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Analytic and sequential Feynman integrals
on abstract Wiener and Hilbert spaces,

and a Cameron-Martin formula
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ABSTRACT. - Sequential Feynman integrals are defined for classes of
functions on a Hilbert space and on an abstract Wiener space. A Cameron-
Martin formula is proved for analytic and sequential Feynman integrals
for the classes ~q(B) and ~q(H).
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RESUME. - Les integrales de Feynman sequentielles sont definies pour
des classes de fonctions sur un espace de Hilbert et sur un espace de Wiener

abstrait. Une formule de Cameron-Martin est démontrée pour des inte-

grales de Feynman analytiques et sequentielles, pour les classes Gq(B)
et ~q(H).
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324 G. KALLIANPUR, D. KANNAN AND R. L. KARANDIKAR

1. INTRODUCTION AND SUMMARY

The present paper is a continuation of the study of Feynman integrals
undertaken in Kallianpur and Bromley [11 ]. A major theme of that paper,
not taken up here, was the idea of using analytic continuation in several
complex variables to define Feynman integrals for different classes of
integrals. The purpose of the present work is two-fold : ( 1) To define sequen-
tial Feynman integrals by means of finite dimensional approximations
and (2) to establish the existence of both analytic and sequential Feynman
integrals for a wider class of integrals than the Fresnel class considered
in Kallianpur and Bromley or in Albeverio and H~egh-Krohn [11 ] [1 ].
The latter results will be collectively referred to as Cameron-Martin for-
mulas because of their formal similarity to problems of equivalence of
Gaussian measures. A special case of the Cameron-Martin formula was
given in [12 ]. Both the analytic and sequential Feynman integrals and the
Cameron-Martin formula will be investigated in this paper at the level
of generality adopted in [11 ], namely for classes of functionals on abstract
Wiener and abstract Hilbert spaces.
A special feature of the paper is the definition of the analytic Feynman

integral for classes of functions on a Hilbert space H. This is done by the
use of finitely additive Gauss measure on H and the introduction of the
« m-lifting » map. These ideas, together with preliminaries on abstract
Wiener spaces are discussed in Section S. Section 3 is devoted to theorems

on analytic Feynman integrals. All the results pertaining to sequential
Feynman integrals are given in Section 2. These include the Cameron-

Martin formula for integrands in ~q(H) and for the class ~q(B) of functio-
nals on abstract Wiener spaces.

In Section 5, we specialize the theory to Feynman path integrals and
briefly indicate how the solution of the Schrodinger equation can be

represented as a Feynman integral either on a Hilbert space of paths or
on the space of paths of the Wiener process. The results of Section 5 (except
possibly for subsections (d ) and (e) and the remarks in (e)) are not new and
are included as an application of the theory of the earlier sections and
also to enable the reader to appreciate the physical background that
initially led Feynman to his integral [6 ]. Moreover, while making Feyn-
man’s arguments rigorous in this section, we have tried to adhere as

closely as possible to his original approach as described in his book with
Hibbs ([7], Chapter 3, especially Sections 3 . 5, 3 . 6 and 3 .11 ).
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325FEYNMAN INTEGRALS

The relationship of our paper to other work in this area is discussed in
Section 6. Sequential definitions of the Feynman integral have appeared
in a very recent Memoir by Cameron and Storvick [3 ] and in papers by
Truman and Elworthy and Truman [1 S ] ] [5b]. These papers deal
with a Hilbert space of paths, the RKHS of the Wiener process and define
a sequential Feynman integral based on polygonal path approximations.
Cameron and Storvick confine their investigation essentially to what we
call the Fresnel class over C [0, t and hence their results cannot be applied
to any problem involving unbounded potentials. Elworthy and Truman,
on the other hand, give a version of the Cameron-Martin formula for their
sequential integral on Yft in their paper [5 a ]. Since this paper was written,
we have seen a copy of a recent paper by Elworthy and Truman, « Feynman
maps, Cameron-Martin formulas and anharmonic oscillators », [5 b] ]
kindly sent to us by the authors. In it, a Cameron-Martin formula is esta-
blished for Feynman path integrals. Theorems 3.2 and 4.2 of our paper
may be regarded as generalizations of this result. Our definition of the
sequential Feynman integral is also connected in some respects with
Tarski’s [7~] ] and is alluded to in Section 6.

