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On the Skorokhod topology

Adam JAKUBOWSKI

Institute of Mathematics,
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ul. Chopina 12/18. 87-100 Torun Poland

Ann. Inst. Henri Poincaré,

Vol. 22, n° 3, 1986, p. 263-285. Probabilités et Statistiques

ABSTRACT. - Let E be a completely regular topological space.
Mitoma [9 ], extending the classical case E = R 1, has recently introduced
the Skorokhod topology on the space D( [0, 1 ] : E). This topology is inves-
tigated in detail. We find families of continuous functions which generate
the topology, examine the structure of the Borel and Baire a-algebras
of D( [0, 1 ] : E) and prove tightness criteria for E-valued stochastic processes.
Extensions to D(R + : E) are also given.

RESUME. - Soit E un espace topologique completement regulier.
Etendant le cas classique, Mitoma [9] ] vient d’introduire recemment la
topologie de Skorokhod sur l’espace D( [0, 1 ] : E). Nous examinons en
detail cette topologie, donnons des families d’applications continues

engendrant la topologie : nous etudions la structure des tribus de Borel
et de Baire de D( [0, 1 ] : E) et demontrons des criteres de tension pour les
processus stochastiques. Nous terminons par des extensions a D(R + : E).

INTRODUCTION

The space D( [0, 1 ] : E), where E is a separable metric space, being a
model of various physical phenomena, has been a point of interest of
Probability Theory since the fundamental paper by Skorokhod [12].
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264 A. JAKUBOWSKI

Recently Mitoma [9] ] has introduced the Skorokhod topology on the
space D([0,1]: E), where E is a completely regular topological space. This
paper is devoted to the study of the Skorokhod topology just in this case.
In particular, it is proved in Sec. 1 (Theorem 1.7) that the Skorokhod
topology is the coarsest topology with respect to which all mappings of
the form

are continuous, where f : E -~ R1 is continuous.

In Sec. 2 we consider the problem when Borel subsets of D( [0, 1 ]: E)
are equal to cylindrical subsets of D( [0, 1 ] : E). A simple « permanence »
theorem (Theorem 2.1) and some sufficient conditions for the cylindrical
subsets to be Baire subsets of D( [O, 1 ] : E) (Theorem 2 . 5) as well as several
corollaries are given.

Section 3 contains « weak » tightness criteria for families of Borel measures
on D( [0, 1 ] : E) (Theorem 3.1). Here « weak » means that the problem of
tightness of a sequence {Xn of E-valued stochastic processes with

trajectories in D( [0, 1 ] : E) can be reduced to tightness of real processes
~~ where f : E -; R1 is continuous, plus uniform concentration
in probability of trajectories of processes {Xn on subspaces D( [0, 1 ] :
K) c D( [O, 1 ] : E), where K is a compact subset of E.

In Sec. 4 the results for D( [0, 1 ] : E) are extended over the space D(R+ : E1).
Measurability properties of the Skorokhod spaces and, especially, weak

tightness criteria, are examined in Sec. 5 in a few examples.

1 THE SKOROKHOD TOPOLOGY

ON D( [0,1 ] : E)

Let (E, i) be a topological Hausdorff space. Denote by D 1 (E, i) = D( [Q, 1 ] :
(E, r)) the space of mappings x : [0, 1 ] --~ E which are right-continuous
and admit left-hand limits for every t > 0 (in topology i !). One can prove

1.1. PROPOSITION. - Let x E D!(E, i). Then the closure of the set

{ E [0, 1 ] } is compact in (E, i) and coincides with

If (E, z) is a metrisable space, each element x E ~) has only countably
many discontinuities. This is not so in the general case :

de l’Institut Henri P(tjlC’Cls’e - Probabilités et Statistiques



265ON THE SKOROKHOD TOPOLOGY

1.2. EXAMPLE. - Let E = with the product topology i~.
the mapping

Clearly x e Di(E, i~) and it is easy to see that the set of jumps of the ele-
ment .u is uncountable:

(by definition x(o - ) = 
Now assume that (E, r) is a completely regular topological space. Then

there exists a family { di of pseudometrics on E such that

and open balls in pseudometrics di, i E 0, form a basis for the topology i
(see [4 ]).

Following Mitoma [9], one can define on Di(E, i) a completely regular
topology by considering pseudometrics

(1. 3) di(x, y) = inf max (sup |03BB(t) - t |, , sup )), y(t))), i ~ I,
tE[O,l] i tEjO, 1] i

where A is the set of strictly increasing continuous functions ~, : [o, 1 ] - [o,1 ],
03BB(0) = 0, 03BB(1) =1.

