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SUMMARY. - Let {Mn(t) ~n-1,2,... be a sequence of Hilbert space valued
continuous local martingales. We give a necessary and sufficient condition
for which { is tight in C in terms of ( ( }. Using this result we
show the preservation of the local martingale property under the weak
convergence in C of { 

Mots-clés : Continuous local martingale. Weak convergence.

RESUME. - Soit { Mn(t) ~,~=1,2,... une suite de martingales locales conti-
nues a valeurs dans un espace de Hilbert. Nous donnons une condition

necessaire et suffisante pour que { soit tendue dans C a l’aide d’une

condition de tension sur ~ ~ }. A l’aide de ce résultat, nous montrons
que la propriete de martingale faible locale est conservee par la convergence
faible dans C.

1. INTRODUCTION

Let H be a real separable Hilbert space with inner product (,) and
be an orthonormal basis of H. Consider a sequence { Mn(t) ~n-1,2,...
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372 S. NAKAO

of H-valued continuous local martingales starting at 0, where the time
interval I is [0, T] ] (0  T  + oo) or [0, + oo). Denote by dia ~ (t)
the vector of all diagonal components of ( ~ (Mn, ek), (Mn, el) ~ 
where ( (Mn, ek), (M~‘, el) ~ is the quadratic variational process of the

martingales (Mn, ek) and (M~‘, el) (cf. [3 ] [6 ] [9 ]). We then regard dia ; Mn ~
as an l1-valued continuous process in case that H is infinite-dimensional.
Rebolledo [11 ] proved, using Lenglart’s inequality [8], that in case

of H = f~ the tightness in C of { Mn(t) ~n-1,~9.,_ and the tightness in C of
~ dia ~ M~‘ ~ (t) ~n-1 ~2,... { _ ~  M~‘ ~ {t) ~n= n2,...) are equivalent to each

other, where C is the space of continuous sample functions. A main purpose
of this article is to show the above equivalence holds even if H is infinite-
dimensional (Theorem A in Section 2).
By applying Theorem A we show that any accumulation point of

~ ~,~- ~,2,", under the weak convergence in C is also a continuous
local martingale (Theorem B in Section 3). Moreover the continuity of
the mapping dia ( )> under the weak convergence in C is stated in Theo-
rem C in Section 3.

In Appendix we give an elementary proof of Theorem A in case of H == [R
which is best adapted to the situation where all the processes considered
are continuous and which is based on change of time.

2. TIGHTNESS OF ~ M’~ ~ AND { dia ~ M~‘ ~ ~

For a real separable Banach space E, set

Co(I, E) _ ~ w: I ---~ E, w is continuous and v~(o) = 0 }

and we define the usual metric on Co(I, E) (see [5 ]); that is, { converges
to w if and only if { converges uniformly to w on each compact interval
in I. Let E)) be the topological 6-algebra of Co(I, E). We denote
the space of all probability measures on (Co(I, E), E))) by ~(Co(I, E))
and endow ~(Co{I, E)) with the weak convergence topology. Consider the
following subspace of ~(Co(I, E)) ;

is continuous local martingale for every / E E’ j,

where E’ is the dual space of E.
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373WEAK CONVERGENCE OF CONTINUOUS LOCAL MARTINGALES

For an orthonormal of H, define the mapping ~):
Co(I, H) -~ Co(I, l2(J)) by

(2.1) ~(w)(t) _ ((w(t), J for w E Co(I, H), t E I ,

where for p = 1. ?

Then it is obvious that

is a homeomorphism .

According to the mapping ~, we introduce the mapping C:

by

We have then by (2 . 2)

is a homeomorphism

and

is a homeomorphism.

We denote by w(t) = the sample path of Co(I, l2(J)). Since the
0 0

process (dia ( w ), P) = (( ( P) is a ll(J)-valued continuous process
0

for P e l2{J))), we can define the mapping dia ( ):

in the following manner; for P E 12(J)))
0

(2. 6) dia ( P )> == the probability measure on Co(I, ~1(J)) induced by
0

(dia  w X P).

We get the following theorem about the tightness of a family of H-valued
continuous local martingales.

THEOREM A. - Let Pa E H)) (a E A). Then the following three
conditions are equivalent to each other.

i ) is tight in Co(I, H) .

ii) { ~(Px) ; a E A ~ is tight in Co(I, r2(J)) .
iii ) { dia  ~(Pa) ~ ; a e A } is tight in Co(J, l l (J)) .

Vol. 22, n° 3-1986.