As a final comment it may be useful to summarize some of the special
features of this paper:

(1) In the literature on Feynman integrals-and we refer here not to the
work of physicists but to theoretical investigations (e. g., in much of the work
of Cameron and his co-workers) Wiener measure and Wiener space
provide a basic setting for the analytic continuation procedure. The present
paper sheds some light on the role of the RKHS of Wiener space in the
various definitions of the Feynman integral. In fact, our work shows that
the basic definition is that of the integral on a Hilbert space (any separable,
real Hilbert space H) and that the part played by Wiener space and Wiener
measure is secondary. As a consequence, the use of a (finitely additive)
Gauss measure on Hilbert space enters the problem in a natural way and
provides a probabilistic setting for Albeverio and H~egh-Krohn’s theory.
The results of Sections 3 and 4 extend the latter to a larger class of inte-
grands, viz. to ~q(H). Definitions of analytic Feynman integrals for H are
given directly (via m-lifting maps). Section 4 provides a sequential Feynman
integral theory in the set-up of [1 ].

(2) The definition of the sequential integral is given in terms of arbitrary
sequences { Pn } of finite dimensional orthogonal projections converging
strongly to the identity in H. This generality makes the proofs of the main
theorems somewhat harder but has wider applicability even for the case

Vol. 21, n° 4-1985. 



326 G. KALLIANPUR, D. KANNAN AND R. L. KARANDIKAR

H = :1ft, the RKHS of the Wiener process over C[0, t ]. For example, in
the latter case, it makes it possible for us to rigorously establish the Feynman
integral also via approximation by finite Fourier sums. To the best of our
knowledge this approach, already known to Feynman ([7], p. 71-73), has
not received as much attention in the mathematical literature as his other

idea, viz. analytic continuation.
(3) The work of the present paper shows that the Feynman integral

can be obtained no matter how it is defined, by means of a very general,
single limit finite dimensional approximation procedure, set forth in Theo-
rem 4. 3.

2. PRELIMINARIES: ABSTRACT WIENER SPACES

AND m-LIFTING MAPS

The basic notions of abstract Wiener space, measurable norm and « m-

lifting » map are due to L. Gross (see [8 ] and the references given there).
We briefly summarize them below for the reader’s convenience.

Let H be a real separable infinite dimensional Hilbert space with inner
product ( . , . ) and norm ( . I. Let * be the set of all orthogonal projections
on H with finite dimensional range. For let

and

A cylinder measure is a finitely additive nonnegative measure on (H, ~)
such that its restriction to is countably additive for all P E ~. The cano-
nical Gauss measure m on H is the cylinder measure on (H, ~) characterized

by

Let )) . )) be a measurable norm on H, i. e. for every E > 0, there exists

Po such that for all P 1 Po, P E ~, we have

It can be shown that H is not complete with respect to )) . ‘~. (See [~3 ]).
Let B denote the completion of H under ( ~ . II and let i denote the natural

injection. The adjoint operator i * maps the strong dual B* continuously,

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



327FEYNMAN INTEGRALS

one-to-one, onto a dense subspace of H* (which is identified with H).
By a well known result of Gross, the induced measure on the cylinder
sets in B is indeed countably additive and hence extends to a countably
additive measure v on ~-the Borel (-field on B. The pair (H, B) is called
an abstract Wiener space and v is called the abstract Wiener measure.

with the inner product

then the uniform norm on H is measurable and in this case B is Co [0,1 ]
and v is the classical Wiener measure on Co [0, 1 ]. The concept of measu-
rable norm and abstract Wiener space is due to Gross. See Kuo [13 for
forther details.

We will briefly describe the integration theory on (H, ~, m). We now
fix a CONS { of H, such that ej E B*, for all j. For h E H, x E B, let

Then L is a representative of the weak distribution corresponding to m i. e.,
for h2, ..., hk E H and A a Borel set in f~k,

For a proof that (2. 3) holds, see [11 ]. For a cylinder function f on H
given by -

where hi E H and § is a complex valued Borel function on (l~k, we denote
by R( f ) the random variable x) ~’, ..., x) ~ ) on (B, ~, v). We
extend this mapping as follows:

DEFINITION. - Let ~, m) be the class of complex valued continuous
functions f on H such that the (Pl  P2 if

Vol. 21, n° 4-1985.



328 G. KALLIANPUR, D. KANNAN AND R. L. KARANDIKAR

Range Range P~) is Cauchy in v-probability. Further, for f ~, m),
let

The mapping R will be called an « m-lifting ».