It is easy to see that the family { di satisfies the conditions (1.1)
and (1.2), hence open balls in pseudometrics { i}i~I form a basis for a

completely regular topology on Di(E, t), called the Skorokhod topology
on Di(E, r). We shall see that this topology does not depend on the parti-
cular choice of pseudometrics ;;~ - .

1. 3 . THEOREM. - Let the family { di of pseudometrics on E satisfies
the assumptions (1.1 ) and (1. 2~ . Let i be the topology on E generated by
the family {di}i~I.
Then the Skorokhod topology on D1(E, i) defined by pseudometrics

{ di depends only on the topology i on E.
We will divide the proof into two lemmas.

1 . 4 . LEMMA.

sequence o.f’partitions of the interral [0, 1 ]. that {pn}n~N is )r()i’j)lcll, i. e.

Vol. 22, n° 3-1986.



266 A. JAKUBOWSKI

and define the mappings T" = D1(E, i) -~ D1(E, i) by the formula

Then

i) for every x E D1{E, i) and -~ 0, i. e. Tn(x) ~ x in
the completely regular topological space (D1(E, i), ~ di 

ii) for each n, the set i)) c D1(E, i) is homeomorphic with Ekn+ 
1

equipped with the product topology.
iii) The set is sequentially dense in D1(E, i).

nE~l

Proo~ f : - i ) Follows by suitable adjusted Lemma I, p. 110, [3 ], and

implies iii ), easily. ii ) is an immediate consequence of the definition (1. 3)
of pseudometrics di, i 

1. 5. LEMMA. - Let {di}i~I and {03B6i} j~J be two families of pseudo-
metrics on E satisfying (1.1 ) and (1. 2) . Let the topology i generated by
~ di be coarser then the topology a generated by ~ 

Then obviously

and the topology on D1(E, 03C3) generated by pseudometrics ( j~J is finer
than the topology induced from (DICE, i), ~ di 

Proof. Observe that for every partition p,~,

By Lemma 1. 4 iii ) and the property (1. 2) of pseudometrics suffices

to check that for each xo of the form

where 0 = to  ti 1  ...  t N = 1, a 11 d u and ; > 0 the 

contains a certain o--ball.

Let for k = 0. 1..... N. j~ E ~ he such that for some ~~~ > 0, r/k  8,

Let ~ == min ~k and j be such that 03B6j  max 

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



267ON THE SKOROKHOD TOPOLOGY

then there exists ~, E A such that sup ~,(t ) - t  ~  Band
i

sup )), 

( sup ~~(z(~,(t))~ al))  ~? ~
o WGvN- 1 1~

In particular, sup )),  ~, k = 0, ..., N -1 and di(z(1), a1)  E.

tk + 1 ~ >

Hence r~) c E). /
Let us note some immediate consequences of Theorem 1.3 and

Lemma 1.4. ,

1. 6 . PROPOSITION. - i) The continuous mappings f : [o, 1 ] ~ E form
a closed subset C( [0, 1 ] : (E, z)) of D1(E, i) and the Skorokhod topology
on C( [0, 1 ] : (E, i)) coincides with the usual compact-open (or « uniform »)
topology on C( [0, 1 ] : (E, i)).

ii) D1(E, i) is separable iff(E, i) is separable.
iii) D 1 (E, i) is metrisable iff (E, i) is metrisab le.
iv) If (F, i n F) denotes the subspace F ~ E with the topology i n F

induced from (E, i), then the Skorokhod topology on D1(F, i n F) coincides
with the topology induced on D1(F, i n F) by the Skorokhod topology on
Di(E, i).

v) If G is an open subset of (E, i), then D1(G, i n G) is an open subset of
D1(E, ~). Similarly, ifF is a closed subset of(E, i) then D1(F, i n F) is a closed
subset of D 1 (E, i).

vi) If K c Di(E, 03C4) is compact, then there exists a compact subset K c (E, i)
such that ~ c D1(K, i n K).

vii) All compact subsets of D 1 (E, i) are metrisable iff(E, i) has this property.

Proof - i ) The compact-open topology on C( [0, 1 ] : (E, z)) is simply
the complete regular topology induced by uniform pseudometrics

where { di is an arbitrary family of pseudometrics on (E, i) generating
the topology r. The arguments quite similar as in the metric case (see [3 ],
p. 112) show that the pseudometrics di and di are equivalent when restricted
to C( [0, 1 ] : (E, i)).

ii ) Follows from Lemma 1. 4 iii ). For the proof of iii ) and iv) see Theo-
rem 1. 3.

r) Let G be open in (E, i) and let .Yo E i n G).

By Proposition 1.1 the closure ko of the set { [0, 1 ] } is compact
Vol. 22, n° 3-1986.



