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ABSTRACT. — Let E be a locally convex Hausdorff space, H;, H, be
two linear subspaces of E and u,, p, be two probability measures on E.
We prove that if y; is H;-quasi-invariant and H;-ergodic (i = 1, 2), then
U, and p, are equivalent or singular. If H; = H,, the result is well-known.
So our interest is in the case H; # H,. This result unifies many known
dichotomies such as the dichotomy for product measures on R®, Hajek-
Feldman’s dichotomy for Gaussian measures and Fernique’s dichotomy
for a product measure and a Gaussian measure.

REsUME. — Soit E un espace vectoriel localement convexe séparé.
Soient H;, H, deux sous-espaces vectoriels de E, et u;, u, deux mesures
probabilités sur E. Nous prouverons que si y; est H;-quasi-invariante et
H;-ergodique (i = 1, 2), alors p; et u, sont équivalentes ou singuliéres.
Si H; = H,, c’est bien connu. Notre intérét est donc au cas H, # H,.
Ce résultat unifie les dichotomies des mesures produits dans R*, de Hajek-
Feldman pour les mesures gaussiennes, et de Fernique pour la mesure
produit et la mesure gaussienne.
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1. INTRODUCTION

Let u, v be probability measures on a measurable space (Q, #). u is
said to be absolutely continuous with respect to v (denoted by u < v) if
wA) = 0, Ae # implies that y(A) = 0. p and v are equivalent (denoted
by u~v)if u<vand v < p puand v are singular (denoted by p L v) if
there exists A € 4 such that y(A) = 1 and w(A°) = 1.

Let H be a subset of a locally convex Hausdorff space E and u be a pro-
bability measure on C(E, E*) the cylindrical o-algebra generated by the
topological dual E*. We set 7,(y) = y + x. 7, (x € E) is C(E, E*)-measurable.
u is said to be H-quasi-invariant if it holds t,(u) ~ u for every xeH,
where 7,(u)(A) = (A — x), A € C(E, E¥). The H-quasi-invariant measure y
is said to be H-ergodic if y(AO(A — x)) = 0 for every x € H, then u(A) =0
or 1, where 0 denotes the symmetric difference.

The aim of this paper is to prove the following theorem.

THEOREM. — Let E be a locally convex Hausdorff space, H{, H, be two
linear subspaces of E, py, i, be two probability measures on C(E, E*) and
assume that p; is H;-quasi-invariant and Hi-ergodic (i = 1,2). Then p,
and p, are equivalent or singular.

If H, = H,, the result is well-known, for example see Skorohod [/3],
§23. So our interest is in the case H; # H,. This theorem unifies many
known dichotomies such as a) dichotomy for product measures on R*
(this is a special case of the Kakutani dichotomy), b) Hajek-Feldman’s
dichotomy, ¢) Fernique’s dichotomy, d) dichotomy for symmetric stable
measures with discrete Lévy measures, €) dichotomy for the case H; = H,
and f) Kanter’s dichotomy, see section 3.

2. DICHOTOMY
FOR QUASI-INVARIANT ERGODIC MEASURE

Let E be a locally convex Hausdorff space and p be a probability measure
on C(E, E*). We set A, = { xeE; 1(u) ~ u }. A, is an additive subgroup
of E but not necessarily a linear space. Denote by AY the largest linear
subspace contained in A, that is, Al = {x€A,;txe A, for every teR }.

Let { x¥*} = E* be arbitrary but fixed countable subset. Consider the
o-subalgebra o/ = C(E, { x¥ } ) = C(E, E¥), the o-algebra generated by
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EQUIVALENT-SINGULAR DICHOTOMY 395

{ x¥}. For every x € E, the translation t1(t(y) = y + x) is &/ — /-measu-
rable. Let po be the restriction of u to </. For every x € A (that is, txe A,
for every t e R), we can define the one parameter group { Uf;teR } of
unitary operators on L%(sZ, ug) by

dtzx( #O)
duo

1/2
(U f)y) = [ (y)] fly —tx).

This one parameter group depends on the sequence { x¥ }.

LemMma 1. — Let {x¥} be fixed and «/ = C(E, { x} }) as above. Let
xeA} be also fixed. Then the one parameter group { Uy ; teR } on L*(Z, o)
is strongly continuous, that is, for every f € L3(s#, po),t — UFf e L3, po)
is continuous on R.

Proof. — Remark that ./ has a countable generator { C; }, that is, { C; }
forms an algebra of subsets and generates .«/. To prove that { Uy } is strongly
continuous on the separable Hilbert space L?(o, u,), it is sufficient to

show that for every f, ge L, o), t —» (U f, 2) =j(Ui‘f J»)g(y)duol y)

is Lebesgue measurable on R, since { Uy} is a one parameter unitary
group, see von Neumann [/0], Hewitt and Ross [5], (22.20).