374 S. NAKAO

As stated in the introduction Rebolledo [77] proved the above theorem
using Lenglart’s inequality in case of H = ~. So we will prove the above
theorem in case of dim H = + oo. For this purpose we estimate the tail

behaviors of { ~(Pa) ; a E A ~ and { dia ( ~(Pa) ; uniformly in oc e A.

Let K be a subset of P ( p = 1, 2). It is well known ( [4 ]) that K is relatively
compact if and only if

Let I = [o, T ] and Qa E lp)) (a E A). Noting (2 . 7), it is easy to see

that { Qa ; a E A } is tight in Co(I, lp) if and only if for any e > 0 and i == 1,2,...
there exist a compact set K ~ lp and 03B4(i) > 0 such that

and

where w = (wl, w2, ... ) E Co(I, lp).
From now on we denote by w = (wi, w2, ... ) the sample path ofCo(I, 

We prepare a lemma for the proof of Theorem A.
0

LEMMA 2.1. - Let I = [0, T] ] and l2)) (a E A). Then the
following two properties are equivalent to each other.

i ) For any 6 > 0 there exists a compact set K c l2 such that

ii ) For any £ > 0 there exists a compact set K c ll such that

Proof - We show that i ) implies ii). Assume that (2 .10) holds. Set

Since it holds that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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we get by Chebyshev’s inequality

On the other hand it is easy to see that

00

~r=1 ~2~... be a sequence such that E/2. Then
r = 1

in view of (2.13) for any r = 1, 2, ... there exists nr such that

Putting

we get from (2.14)

r B~
We then set  ={ c = (cl, c2, ... ) E c ~l1 ~ 203B2/~, 03A3 |cm| ~ Er

for r = 1, 2, ... }. Obviously K is compact and satisfies from (2.12) and
(2 .15)

Consequently we get from (? .10)

We can prove the implication ii) -~ i) in the same way as above. D
We now return to the proof of Theorem A.

Proofof Theorem A. It is obvious that i ) and ii ) are equivalent to each
other. We show the equivalence between ii ) and Hi). We may assume that
I = [0, T] ] and dim H = + 00. The Rebolledo’s result [Cor. II, 3 .14 in

Vol. 22, n° 3-1986.



376 S. NAKAO

~l ~ J) implies that the condition (2.8) with { ~(Pa) ~ instead of { is

equivalent to the condition (2. 8) with { dia ~ ~(Pa) ~ ~ instead of { 
On the other hand we get by Lemma 2.1 that the condition (2.9) with
~ ~(Pa) ~ instead is equivalent to the condition (2.9) with

{ dia ( ~(P~) ~ ~ instead of { Qa }. Consequently ii ) and iii ) are equivalent
to each other. The proof is completed. D

3. PRESERVATION

OF LOCAL MARTINGALE PROPERTY

First we show that any accumulation point of a sequence of H-valued
continuous local martingales under the weak convergence is also a H-valued
continuous local martingale.

THEOREM B. - H)) is closed in ~(Co(I, H)).
0

Proof 2014 We may assume H = l2. Let { P,~ ~ converges weakly to
00 0

P(Pn o o E l2)), P E -~(Co(I, l2))). Denote by Rn the probability measure
0

on Co(I, l2) x Co(I, ll) induced by ((w, dia ~ w ~ ), Theorem A implies
{ is tight. Therefore there exists a subsequence { n’ ~ such that { R~. ~
converges weakly to R. For N = 1, 2, ... set

For each i = 1, 2, ..., s2, ... , sp, ti , t2, ... , t~ _ s  t and bounded
continuous function f on (12)P x we have

Since aN is R-a. s. continuous on

and

the equality (3.1) holds with R instead of Rn" Therefore we have

Next we state a continuity property of the mapping dia ~ )> defined
by (2 : 6).

THEOREM C. - dia ~ ~ : 1 l2)) --~ [1)) is continuous.

Proof Within the situation of the above proof, we can show that

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



377WEAK CONVERGENCE OF CONTINUOUS LOCAL MARTINGALES

(Wf - wi, R) is a continuous martingale for any i = 1, 2, .... Therefore R
~ , ~ ~ ~ ~ 

0

is the probability measure on Co(I, f) x Co(I, h) induced by ((w, dia ( w ~ ), P).
, ~ ~ ~ 