268 A. JAKUBOWSKI

in (G, T n G). Since G is open one can find a pseudometric di and s > 0
such that ~o)  s } c= G. So necessarily S x,(xo , s) c= r n G).
Observe that arguing in the same way one can prove that the sets

= { x e G in some neighbourhood of t0},t0 ~ [0, 1) and

Gi == { x x(l) e G } are open in Di(E, r). Let F be closed in (E, r). Then

[D,(F, T n = ~J is open.
t0~[0,1]

Let .3f be compact in Di(E, r). Let K = We have to show

that K is compact. Take any covering of K by open sets : K = t j G~. By
xeA

Proposition 1.1 we know that for each x e aT, there exists a finite number

of the sets G03B1: G03B11(x), G03B12(x), ... , such that x c= ~ G03B1i(x). Consi-
- 

der open sets of the form GAo = ~ J ~x~ where Ao is a finite subset of A.
We have 

By v) and the compactness of ~’ one can find a finite sequence A 1, A2, ... , An
of finite subsets of A such that ~’’ is covered by the sum i n 

But this implies that K = x c ~GAj = Lj The state-

ment vii ) follows from i ), iii ), iv) and vi ). /
The next theorem is based on the essential property of completely regular

topological spaces and seems to be the most interesting application of
Theorem 1.3.

1.7. THEOREM. - Let (E, z) be a completely regular topological space.
Suppose that the family ~ _ ~ f : E ~ R1 ~ of continuous functions on (E, i)
has the following two properties :

(1. 7) IF generates the topology ~ on E.

( 1. 8) Iff, g then f + g 

Then the Skorokhod topo logy on i) is generated by the family
~ = i f ~ of D,(E. T) -~ of the .form

where f belongs to ~.

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



269ON THE SKOROKHOD TOPOLOGY

1. 8 . LEMMA . Let (E2, i2) be a completely regular topological space.
Consider a family {fi: E1 ~ (E2, which separates points in E 1.
Denote by 03C41 the topology on E 1 generated by the family { fi}i~I.

Then the Skorokhod topology on D 1 (E 1, i 1 ) is generated b y 

of the form

Proof. The product topology on ( E ~ )’" can be defined by the pseudo-
metrics

where the family { of pseudometrics on E2 determines the topo-
logy i2. So the topology Ti on Ei can be defined by the basis consisting
of all open balls in the pseudometrics b) _ 
Now, it is sufficient to see that

By the above lemma, if the E -~ R1 ~ generates the
topology i on E, the Skorokhod topology on Di(Ei, L) is generated by all
« vectors »

where The final reduction follows now from the fact
that the Skorokhod topology on D, (R~) is generated hy the mappings

where lk : Rl, a2, ... , am) = ak. Indeed, if xn -~ xo in D1(Rm)
then

since lk, 1 m, are continuous.

Conversely, suppose that (1.11) holds. x~ cannot

Vol. 22, n° 3-1986.



270 A. JAKUBOWSKI

1. 9 . LEMMA (A version of Lemma 27 . 3 [1 ], see also Lemma 5 . 2 E6 ]). -

Let K be a compact metric space. A subset K c D1(K) is not relatively
compact if and only i,f’at least one of the following three conditions is satisfied.

( 1 . 12) There

a) a sequence {xn} c K
b) t E [0, 1 ]
c) three sequences t - sn  t~  u~ ~ t

d) elements a ~ h ~ c of K
such that xn(sn) ~ ~ h, -~ C’.

( 1 .13) There exist
’ 

a) a sequence {xn} ~ K
b) two sequences 0  sn  tn --~ 0

c) elements a ~ b o f K.

such that Xn(Sn) ~ a, xn( t n) ~ b.

(1.14) There exist

a) a sequence {xn} ~ K

b) two sequences 1 > tn > sn -~ 1

c) elements a ~ b ofK

such that -~ a, -~ fO

Observe that all xn take values in some compact subset K c Rm, provided
(1.11) is fulfilled. Hence we can apply Lemma 1.9.

Suppose that for some subsequence ( xn~ ~ of ( the condition (1.12)
is satisfied. In particular, for all k, 1  k  m,

(1.15) ~ lk(xn’)(tn’) ~ lk(b) ~ 

If for some k, lk(a) ~ lk(b) ~ lk(c), then we get a contradiction with the
relative compactness of ( }. Hence for all k, lk(b) or lk(b) = lk(c).
Since b ~ c, we can find j and k, such that

Hence (l~ + lk)(a) ~ (lj + lk)(b) 7~ (lj + lk)(c) and writing down the conver-
gence (1.15) for lj + lk instead of lk, we get a contradiction with relative

compactness Similarly one can eliminate the conditions (1.13)
and (1.14). xo ..

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



271ON THE SKOROKHOD TOPOLOGY

2. MEASURABILITY PROBLEMS IN D([O,1 ] : E)

Let (E, i) be a completely regular topological space and let X = 
be a stochastic process with values in E, i. e. a family of measurable mappings

where (Q, ~ , P) is a probability space and ~E denotes the a-algebra of
Borel subsets of E.