Consider the transformation T,:R xE — R x E given by
Tdt, y) = (t, y + tx) = (t, 1.(y)). Ty is #(R) ® «/-measurable, where %(R)
is the Borel field of R. Moreover, if we put 1 be the Lebesgue measure
on R, then we have Ty(A ® uo) ~ 1 ® uo. In fact for every A e 4(R) ® «,

we have Ti(A ® po)(A) = Jnx(uo)(At)dA(t), where A, = {y; (1, y)eA}. So

it follows that T4 ® uo)(A) = 0 if and only if 7,(uo)(A,) = O for i-a.e. t,
and if and only if uo(A,) = O for J-a. e. t since tx e A, thatis A ® pi(A) = 0.
By the Radon-Nikodym theorem, there is a 4 ® u,-measurable function

a(t, y) such that 1 ® uo(T, 'A) =J a(t, y)d(A ® uo)t, y)forevery Ace B(R) ® .
A
For every Be 4(R) and Ce o/, we have

fﬂo( {y;y+txeC})dir) = f Ja(t, V)duo(y)dA(t) .
B B JC

Hence we have 7,(1o)(C) = po({ y;y + txeC}) = fo(t, Y)dpo(y) 4-a.e.
C
(the null set depends on C). Let { C;} be a countable generator of .</.
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396 Y. OKAZAKI

Then we can find a A-null set N = R such that for every ¢t € R\N, it holds

that 7, (uo)(C;) = J oft, y)due(y) for every i. So we obtain for every t € R\N,

Ci

T o) C) = Ja(t, y)duo(y) for every Ce .o/, since { C;} generates /. By
C

the uniqueness of the Radon-Nikodym derivative, it follows that for

every t € R\N, (dt,.(1o)/dpo)(y) = aft, y) p-a. e. (the p-null set depends on t).
Consequently for every te R\N and for every f, ge L%(, po),

(Ut g) = La(t, W21 (y — tx)g(y)dpo(y),

which implies that ¢ — (U7 f, g) is A-measurable since a(f, y) is 4 ® po-
measurable.

This proves the Lemma.

LeEMMA 2. — Suppose that x € AD. Then for every A e C(E, E*), it holds
that w(A N (A + tx)) —» u(A) ast — 0.

Proof. — We show that w(A6(A + tx)) » Oast — 0. By the definition
of the cylindrical o-algebra, there exists a sequence { x} } = E* such that
Aesd = C(E, {xF}) We set uo = | (the restriction) as before. Since
A + txe o, it is sufficient to show that uo(ABA + tx)) - O ast — 0.
We have

Ho(AB(A + tx))= | | 2a(¥) = xa(y — 1) *dpo(y)

§2||U:C(XA)_XA”2+2j[(dttx(.uo)/d.uo)(J’)l/ZXA(y—[x)_XA(y—tx)PdﬂO()’)
<2||Uf(xa) — 2al?+2||Uf1—1|>? > 0 as t - 0by Lemma 1,

where y, is the characteristic function of A and || || denotes the L2-norm.
This completes the proof.

Now we prove the main dichotomy theorem.

THEOREM. — Let E be a locally convex Hausdorff space and H,, H, be
two linear subspaces of E. Let 114, u, be two probability measures on C(E, E¥*)
such that y; is H;-quasi-invariant and H;-ergodic (i = 1, 2). Then y, and u,
are equivalent or singular.

Proof. — Since H; is linear, we have H; = A9, hence y; is AJ-ergodic.
If A2, = Ap,, then it is well-known that pu; ~ u, or u; L u, holds, since i

and u, have the same quasi-invariant subspace Aj, = AJ,, see for example
Skorohod [/3], 23. We prove that if A9, # Aj,, then u; and p, are singular.
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Suppose that A9, # A9, and p; and p, are not singular. Without loss of
generality we may assume that there exists x, € A) \A, (if not, consider
AJ)\AS, # ¢). Since xo¢ AD,, we can find a to€ R such that toxo ¢ A,,.
Put x = toxo, then we have 7,(u,) L p, since both t,(u,) and p, are A9,-
quasi-invariant and A9 -ergodic by the same subspace AJ,.

Since u; and p, are not singular, there exists A € C(E, E*) such that

#1(A) > 0, py(A) > 0 and
(1) H1 ~ Ua onA.
Since x € AS, and A}, is linear space, we have

) Bi ~ Tam(p1) forevery n=1,2, ...

Consider the translates t,,(u;), n = 1, 2, ... By the A9 -quasi-invariance

and Aﬂz-ergodicity, Tam(H2) ~ H2 OF Tup(ph2) L sty (n=1,2, .. .). M gon(z) ~ 2
for some N, then it follows that
Ba ~ Ton(H2) ~ Ton(Ton(B2)) = Taxn(B2) ~ -0 ~ Tl i2),

which contradicts to x¢ A,,. Thus we have
3) Mo L Tom(p2) forevery n=12, ...

