ch. 7, § 2). Thus
if t2 is a solution of this equation then

where is the so called Cramer’s series.

4. PROOFS OF THEOREMS 1.3, 1.4

Consider the asymptotic behaviour as t ---~ 0, t E t _ (~) of the function
Let

LEMME 4 .1. - Let condition (1. 5) be satisfied. If t E t_(R) and t|  E

for sufficiently small E, then

a) for all p > ~ . .
, - ,

b) for 0  p  m - 1 there exists the limit

which for r ~ 0 can be represented in the form

REMARK 4.1. - The coefficients Do ~( - 0) are determined by the first p
moments of 03BE1 and by where ) are defined in (3 . 4), (3 . 7).

Proof Let

It is clear that + D;(t)).
Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



79ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

Let y be the number defined in Lemma 2.1. In view of (2.7) and (2. 8) 
’

one can choose A so that for all s e [ - ~c, - y ] u [y, ~c ] and some 11 > 0
holds (  1 - 2~. By (2.11) there exists such p~ > 0 that for

t E t _ (~) ~ ~ 0 ~ the equation (3 .1 ) has in  pA) 0) the

unique solution v = t. Let  r~. Choose EA, 0  EA  pA, so that

for t ~  EA holds 1 -  DpA/ 16. Then applying Lemma 2 .1 we
obtain that for v E [ - iy, - ipA ] ~ [iPA, iy ] and I t 

In addition one can choose pA so small that for 0  3 |tt|  |v - t|  03C1A

holds > - v p/8. Here t and v is not necessarily real
as it is in Lemma 2.1. Let y~ > 0 be such that the rectangular

belongs to the circle (  Let

By the inequalities obtained above we have that for  EA, 
and v e L’ the function 03C8 satisfies (3 . 3), where the constant d may depend
on A. By residue theorem

From the formula of differentiation of the composition of functions
[7, p. 33 ] it follows that

where C1kp(t) is a product of derivatives of function Denote the second

term in the right-hand side of (4.4) by The relation (4.5) together
with (3 . 3) imply that the function D;(t) satisfies conditions (4.1), (4.2)
for all p. To prove (4.1) for the function D;(t) we should again use the

Vol. 23, n° 1-1987.



80 A. N. BORODIN

formula of differentiation of composite functions and then to estimate
the integrals

Here the factor t (k is due to the fact that ~ Dt.

Next we shall need the following estimates. If dA is sufficiently small
then for all t e t _ (~’t), v e [ - 

Indeed, taking into account (2.9) we can write

Since t e t _ (~) then there exists such 11 > 0 that

and, consequently, + r~2. This and (4. 7) yield
the left-hand side inequality in (4.6). The right-hand side one is proved
analogously. Applying (2.7), (2.8), (2:9) p = 0, and (4.6) for all suffi-

ciently small t we have

This proves (4.1) for the function D;(t). Relations (4 . 2) is due to these

estimates also.

To obtain (4 . 3) we note that in view of (4. 5) the coefficients 0)
depend only on the first p moments of 03BE1 and of the expressions

where for brevity we let == (1 - (1 - ~)) ~ ~. Since
~p{ - ~c) then integrating in (4.9) by parts N times 0 we

obtain

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



81ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

Dividing the interval [ - ] into two parts [ - i/r, i/r],
[ - i~, i/r, f/r] ] and again applying the formula of integration by
parts we have

The last integral is bounded in view of (3. 3). To estimate other terms we
need the estimate

To prove it one should apply the formula (3 . 5) with N = 0, B = 1 - 
G = 1 - and then verify that for 1 + ~ ~ ~ 1

This, in turn, can be done with the help of the formula of differentiation
of composite functions, (2.9) and the estimates (4.6), t = 0. The worst
estimate in (4.11) will be for = p/2. Then letting in (4.10) N = m - 1 - p
it is easy to conclude that 
To prove Remark 4.1 one should substitute in (4.9), with r = 0, the

expression for the second integral defined by (3.4), (3.7).
As a consequence of Lemma 4.1 we have the function U(t) has m + 1

bounded derivatives for t E t _ (~t), ~ I t  E. Moreover there exists the limit

lim = U~p~( - 0), o  p  m + 1 and

Here and later simbol (p) means the derivative of the order p. Consider
the saddle-point equation (3.10) provided that condition (1.5) is satisfied.
We may consider (3.10) as a real-valued equation because the functions U(t),

have the real values for real t. We shall solve (3.10) in two steps. First
consider the equation f3 = - Since is analytic function
and ~"{o) = D, this equation for all sufficiently small f3 has the solution

Vol. 23, n° 1-1987.