Suppose that all trajectories of X belong to the space D1(E) (here and
in the sequel we drop the symbol i of topology, for i is fixed). Then X
considered as a map

is measurable, if Di(E) is equipped with the a-algebra generated
by simple cylindrical subsets of D 1 (E). Recall that

where for To = ~ t 1, t 2, ... , tm ~ C [0,1], the projection ~cTo = ~tl ~~2~ . . . ~tm ~
Em is defined by

In the case E = R 1, a remarkable equality = holds (see [3 ],
Th. 14 . 5) and it is reasonable to ask which spaces E behave similarly to R1,
i. e. which of them preserve the equality

~Ve shall prove several results in this direction.

2.1. THEOREM. - i) Suppose that (E, i) has the property (2.3). Then

every subspace (E 1, i n E 1 ) of (E, i) has the property (2 . 3) .

ii) ~f every finite product space f1 (Ei, ii) composed of the elements

lim

of a sequence {(Ei, ii) has the property (2.3), then this property is

fu~lled also for the infinite product (Ei, 2i).
iEl~

Vol. 22, n° 3-1986.



272 A. JAKUBOWSKI

Proo. f: Let E 1 c E. By the property iv), Proposition 1. 6, of the Sko-
rokhod topology, D1(E1), and by the definition of

a-algebras and n D1(El). Those two equalities
prove the part i ) of Theorem 2 .1.

In order to make the proof of ii) more concise, consider the following
lemma.

2.2. LEMMA. - Let (E, T) be a Hausdorff topological space and let the
topology z be generated by a family of mappings ~ f : (E, i) -~ (Ei, ii) 

i) ~ c E.

where A denotes the closure of A and for a finite subset Io c ~ I the map

fIo : E ~ Ei is defined by
iEIo

ii) If the ,f’amily ~ f is countable, then the a-algebra of Borel subsets
of E is generated by « finite dimensional » Borel subsets :

iii) If the family { fi }i~I is countable and, in addition, for each ele-

ments f~ and fk of the generating family, there exists an element fm E ~ 
such that f~ and fk can be factorized by continuous mappings and fm :

where Em -~ E~ and gkm: Em -~ Ek are continuous, then the structure
of Borel subsets of E can be described in especially simple way :

Now, since the topology of the infinite product is generated by projec-

tions Ei -~ the Skorokhod topology on D 1 E,) is

generated by mappings (see Lemma 1.8).

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



273ON THE SKOROKHOD TOPOLOGY

By Lemma 2 . 2 iii), the Borel a-algebra in Di Ei) is generated bythe 6-algebras 

On the other hand. a similar consideration applied to the 03C3-algebra  D,I

yields

Hence the generators of and are the same. /
°

2.3. REMARK. It follows from Lemma 1.4 iii), that the property
(2.3) implies

By Lemma 2 . 2 ii ), (2 . 8) is equivalent to (~E)° ~°.
Let E = R~ with discrete topology. Then ~E Q is strictly contained

in x E. Hence (2 . 3) may fail even in case of metric spaces.
If E is a separable metric space, then it is homeomorphic to a subset of Roo.

From Theorem 2.1 immediately follows

2 . 4 . COROLLARY. - The property (2 . 3~ is f ’u ~lled for separable
metric spaces.

It is well known that for a metric space E, the Borel a-algebra in E coin-
cides with the Baire a-algebra generated by all continuous functions. In
the case when such a coincidence can be verified, one can prove at least
one inclusion in (2. 3).

2 . 5 . THEOREM. - i) Suppose that in E the Borel and the Baire a-algebras
coincide :

Then the simple cylindrical subsets of D1(E) are Baire subsets of Di(E),
in particular,

Vol. 22, n° 3-1986.



274 A. JAKUBOWSKI

ii) Suppose, in addition, that = n E Then every continuous

function on D1(E) is i. e. coincides with the Baire

6-algebra of subsets of D 1 (E) :

Proof Let C(E : R1) and t E [o, 1 ]. The function f o 03C0t is a super-
position of the countinuous mapping f : D1(E)  D1(R1) (see (1.9)) and
the {t }-projection D1(R1) --~ R~ which is measurable. Hence

f o 03C0t = t 03BF f is Baire-measurable on Di(E). This proves i ).
Now, take any continuous function f: R~. In notations of

Lemma 1.4, for every normal sequence {pn}n~N of partitions of [0, 1 ],

Hence it suffices to verify, that is measurable with respect to
Let pn = ~ 0 = tno  tn1  ...  tnkn = 1 } and let

be the natural homeomorphism between these two spaces (see Lemma 1.4

it)). Then _ _ ,

where h -1; + 1) ~ R1 is continuous and 03C0{pn} - Hence

provided BEn = for all n E 

By assuming a more special structure of E one can use Theorem 2 . 5 it)
to derive the stronger property (2.3). Here two examples are presented.