By (1), we have
@ Tonl) ~ To(pz) oA+ for every n.
n

If we can show that u;(An(A + x/m)) >0 (by (1) it follows also
Uz(A N (A + x/m)) > 0)) for some m, then (2), (3) and (4) imply p; L u,
on A N (A + x/m) which contradicts to (1).

By Lemma 2, we have u;(An(A + x/n)) - p(A)>0 as n - oo.
So there exists m such that u (A n (A + x/m)) > 0 as desired.

This completes the proof.

Remark. — In the above theorem, if u; and u, are Radon probability
measures on the Borel field #(E), then the same dichotomy u; ~ u, or
U1 L p, holds. In fact, for two Radon probability measures uy, s, 4y ~ U
on C(E, E¥) implies that u; ~ u, on %(E), see Sato and Okazaki [I2].

3. APPLICATION

We shall point out that many well-known dichotomies are unified by
our result. The following dichotomies are known.
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a) Let u, v be probability measures on R equivalent to the Lebesgue
measure (leI)and p = ® p, v = ® v, be the product measures. By Kaku-
tani’s dichotomy [8], it follows that u ~ v or u L v. We remark that Kaku-
tani’s dichotomy is more general and it requires no linear structure.

b) Let E be a locally convex Hausdorff space and y, v be two Gaussian
measures on C(E, E*). Then Hajek and Feldman [2] [4] proved that
either 4 ~ v or u 1 v holds.

¢) Let R* be the countable product of real numbers. Let y; be a probability
measure on R equivalent to the Lebesgue measure and y = ® y; be the
product measure. Let v be arbitrary Gaussian measure on R%. Then
Fernique [3] proved that either 4 ~ v or u L v holds, answering the pro-
blem of Chatterji and Ramaswamy [/].

d) Let p, v be symmetric stable measures with discrete Lévy measure
on a separable Banach space E. Then it holds that u ~ v or u L v (this
result was informed in Janssen [7]). In general, a symmetric stable measure u

has the characteristic functional of the form exp (— j | {y, x* > |Pda( y)),
S

where 0 < p £ 2 and o (the Lévy measure) is a bounded measure on the
unit sphere S = {x;|| x| =1}, see Tortrat [I4]. If ¢ is concentrated
on a countable subset, then u is said to have discrete Lévy measure.

e) Let E be a locally convex Hausdorff space and H be a linear subspace
of E. Let u, v be H-quasi-invariant and H-ergodic Probability measures
on C(E, E*). Then it holds either u ~ v or u L v, see for example Sko-
rohod [13], 23.

f) Let Gy, G, be countable additive subgroups of R* and u;, u, be
two probability measures such that y; is G;-quasi-invariant and G;-ergodic,
i = 1, 2. Suppose also that y; is L(G;)-quasi-invariant where 1(G;) denotes
the linear hull of G;, i = 1, 2. Then Kanter [9] proved that either u; ~ u,
or py L u, holds.

Our dichotomy is a direct generalization of ¢) and f). But we have used
the dichotomy e) in the proof of our theorem. We observe the dichotomies
a), b), ¢) and d) from our viewpoints, and see that our dichotomy unifies
them.

In a), p and v are ® R-quasi-invariant and @ R-ergodic, where @ Ris

1 1

the direct sum of R, see Zinn [/5]. In the dichotomy b), the Gaussian
measures y and v are quasi-invariant and ergodic under the translations
of their reproducing kernel Hilbert spaces, for details we refer to Roza-
nov [/I]. In the Fernique’s dichotomy c¢), u (resp. v) is quasi-invariant
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and ergodic under the translation of the direct sum @ R (resp. the repro-

ducing kernel Hilbert space of v). Hence the dichotomies a), b) and c) are
derived by our Theorem.

We examine the dichotomy d). We shall see that u and v are quasi-
invariant and ergodic by suitable linear subspaces. Let { x; } be the discrete
support of the Lévy measure ¢ of p, a; = o({x;})> 0 and y; = a;x;.
Then the characteristic functional of y is given by exp (— =2 | { yi x* > |?),
x* e E* Let { fi(o)} be an independent identically distributed symmetric
p-stable random variables with the characteristic functional exp (— | t |?).

Then it follows thatJexp(i(Z’,?:lfi(w)yi, x*D)dP(w)=exp(—Zh=; [{yi, x* > 1P)

converges to the characteristic functional of y. So by Ito-Nisio’s theorem 61,
=", fiw)y; converges almost everywhere in E and the distribution of
T2, fiw)y; equals p. Let 4; be the p-stable measure on R with the charac-
teristic functional exp(— |t|?) and 1 = ® 4; be the product measure
on R®. Set T : R® — E by T(t,,) = =2 1t, ¥, Then we have A({ (t,) e R”;
$®_ t,yn converges in E}) =1 and the image T(4) coincides with p.
Since 4 is @ R-quasi-invariant and @ R-ergodic, see Zinn [14], it follows

easily rhat p is also T(@ R)-quasi- mvarlant and T((—B R)-ergodic. Thus the

dichotomy d) is a spec1al case of our Theorem.
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