0

This implies that { Rn ~ converges weakly to R. Hence { dia ~ Pn ~ } converges
0

weakly to dia ( P ~ and the proof is completed. D

Applying the above theorems, we can easily get the following remark
about the central limit theorem for a sequence of Hilbert space valued
continuous local martingales.
Remark. Let V = I ,2,... be a nonnegative definite, symmetric

real matrix such that vii  + oo and Pw E l2)) be a Wiener
i= 1

measure such that the mean vector is zero and the covariance function
o o

is ((t A Consider a sequence {Pn} (Pn E l2))). Then the

following two conditions are equivalent to each other.
o o

i ) converges weakly to Pw in Co(I, f2).
o

P,~ ~ ~ converges weakly to the distribution of v22t, ... )
in Co(I, [1) and for any I, j = 1, 2, ... and t > 0 { the distribution of

~ ~ 
0

(( (t), P n) on [~ } converges weakly to the 6-distribution at Vijt on ~.
Finally we note that such infinite-dimensional central limit theorem for

current valued stochastic processes are investigated by Ochi [1 D ] and Ikeda
andOchi [ ~ ].

Vol. 22, n° 3-1986.
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APPENDIX

As stated in the introduction, in the case of H = (~, Theorem A is proved by Rebolledo
as a consequence of a general Aldous theorem for right continuous processes and using
Lenglart’s inequality (cf. [7] ] [Il ]). The considered processes Mn may be discontinuous and
only the limits of { and ( ( M" ~ ~ are assumed continuous. The proof is quite heavy.
We give here a direct simple proof adapted to the special case of continuous processes.

LEMMA A.I. - Let M(t) (t E [0, T]) be an R-valued continuous martingale defined
on an usual filtered probability space (S~, ~, P, ~t) starting at 0 with E [M(T)4 ]  + ~o.
For each finite partition 0394 = {0 = so  si  ... 

= T} of [0, T], set

Then there exists a universal positive constant C such that

where

and

Proof - It is easy to see that the left hand side of (A. 2)

where [s s  Sj+ 1 ( j = 0, 1, ... , l - 1 ). Applying Schwarz’s inequality to the
second part of the right hand side of the ahc»t inequality, we get (A..2). D

LEMMA A. 2. - Let M"(t ) (n = 1, 2, ... ) be an R-valued continuous martingale defined
on a filtered probability space (Q, j~, P, with M"(0) = 0. Suppose that there exists a
stochastic process M on (S2, J~, P) such that with probability one converges to M

uniformly on each compact interval. Further suppose that there exists a constant f3 > 0
such that sup E [ ~4+~]  cx~ (t > 0). Then M is a continuous martingale with

n

E [ ]  :r (t > 0) and satisfies

Proof - It is obvious that M is a continuous martingale with E [ ~ M(t) ~4 ]  oo (t > 0).
Ito formula implies

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We then get from the assumption

For any finite partition A = ~ 0 = so  sl  ...  Sz = T ~ of [0, T we have

where t) and IA(M, t) are defined in the same way as (A .1). Since ( ( (T)2 ~
is uniformly integrable, Lemma A. 1 implies that for any 8 > 0 there exists a positive constant
~ such that

On the other hand it is easy to see that lim an(~, 2) = 0 for any d. Therefore we have
n -~ o0

Combining (A. 4) with (A. 5), we then get (A. 3). 0

Proof of T heorem A in case of H = - First we prove that iii ) implies ii). Let 
(n = 1, 2, ...) be an R-valued continuous local martingale with M"(0) = 0 defined on a
filtered probability space (Om .~n, Pn, We assume that ( ( M" ~ ~ is tight in Co([0, + oo), (~).
Then for any 11 = 1, 2, ... there exist an extension (SZ;" Pn, ~r~) of (Q, ~n, Pn, ~t) and
a one-dimensional Brownian motion Bn(t) on (S~n, ~n, P~" with Bn(0) = 0 such that
Mn(t ) = B"( ~ (t )). The tightness M" ~ ) ~ implies the tightness of ( Mn ~.
Next we prove that ii ) implies iii ). Let Mn(t) (n = 1, 2, ... ) be an [?-valued continuous

local martingale defined on a filtered probability space (Q, ~, P, with Mn(0) = 0. We
assume that with probability one { M"(t ) ~ converges uniformly on each compact interval.
It is sufficient to prove that { ( Mn ~ ~ is tight in Co( [0, T ], R) (T > 0). For N = 1, 2, ...
and n = 1, 2, ... put

It is easy to see that for any e > 0 there exists No such that

(A . 6) P(Sn(N 0) = T) > 1 - E for n = 1, 2, ....

Since { Mn(t A S,~(N)) ~ is tight in Co( [0, T ], for N = 1, 2, ..., we have by Lemma A. 2

that { ( (t A is tight in Co( [0, for N = 1, 2, .... Therefore the tightness
in Co( [0, T ], of ( ( Mn ~ ~ follows from (A. 6). 0
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