82 A. N. BORODIN

Let

Then = 0. Now we consider the equation

in a small neighbourhood of the point For t e t _ (~t), ~ t ~  E, in view
of (4.12), K(t) has m + 1 bounded derivatives, S(t) has m bounded deriva-
tives and

Since L’(t(/~)) ~ > 1/2 for all sufficiently small (3, the equation (4.14) has
a solution and

where the summation is carried out over all non-negative integer solutions of
the equation k f + 2k2+ ... and s = k l + k2 + ... 
By Taylor’s formula

In view of (4.15), (4.13) and (4.16) the worst component of the remainder
of this expansion is estimated by

Again applying Taylor’s formula we find that for 1 m + 1

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



83ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

The last two equations together with (4.17), (4.13) and (4.16) imply

So to is the solution of (3.10) and the coefficients ykI coincide with those
in (3.11).

Let h(t) = i In U(t) + In and

be the solution of the saddle point equation

Letting a(t) == 1){~(t) - lj)-1, = 2D, we can repre-
sent (2.18) in the form

r) = q)

Consider the first integral in the right-hand side of this equation. Denote
it by Io. Applying Cauchy’s theorem and the estimates analogous to (3. l~)
along ll - l2 _ (’Yto( - E), 03B3t1( - ~)), we obtain

For brevity write Hk = !, ak = !, em = 
(ln 03C8(t0))(m+2) (m+2)!

. By
virtue of (4.12) and Lemma 4.1 (m + 2)

Vol. 23, n° 1-1987.



84 A. N. BORODIN

Let fp~ be the coefficient before vP in the decomposition

It is clear that = 0 for j > p. Expanding the exponential function by
Taylor’s formula, we obtain

where r~ is taken from (4.8). Applying to the first integral in the right-
hand side of this equation Cauchy’s theorem and the estimates analogous
to (3 .16) along ll - to + iE), l2 = (to - iE, - E)) we find

Next taking into account (4.12) and Lemma 4.1 we have that for

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Hence one can derive that

Setting f3 = x/, ~c = y/~ from (4.26)-(4.29) and (4.18) we deduce

Consider the second integral in the right-hand side of (4.21). Denote it
by 11, Let a(r, t) _ - hk = ak(r) = tl)/k !. Then
using the analogy of (4.24) for a(r, t) with t 1 instead of to it is easy to under-
stand that Ii will have the expansion (4.26) with ho instead of Ho and

g2l j instead of f 21~, where is the coefficient at vp in the decomposition

By virtue of Lemma 4.1

Note that a(0)(r, - 0) = 0. Since hp has for p  2 the same decomposition
as Hp _ ,

0  j  2l3 where ( c Ckljr-03B4, 03B8000(r) = o. Setting 03B2 = x/ fi, i = y/ f ,
we obtain

where ) Cmk Now (4. 21) jointly with the expressions for

Io and I1 imply (1.6). Equation (1.7) can be derived in a similar manner
from (2.19).

Vol. 23, n° 1-1987.



86 A. N. BORODIN

Now we pass to the prove of Theorem 1. 4. To prove (1.8) set

From (2.21) it follows that

Letting C(t) = C(0) + (C(t) - C(0)) we obtain that it is sufficient only
to consider the integral

Indeed for m > 1 the second integral in (4.31) is treated analogously to Ii
because the limit --~ - 2DDr(- 0) exists as t -~ 0,
t E t _ (~t). The distinction of this case consists in the fact that the analog
of is not equal to zero. The integral

is similar to Io. The case m = 0 is special. For it we obtain

As to the integral I, analogously to (4.25) we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



87ON THE DISTRIBUTION OF RANDOM WALK LOCAL TIME

The last integral has an estimate

The previous one we break into two integrals. The first of them does not
contain the term t -1 and can be calculated similarly to (4 . 26). The distinc-
tion is only in that the decomposition of type (4. 30) will have a polynomial
of degree at most 3k at n-k/2. The second one is

Using Cauchy’s theorem with the contour of integration

where [1 1 = (ytQ(E + ), to + iE + ), l2 - (to - - E - ), and the estimates

analogous to (3.16), we obtain

where R(x) is the function defined by (3.18).
Since R~p~(x)  Cp then by Taylor’s formula

Here and later Pl, = 1, 2, 3, are some polynomials of degree at most k.
Applying (4.18), (4.27), one can find
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Taking into account the fact that

and substituting f3 = i = from the relations obtained above

one can deduce (1.8).
The proof of ( 1. 9) proceeds along similar lines. The initial equation here

is (2.10).
To prove (1.10) rewrite (3 . 20) in the form

where

and t2 is the solution of the equation (3.21). This relation is very similar
to (4.31), with 1 = 0, and can be treated analogously.
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