DEFINITION. - Let

and for f E m) and C define

REMARK 1. In the above definition we have taken (B, ~, v) as the
« representation space » for the weak distribution L and for the m-lifting.
Other linear probability spaces can also be chosen leading to Feynman
integrals of different classes of functionals. This point will be taken up
in Section 5.

We will now introduce the Fresnel class ~(H) of functions on H. This
class plays an important role in the later sections. Let ~.~(H) be the class
of all countably additive complex measures on Borel subsets of H with
finite absolute variation. Let ~(H) be the class of all functions f of the
form

for some J1 E F(H) is the Fresnel class of Albeverio and 
Krohn [7] ] and has been discussed also in [11 ].
The next result shows that ~ (H) ~ ~ 1 (H, ~, m) and gives a representa-

tion for R( f) for f E (H). For convenience we will use the following
notation throughout this paper. Let E be a vector space and let 0 : E -~ ct.
For ~. > 0, we denote by 0~ the function 8~(e) = 8(~,-1~2e), e E E.

LEMMA 2.1. - Let f E ff(H) be as in (2 . 7). Then f E ~ 1 (H, ~, m) and
R( f ) = F, where F is given by

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Further, for ~, > 0, we have

Proof 2014 Fix  E and let f be given by (2. 7). Continuity of f
follows from the Dominated Convergence Theorem for p. For 

From the definition of m-lifting for cylinder functions, it follows that

Using Fubini’s theorem

where ( denotes the total variation measure for p. For 6 > 0, let

Since the distribution of L(h - Ph) under v is normal with mean 0 and
variance Ih - Ph 2, we have from (2 .11 ) and (2.12),

Since - 0 as 0"  0 and u is bounded, the Dominated Convergence
Theorem for ( implies that

Hence

From the definition of (h, ~ ) ~, it follows that for ~, > 0,

Vol. 21, n° 4-1985.



330 G. KALLIANPUR, D. KANNAN AND R. L. KARANDIKAR

Hence

and

where ,u~, E is defined by

Hence invoking (2.14) for f ’~, ,u’~, F’~, we get

REMARK 2. - The same calculations as above also give us the following
result. If Pn 4. I, Pn E then

(Here I means Pn converges strongly to I).
We now wish to evaluate the m-lifting for a wider class of integrands

on H which correspond, in physical problems, to certain unbounded

potentials such as the anharmonic potential. In the latter context and
for the RKHS of the Wiener process the class was introduced by Elworthy
and Truman and also by Ph. Combe et al. [5 ] [4 ].
Our immediate aim is to establish Proposition 2.4.

LEMMA 2. 2. - Let A be a trace class operator on H and let Pn E f!]J be
such that Pn 4 I. denoting a trace norm, we have

This is a well known result. For a proof see Gross ( [8 ], Corollary 3 . 2).

LEMMA 2.3. - Let A be a self adjoint trace class operator with eigen-
values { 03B1k } and corresponding eigenfunctions { ek }. Let u(h) = (h, Ah),
h E H. Then, for all A > 0, uÀ(H, ~, m) and

where v is given by

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof - Since we can write A = A + - A- where A + and A- are self
adjoint, positive trace class operators, we have u(h) = u + (h) - u -(h) where
u ± (h) _ (h, A:th). It suffices therefore, to prove the result for a self adjoint,
positive, trace class operator A with eigenvalues { 03B1j } and corresponding
eigenfunctions { ej }. Accordingly set u(h) _ (h, Ah) = ~Bh~2 where the
self adjoint, Hilbert-Schmidt operator B is the square root of A. Now
Theorem 2 of Gross [8 ] can be applied to u and it follows that R(u) exists.
Furthermore, Corollary 5 . 3 of [8 ] implies that R(u) = lim in v-probability

R(u o Pn) where Pn E f!jJ is any sequence converging strongly to the identity.
Choosing Pn to be the orthogonal projection onto span { ei, ..., it is

easy to see that R(u) = v is given by (2.18). Note that the above limit is

finite v-a. s. since the series 03A303B1j converges. If we now fix 03BB > 0, we have

u).(h) = 1 03BB u(h) and so R(u03BB) =  03BB R(u) ==-!;. From the definition of x)

it follows that 1 v x - ) v03BB( ) x and we have R(u ) v . Q

We will henceforth use the more suggestive notation (x, Ax) ~ for vex).