2.6. COROLLARY. - Suppose that the space (E, z) has the following
two properties :

(2 12) Compact subsets of E are metrisable.

(2 .13) There exists a sequence {Kn}n~N of compact subsets of E
such that for every x ~ D1(E) one can find Kn containing the set
x = ~ x( t } ~ t E [0, 1 ] ~ -

Then E has the property (2.3}.

2 . 7 . LEMMA. - If E is a-compact and every compact subset of E is

metrisable, then every compact K c E is a Baire sub,set of E.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



275ON THE SKOROKHOD TOPOLOGY

Proof Let E where Kn are compact in E. For each n 
nEf~

let { fnk be a sequence of continuous functions on E, separating points
in Kn :

If the sequence { exhausts the sum }, then it sepa-

rates points in E. Now, consider a Hausdorff topology i’ on E generated
by the sequence { gm Clearly, compact set K in (E, i) is also compact
in (E, i’), hence is measurable with respect to the a-algebra generated
by the sequence {gn} c= C(E : R 1 ). Thus each compact subset of 
is a Baire subset of (E, 

In order to prove Corollary 2 . 6 we will see that

(2.14) the Baire and Borel 03C3-algebras in E coincide,

Then we will apply Theorem 2.5 ii ) and show that

(2.16) in Di(E) the Baire and Borel a-algebras coincide.

Let A be a Borel subset of E. By (2 .13) A = t j A n Kn, where for each
nEf~

n E I~, A n Kn is a Borel set in Kn, hence by (2.12) a Baire subset of Kn.
Now A n Kn is also a Baire subset of E by Lemma 2. 7.
The statement (2.15) follows immediately from a-compactness of E

and the equality

which is fulfilled by (2.12) for every compact set K c E.
The statement (2.16) can be proved quite similarly as (2.14) provided

the decomposition D1(E) = D1(Kn) (given by (2.13)) is known and
net~

is a Baire subset of D 1 (E) for every compact K c E. But

where Q is the set of rationals, and in Theorem 2 . 5 i ) we have already
verified that under (2.14) the cylindrical set is a Baire subset of

Vol. 22, n° 3-1986.
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2 . 8 . COROLLARY. - For each j E N, let the space E J has the properties
(2.12) and (2.13) from Corollary 2.6. Then following the line of the proof
of the preceeding corollary, one can check, that every finite product
Ei x E2 x ... x Em has the property (2.3). By Theorem 2.1 ii), the

infinite product has the property (Z.3), too.

jEN

3. WEAK TIGHTNESS CRITERIA

The aim of this section is to prove tightness criteria for probability
measures on D1(E).

Recall that a family { Ili of probability measures on a topological
space (E, ~) is tight, iff for every 8 > 0 there exists a compact subset K~ c: E
such that

3.1. THEOREM. - Let (E, i) be a completely regular topological space
with metrisable compacts. 

_

hP Cl , family of continuous functions on E. Suppose that :

(3.1) IF separates points in E

(3 . .2) IF is closed under addition, i. e. if f; g E ~, then f + g E ~.

i) A ,f’amily ~ ,u~ of probability measures on is tight iff the follow-
ing two conditions hold :

(3 .3) For each ~ > 0 there is a compact KE c E such that

(3.4) The family ~ ,u~ is tight, i. e. for each the family
{ pi o ( f ) 1 of probability measures on is tight.

ii) If the family ~ ~c~ is tight, then it is relatively compact in the weak
topology.

Proof The part ii) is true in general case : for families of measures
on completely regular topological space with metrisable compacts (we
know by Proposition 1. 6 vii ) that compact subsets of are metri-

sable provided E has this property), see [13 ], Th. 2, § 5, or [7], Th. 6, § 4.
Let us consider the problem of necessity in part i ). The condition (3. 3)

follows from Proposition 1. 6 vi ). Tightness implies also (3 . 4) due to the
two following facts :
- for every fEC(E:R1), f is a continuous mapping of Di(E) into

DI(R 1) (see Theorem 1. 7),

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



277ON THE SKOROKHOD TOPOLOGY

- the image under a continuous map of a tight family of measures is

tight again.
In order to prove the sufficiency of conditions (3.3) and (3.4), let us

establish two simple topological lemmas.

3.2. LEMMA. - Assume that E and F are as in Theorem 3 .1. Then

for every compact K c E there exists a countable family FK ~ F satisfying
(3 .1 ) and (3 . 2~ when restricted to K.