PROPOSITION 2 . 4. - Let ,u E and A be a self adjoint trace class
operator on H. Let g, G be defined by

and

Then for ~, > 0, we have

and further if Pn 4 I, then

Proof of Proposition 2 . 4. - If ~, > 0, g (h) = e 2 u~~k~ , f ’ (h) and (2.21)
follows from the multiplicative property of R. Next for P E 

Vol. 21, n° 4-1985.
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and

where | 03BB| is the total variation of the complex-valued measure 03BB intro-
duced in Lemma 2.1. The integrals on the R. H. S. of (2. 23) converge to
zero as P ~ I along ~ by the dominated convergence theorem. We can,
in fact, replace P by Pn in (2. 23) and take the limit as Pn 4 I. This proves
(2 . 22).

3. ANALYTIC WIENER AND FEYNMAN INTEGRALS

a) Integrals on abstract Wiener space.

Here we recall the definition of analytic Wiener and Feynman integrals
given in [11 ] and obtain a « Cameron-Martin » type formula for the ana-
lytic Feynman integrals. (For a special case, see [12]).

DEFINITION. - Let F be a measurable complex-valued function on B
such that

(ii) There is an analytic function J~ on such
that JF(~,) = JF(~,) for real 1 > 0.
Then we will define J(F) = J~(z) and call J~ the analytic Wiener integral
of F over B with parameter z.

If lim J(F) exists for some q real, we will denote the value of this
z- - iq
zen

limit by I~(F) and define it to be the analytic Feynman integral of F over B
with parameter q.

If F and G are functions on B such that F = G a. s. v, then it does not

imply that JF(~,) = for all ~~ > 0 and thus F = G a. s. v does not

imply that (See [11 ] for a discussion on this point). These
considerations lead us to the definition of s-equivalence of functions on B.
Given two complex valued functions F and G on B, we say that F = G
s-almost surely if for each a > 0,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



333FEYNMAN INTEGRALS

It is easy to see that JF(~,) and JG(~,) exist simultaneously and coincide if
F = G s-a. s. For a function F on B, we will denote by [F ] the equivalence
class of functions G which are equal to F s-a. s.
We will now introduce the Fresnel class ~(B) of functions on B.

As is customary, we will identify a function with its s-equivalence class
and think of ~ (B) as a class of functions on B rather than as a class of

equivalence classes.

For /12 E let /11 * ,u2 denote the convolution of pi and ~c2.
Also let denote the total variation of  ~ M(H). Then is a Banach

algebra. If for given by (2 . 7), we define !! f 110 = ~ ~ ,u ( ~, then it
can be easily seen that ~ (H) is a Banach algebra and that the mapping
,u -~ f (/1, f related by (2.7)) is a Banach algebra isomorphism between

and ~(H).
It is shown in [11 ] [3 that ~(B) is also a Banach algebra with the norm

II F ( I o = !! ~ and the mapping  ~ F (,u, F related by (2 . 8)) is a Banach

algebra isomorphism.
The following result gives an evaluation of the analytic Wiener and

Feynman integrals for F E (B). This result is taken from [11 ] and the
short proof is included here for the sake of completeness.

THEOREM 3.1. - Let F E (B) be given by

Then for all z E SZ, the analytic Wiener integral ~a(F) exists and

The analytic Feynman integral I~(F) exists for all q q ~ 0 and

Vol. 21, n° 4-1985.
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Proof - By Fubini’s theorem, we have

Let

Then JF(~,) = JF(~,) for real 2 > 0 and by the dominated convergence

theorem, J(z) is continuous in Q - ( 0 ). For is ana-

lytic in Q so that Jc e 2z dz = 0 for every rectifiable closed curve C
in Q. ~ _ 1 for z E Q, a simple application ofFubini’s theorem
and Morera’s theorem give the analyticity of The proof of (3.3) is
immediate. 0

The classes Aq(H) and Aq(B). For a real number q, q ~ 0, we denote by
Aq(H) [resp. Aq(B) ] the class of functions g [resp. G given by (2 . 22) [resp.
(2 . 23) ] for some ~c E ~~(H) and some self adjoint, trace class operator A
on H such that the bounded inverse (I + 1/qA)-1 1 exists.

Recall that for a self adjoint trace class operator A with eigenvalues
( a~ ~, the Fredholm determinant of (I + A) (denoted by det (I + A)) is

defined by

and the Maslov index of (I + A) (denoted by ind (I + A)) is the number
of negative eigenvalues of (I + A), i. e.

With this notation, we have the following result on the analytic Feynman
integrals for the class ~q(B). (See also [12 ]).

THEOREM 3.2. (Cameron-Martin formula for analytic Feynman inte-

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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grals). - Let A be a self adjoint trace class operator on H such that
(I + 1/qA) is invertible (q q ~ 0) and let F E ~(B). Let

Then the analytic Feynman integral I~(G) exists and

where  is related to F by (3 .1). We will give a proof for q = 1. The proof in
the general case is similar.

Proof. Let e~ be the eigenfunctions and the eigenvalues of A. Let
~~ _ (ej, x) ~ and hj == h). Clearly,  oo a. s. and hence we have

Now,

since (~~) is a sequence of independent standard normal random variables
on (B, v). To evaluate the infinite product, use the fact if Re b > 0 and
c is real, then

In this formula and in the sequel, for a complex number z = r real

positive - n  0  n, Zl/2 will denote the number .~eie~2, where ~/r is
positive square root of r. Using (3.13) in (3.12), we get

Observe that since A is trace class, L  oo and hence the infinite

product and series appearing in (3.14) converge absolutely.

Vol. 2i, n° 4-1985.
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By renumbering the a~ if necessary, assume 1 + a~  0 for j =1, 2, ...,
m = Ind (I + A) and (1 + a~) Choose 6 > 0 such that

[ - 1 - 6, - 1 + 03B4] for all j. This can be done because 03B1j ~ - 1

for all j and 00. Let

For z E Q’, let

and

We will first show that Ai, A~ A3 are continuous functions on Q’ and

analytic in Q.
Since w ~ (w)1/2 is an analytic function on ¢’ = :r>0, -7r07r}

and for z e Q’, z, z - e Ai(z) is continuous on Q’ and analytic on Q.