Proof If satisfies (3 .1), then finite sums of elements of IF’K form
a class F~ satisfying (3 .1) and (3.2). Hence we have to prove only that for
every K one can find a countable separating subfamily of F.
Consider the compact space K x K. Let (a, b) e K x K, a ~ b. By (3.1)

there exists f e F such that f (a) ~ f(b).
Let U(a, b, f ) be a neighbourhood of (a, b) of the form V x W, where

03C6.Then 0394 ~ V x W = 
K x KBA is a separable metric space, and the family {D(a, b, f ) ~ x K ~
covers K x KBA. Hence there exists countable subcovering {U(ak, bk,fk) 
The family { fk separates points in K. /

3 . 3 . LEMMA. - Let K be a metrisable compact. Suppose that a countable

family F of continuous functions on K satisfies (3 .1 ) and (3 . 2) . Then a
closed subset ~ c D 1 (K) is compact if and only if the set is compact
in D1(R 1) for each f E IF.

Proof - Only relative compactness of Jf remains to be proved. For this
we apply Lemma 1. 9 in the same way as in the proof of Theorem 1. 7. /
Now, the proof of the sufficiency of (3 . 3) and (3 . 4) is immediate. Let 8 > 0.

Let K be such that .

Given K, let [FK be a countable subfamily of [F satisfying on K the condi-
tions (3.3) and (3.4) (Lemma 3.2). Denumerating the elements of F~ we
obtain a sequence { fk For every let be such a compact
in D1(R 1) that ,

Then the set jf = Di(K) is compact by Lemma 3.3
and has the property ~ee~

Hence the family { i }i~I is tight..
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4. THE SKOROKHOD TOPOLOGY ON D(R+ : E)

According to our convention D(R+ : E) (or simply D(E)) will denote
the space of mappings x : R+ - E, which are right-continuous and have
left limits in every t > 0.

In the case E = R1, Lindvall [8 ] has defined the Skorokhod topology
on D(R~) as the topology generated by mappings

where

(4.1)

and

Since the generating family is countable, D(R 1) is metric and separable
(and even topologically complete).
When E is a linear topological space, Lindvall’s ideas are applicable

without any change. It is not so in the general case and we suggest to proceed
in the following way.

Let d be any pseudometric on E. By ds we will denote the pseudometric
on D( [0, s] : E) defined by the formula (1.3) (where the interval [0, 1] ]
is replaced by [0, s ]).

Let the map qs : D(R + : E) - D( [0, s + 1 ] : E) be defined as :

Fix x and y in D(E) and consider the function

Clearly, it is an element of D(R + : R + ), hence is Borel measurable. Define

~d is a pseudometric on D(E) and Proposition 4.1 below shows that the
convergence of sequences is just the « Skorokhod convergence ».
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4.1. PROPOSITION. - Let ~ x" be a sequence of elements of D(E).
Let ~d be defined by (4 . 4) . T hen for E D(E) the convergence x

holds if and only if there exists a sequence ~ ~,,~ c n.~ _ ~ ~, : R+ -~ R+ ~,
is increasing, continuous, ~,(0) = 0, ~,(t ) -~ + oo if t ~ + oo ~, such that
for each t E R 

+ 
~

Proof The conditions (4. 5) and (4 . 6) imply that for every s E R +
with the property d(x(s), = 0, we have the convergence qs(xn) ~ qs(x)
in (D( [o, s + 1 ] : E), 1). The distance d(x(s), xes -)) may differ from 0
at most in countably many s, hence by the Lebesgue dominated theorem

Conversely, suppose that (d(xn, x) -~ 0. It suffices to find an increasing
sequence {sm}m~N c R+, sm ~ + oo such that x) = dsm+ 

0, 
In fact, we shall prove much more, namely that x) -~ 0 for each

point of continuity of x with respect to d.
Suppose that for some s with the property d(x(s), x(s - )) = 0 we have

x) ~ 0. Then we can find a subsequence ~ n’ ~ c= { ~ } such that

But ~~ ~(x,~, x) -~ 0 in measure 11 (where 11 is the standard exponential
distribution on R + ) so one can choose a subsequence { n" ~ c: { n’ ~ such
that ~~,~(xn.., x) ~ s. Hence there exists s’ ~ s such that ~d.(xn.., x) -~ 0.
Consequently ~d(xn.., .~) --~ 0 which contradicts (4. 7). /

4.2. REMARK. - During the preparation of this paper the author
has been aware of the paper [10 ] by G. Pages, in which another way of
metrisation of D(R + : E) (E-Polish space) has been introduced. One may
easily adopt the technique of [7~] ] to get new « Skorokhod » pseudometrics
on E). It is evident that both the approaches are equivalent.