Now, let 1 + = 1 - 2014~ 
~~~ 

for > ~ and

It is easy to see that for some constant Ko, we have

Since £§l= i ( (  oJ, ) ( - 0 and hence for fixed ro, there exists a jo

such that for j > jo, z e we have | i03B1j z| ~ l/2 and hence

for Thus, I converges uniformly on ~2~0.
Since Q’ _ ~ r 2SZr, this implies that

is continuous on Q’ and analytic in Q.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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As for A3(z), first observe that for h E H fixed, the series

converges uniformly on for all ro > 1 and hence for all h E H, z)
is continuous on Q’ and analytic in Q. Also, it is easy to see

that Re z)) ~ 0. The dominated convergence theorem now implies
that A3(z) is continuous on Q’ and Morera’s theorem along with Fubini’s
theorem shows that A3(z) is analytic in Q.

Thus, = Ai(z). A2(z). A3(z) is continuous on Q’ and analytic in Q.
It is easy to see that JG(~,) = JG(~,) for real À > 0 and hence (by definition)
Ia(G) exists and

Now,

and

Vol. 21, n° 4-1985.
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Thus,

b) Integrals on Hilbert space.

We now define analytic Feynman integrals for functions on H. Suppose
f : H ~ (~ is such that for all real A > 0, m). For real
~ > 0, let

DEFINITION. - Let f be such that there exists an analytic function 
on Q such that K f(~,) = K f(~?~) for real ~, > 0. Then we define K f(z) to be
the analytic Gauss integral of f over H with parameter z and denote it
by Yl(f).

Further, if for q real, the limit

exists, we define to be the analytic Feynman integral of f over H
with parameter q.

REMARK 3. - Suppose f is such that there exists an F : with
the property

for all real ~, > 0. Then, it is easy to see that for all A > 0,

and hence I~(F) exists if and only if exists and in that case both are

equal.
Now Lemma 2.1, Theorem 3.1 an4 Remark 3 give us the following

results.

THEOREM 3. 3. - Let f E ~(H) be given by (2. 7). Then for z E Q, 
exists and

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Further, for all q 0, exists and

Also, Remark 3, Proposition 2.4 and Theorem 2.2 yield the Cameron-
Martin formula for g E ~R(H).

THEOREM 3 . 4. (Cameron-Martin formula). - Let ,u E and let A

be a self adjoint trace class operator such that I + - A exists, (q E R,
q ~ 0). Let B q

Then exists and is given by

4. SEQUENTIAL FEYNMAN INTEGRAL

a) On Hilbert space.

In this section, we define the sequential Feynman integral and prove
an analogue of Theorem 3.4 (Cameron-Martin formula) for the same.

Let f : H -~ (~ be such that for all P E ~, for all real À > 0,

where m = dim PH and (e i, ..., is an orthonormal basis for PH and

then for z ~ 03A9 define

Observe that (4 .1 ) implies that the integral appearing in (4 . 2) is a proper
integral.

Vol. 21, n° 4-1985.
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DEFINITION. - Let f satisfy (4.1) for all A > 0 and Let q ~ 0
be a real number. Suppose that

exists for all zn - - iq, zn E Q and for all Pn -4 I, Pn E ~. Then we define
the limit, easily seen to be independent of { z~ }, { Pn }, to be the sequential
Feynman integral of f with parameter q and denote it by 

REMARK 4. - It is easy to see that (4.1) is equivalent to

and further that J f(~,, P) = Also, Morera’s theorem and Fubini’s
theorem imply that if (4.1) holds for all ,1 > 0, P) is analytic on Q
and thus

So, the sequential Feynman integral can equivalently be defined as

iq, zn E Q, Pn 4 I, if the limit in (4 . 4) exists for all such { zn ~,

REMARK 5. - The sequential Feynman integral can be regarded
as an integral of the function with respect to a « uniform » (com-
plex valued) measure ~, normalized such that the integral of is 1.
Of course, such a measure does not exist and hence this indirect definition.

Many authors prefer the notation (or some variant of

this) for In physical problems, it is useful to think of 

as « »

We now show the existence of Ii for the classes ~(H) and ~q(H) and
obtain the Cameron-Martin formula for the sequential integral.

THEOREM 4 .1. - Let f E ~(H). Then for q ~ 0, exists and is equal
to 

where f is given by (2.7).

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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Proof - Let P. Let ,u" = Pn- 1. Then

and hence by Remark 4 above and Theorem 3. 3, for z ~ 03A9

Now, if zn - - iq, zn E Q ; then Re Zn  0, and hence by the dominated
convergence theorem,

Thus exists and (4. 5) holds. D

THEOREM 4 . 2 (Cameron-Martin formula). - Let gEq(H) be given by

where A is a self adjoint, trace class operator on H such that (I + q A )is invertible and f E .~ (H) is of the form ~ ~ ~

Then If(g) exists, equals and has the value

Proof - We will prove the case q = 1. The proof for general q is similar.
Let Pn -4 I. Let An = PnAPn, /In = Then

nOw if
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where are the eigenvalues and ej the eigenfunctions of Am then proceeding
as in the proof of Theorem 3.2, it is easily seen

Fix Zn -~ - l, Zn E Q. Then

where

and

We will now show that an, bn have limits and evaluate them.
Let a J be the eigenvalues of A, enumerated such that 1 + Bi.j  0 for

j = 1, ..., m ; 1 + a~ > 0 for j > m + 1 and m = ind (I + A). (Recall that
1 + a; ~ 0 for all j, as I + A is invertible.) Since An  A is trace norm,
we can rearrange {03B1nj}, j = 1, ..., kn such that