Similarly as in Sec. 1., one can define the Skorokhod topology on D(R + : E)
as the completely regular topology induced on D(R + : E) by a family of
pseudometrics {03B6di}i~I, where {di}i~I determine the topology on E and
satisfy (1.1) and (1.2).

Just the same way as Theorem 1. 7 one can prove
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4. 3 . THEOREM. - i) The Skorokhod topology on D(R+ : E) does not
depend on the particular choice of the family ~ di 

ii) is any family of continuous functions on E, generating the topology
on E and closed under addition, then the Skorokhod topology on D(E) is

generated by the fami l y ~ f f where, as previously,

Repeating the proofs from Sec. 2, one can obtain Theorems 2.1 and 2. 5
for D(R + : E).
Although it seems to be evident, we cannot prove that D(E) has the

property ~D~E> _ and only if ~D1~E) _ Here is a partial result
in this direction.

4.4. PROPOSITION. - Suppose that E is a linear topological space.
then the same is true for the space D(E).

P~oo~f: It is based on Lemma 2.2 iii) and uses the fact that the topo-
logy of D(E) is generated by a countable family { rn .

4 . 5 . REMARK. Let F c E be any subset of E. Then Dt(F) = D( [0, t ] : F)
is a subset of Dt(E). But Dt(F) can also be interpretated as a subset of
D(E) = D(R + : E), namely the set of those x E D(E) which take values
in F when restricted to [o, t ] : E F. The latter case will be used

below and in Sec. 5.

We end this section with tightness criteria in D(E).

4.6. THEOREM. - i) For E such as in Theorem 3.1, a family
{ of probability measures on is tight if’f the following two condi-
tions hold :

(4. 8) For each t > 0 > 0 Ls a subset K, c E such that

(4.9) The .f’amily ~ ,ui is ~-weakly tight.
ii) If the family ~ ,ui is tight, then it is relatively compact in the weak

topology..

5. THREE PARTICULAR CASES

Let E be a linear topological space. Denote by E’ the topological dual of E.
For the sake of brevity we introduce a special type of E-valued stochastic

processes.
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A weakly measurable stochastic process is a family X == (Xt )tER+ of

mappings Xt : (SZ, ~ , P) -~ E such that for each ye E’, the family
~ ~ Xt, y )> is a real stochastic process.

If a weakly measurable stochastic process X satisfies additionally:

a) for almost all cv E Q the trajectory

belongs to D(R + : E), .

b) the « weak distribution » of X, i. e. the probability measure induced
by X on (D(E), [ y E E’)), admits a unique extension to a probability
measure on 

then we say that X has a distribution on D(E).
A family { of weakly measurable stochastic processes with dis-

tributions on D(E) is weakly tight, if for each y E E’, the family of real sto-
chastic processes { ( Xi, y ~ is tight on D(R~). This definition of weak
tightness is just the E’-weak tightness of distributions of processes intro-
duced in Sec. 3.

I. E is a real separable Banach space.

In such a case the weak measurability of Xt : (Q, ~ ) -~ E implies the
Borel-measurability (see [2]) and a weakly measurable stochastic process
is a Borel-measurable mapping into D(E)-see Corollary 2.4. Hence its
« weak distribution » is simply its distribution.

In limit theorems for Banach space-valued random variables the « linea-
rized » notion of tightness, called flat concentration, is more useful than
the usual tightness. We shall adopt this notion to Skorokhod spaces in
order to get weak tightness criteria for stochastic processes in Banach spaces.

Let [ [ . [ be a norm on E. For any subset denotes the (closed)
s-neighbourhood of F :

5.1. THEOREM. - The family ~ ~~ of stochastic processes with

distributions on D(E) is tight i.f’and only fit is weakly tight and flatly concen-
trated, i. e. for every t > 0 and E > 0 there exists a finite-dimensional

subspace F c E such that

Proof - Given Theorem 4. 6, the proof of Theorem 5 .1 follows comple-
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tely along the line of the proof of Theorem 4. 5 on p. 24 of [2 ]. Indeed,
it suffices to check only that weak tightness and flat concentration imply
(4. 8), i. e.

for some compact c E.

Let be finite-dimensional subspaces of E such that

Moreover, let r > 0 be chosen so great, that (by weak tightness)

E Dt( ~ - r, ~’ ~)) _ E 1( ~ - r, ~’ ~))) > 1- E/2m, i 

where ( yl, y2, .. -, E’ satisfy

Set

and observe that by Lemmas 4 . 4 and 4 . 3, p. 23-24 of [2], the set Kt,£
is compact. Moreover,

since Dt(Aj) = Dt(Aj) for arbitrary 

From the proof it is clear that in the sufficiency part of Theorem 5.1,
the assumption on weak (or, more precisely, E’-weak) tightness may be
replaced by D-weak tightness, where D is an arbitrary total and closed
under addition subset of E’.

5.2. COROLLARY. - Let H be a separable Hilbert space with the inner
product ~ . , . ~. For an orthonormal basis ~ ek in H, define the function 

Let D be a total and closed under addition subset of H.
Then the sequence {Xn}n~N of stochastic processes with trajectories in

D(H) is tight iff it is D-weakly tight and for every ~ > 0 and t > 0

lim lim sup > E for some s, 0  s  t) -~ . o . /
N ~ so n ~ o0
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II. E is the topological dual of a Frechet nuclear space.

Here we are going to look at Mitoma’s result [9] from our general point
of view.

Let C be a Frechet nuclear space (see [11 ]).
Let )) . [ [ 1  I I . I I 2 c ... be an increasing sequence of Hilbertian semi-

norms defining the topology on C. Denote by (03A6p,~.~p) the Hilbert space

arising by completion of the quotient space D/~ . . [ [ p and by (~-p, ~ . . ( I - p)
the topological dual of After obvious identification, is

a subset of ~’ and C’ == [ J ~’_ p.
pem

D’ will be always equipped with the strong topology /3 (hence (D~)’ ~ 0
by reflexibility of c~). Note that the topology induced from D’ onto 
is strictly weaker than the Hilbert topology (~’_ p, [ [ . [ [ _ p). But on compact
subsets of (c~’_ p, [ [ . [ [ _ p) both topologies coincide.
Moreover, for every m there exists n > m such that the canonical

mapping in,m : ~n -~ is nuclear. Hence the conjugate imbedding

is also nuclear. We will use this fact in the proof of

5 . 3 . PROPOSITION. - i) For each t E R+ there exists a decomposition

where for each n, Kn is compact both in ~~ and in (~’_ p, ~ ~ . ( ~ _ p) ~ for some
p = p(n) (i. e. an element x E D(~’) is « locally Hilbertian » ).

ii) ~’ has the property (2.3~, i. e. ~D1~~.~ _ 
By Proposition 4.4 also ~D~~.~ _ 

Proof Let x E Dt(~’). For each s E [0, t ], x(s) is a continuous linear
functional on the complete metric space ~. The family ~ x(s) ~ s E [0, t ] ~
is pointwisely bounded

hence by the Banach-Steinhaus Theorem, it is equicontinuous on ~, i. e.

there exists m and R > 0 such that
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or

Hence each x E belongs to a set of the form

and

Let m be fixed. There axists n > m such that the identity imbedding 
(O’-~J! . . -~ . II-n) is nuclear, hence Km.N as an image of
the bounded set under compact operator is pre-compact in (~’_ n, ~ ~ - ~ C - n).
The part ii ) follows then by Corollary 2 . 6 (all compact subsets of D’

are metrisable, since the space C separates points in D~ and is separable
itself)..
Note that by similar arguments one can prove Borel-measurability of

weakly measurable stochastic process with values in D’.

5.4. REMARK. - In the proof of Proposition 5.3 we have used the
compactness of the operators im,n: 03A6n ~ 03A6m only. In the sequel the nuclea-
rity of imn is unavoidable.

5 . 5 . THEOREM (Mitoma [9 ]). - A of’ ~ro-
cesses in D(03A6’) is tight if and only if it is weakly (1. e. 

Proof - By Theorem 4. 6 and the compactness of ~’-m -~ 
it suffices to prove only that for each 8 > 0 and t > 0 there exists 
and Ne ~I such that 

_

E Dt(Km,N)) = P( sup II Xi(s) N) > 1 - ~ , 
i

provided the family is weakly tight. But we cannot make it better than
Mitoma [9 ] did (see also Fouque [5 ]).

III. E is the topological dual of the strict inductive limit
of a sequence of Frechet nuclear spaces.

Let 03A6 be the strict inductive limit of a sequence {03A6n}n~N of Frechet
nuclear space. Then !)’ is isomorphic with a subspace of the product

space (see [11 ]). From this representation of ~’, Corollary 2. 8
nE~J

and Theorem 2 .1 i ) one can derive the equality ~D~~.~ _ 
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Moreover, it follows from the previous case, that any 03A6’-valued weakly
measurable stochastic process is a Borel-measurable stochastic process.

Suppose that a family { ~j of stochastic processes with distribu-

tions on D(~’) is weakly tight.

Let ~n -~ c~~ be the natural projection, j E (~. By Theorem 5 . 5,
nEN

the family ~ ~~ o is tight in for each j E i. e. for each £ > 0,
t > 0 and j e ~I there is a compact K~ c such that

Hence we have for every t]

Now, applying Theorem 4.6 we get

5.6. THEOREM (Fouque [5 ]). - Tightness in D(~’) is equivalent to
W-weak tightness..
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