Also, An  A in trace norm implies i. e.

We claim that (4 .17) and (4 .1$) imply that

For this write
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and use dominated convergence theorem and (4.17) to get

Now, (4.18), (4.20) and (4.21) imply (4.19). Using usual arguments it

can be shown that (4.19) implies

Now write

where

(Here we have used that if Re z > 0, Re z2 > 0, then (Z 1 Z2)1 /2 = z i~2 . z2/2.)
Now, (4.17), zn -~ - and ( -~ 0 implies that there exist no, jo such

that for n > neo, 1 2 jo,

and hence for n >_ jo,

where Ki, K2 are constants such that

and

Now (4.25) and (4.22) give
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Also, (4.28) and the inequality

imply

Now, (4.29) and the usual arguments give

where

m~ ~1 + a~) ~ 0 and thus

and for j > m, (1 + «~) > 0 and thus

From (4 . 23), (4 . 30), (4.31) and (4.32) we have

For h ~ H and n > 1, let

so that

We claim that for all h E H,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



345FEYNMAN INTEGRALS

To see this, let

Now,

as n - oo, since zn --~ - i. In fact in view of (4.24), this limit is uniform
in j. Let LHS of (4.35) be less than En for all j, where En - 0. Then

Also, An  A in trace class implies that

in trace class (see Lemma XI. 9.15, Dunford and Schwartz [16 ]) and
hence - ql(h). This and (4. 36) imply (4. 34). Since Zn E Q, it is easily
seen that

and hence

Thus, from the dominated convergence theorem and (4.34),

Now, (4. 33) and (4. 38) imply that Pn) converges to the RHS in (4.11).
Thus, I;(g) exists and (4.11) holds. Also, in view of (3 . 28), = D
We now consider sequential Feynman integrals.

b ) On abstract Wiener space.

Suppose F : is such that
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for some f E c!.f(H, r:ø, m). For P E ~, define Fp by

By the definition of the R-mapping for cylindrical functions, it can be
checked that

Now, FP converges in v-probability to F~ and thus for each ~,, ~ is a
finite dimensional approximation to F~. Suppose that the analytic Wiener
integral exists for all P E f!JJ and further assume that for all zn E Q,
zn - - iq, (q ~ 0) and for all I, Pn E ~, the limit

exists. Then we define Iq(F) to be the sequential Feynman integral of F
with parameter q.

It is easy to see in view of Remark 4 that

and hence Iq(F) exists if and only if exists (where F, f are related by
(4.39)) and then both are equal.

Thus, Lemma 2 .1 and Theorem 4 .1 imply that for F E (B), Iq(F)
exists and is equal to I~(F). Also Proposition 2.4 and Theorem 4.2 imply
that for G E ~q(B), Iq(G) exists and is equal to I~(G).

REMARK 6. - The equality of the sequential and analytic Feynman
integrals can be viewed as an approximation result for the analytic Feynman
integral in the following sense: Let g E ~q(H), zn E Q, zn - - iq and

I. Then

Similarly, for G E ~(B) given by (2.21) and Pn as above let Gn be defined by

Then, for zn ~ 2014 iq, zn ~ 03A9 we have

In (4. 43), Pn) can be evaluated explicitly as we have seen already.
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Using these observations, we can give a formula for analytic Feynman
integrals for the % class involving a single limit and proper integrals.
We state this result as a theorem for future reference.

THEOREM 4. 3. - Let g e and G e be given by (2.22) and (2.23)
respectively. be any complete orthonormal basis in H and let
zn E Q be such that zn --~ - iq (say zn = - iq + 1/n). Then

From now on, we will drop the suffix « a » and « s » from Ia and If when
the integrands belong to the class ~ or ~q.

5. APPLICATIONS TO FEYNMAN PATH INTEGRALS

a) Feynman path integrals and the Schrodinger equation.

Feynman’s fundamental idea was to show that the solution of the Schro-
dinger equation of Quantum Mechanics (for a single particle of mass m)

can be expressed as

where the integral is carried over a suitable space of paths and ~(y) is a
uniform « measure » on the space of paths normalized so that

In (5.1) above, A is the Laplacian, h = h where h is Planck’s constant
and V is a suitable potential. 

~’~ 
>

For simplicity, let us consider the one dimensional case. In (5.2), let us
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write X(s) = y(t - s) - x, so that X(0) = 0 and y(s) = X(t - s) + x), to get

Assuming that the « paths » y have finite kinetic energy, we get that X E ~t,
where Rt is the real separable Hilbert space of functions X : [0, t ] ~ R

with X ( ) 0 - 0, , X = dX E L2 [0, t ] with the inner product
ds

Then (5.2)’ can be rewritten as

and in view of Remark 4, the integral appearing in (5 . 2)’ can be regarded
as a Feynman integral with parameter q = m/h of the function gt,x defined by

over the Hilbert space Jet. Thus, Feynman’s idea can be expressed as
follows: The solution to the equation (5 .1) can be represented by

where gt,x is given by (5.4).
Let the potential V be given by

and let ø be given by

where ,u2 are complex Borel measures on R with bounded variation.
Assume that ~ E L2((~). Then, it can be shown that gt,x E (with
q = m/h) and t/1 defined by (5.5) is a (weak) solution of the Schrodinger
equation (5.1) (see [1 ] [15]). We will not give a proof of this assertion.
We just remark that t/1 defined by (5. 5) can be computed using our Cameron-
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Martin formula (Theorem 3 . 3 and 4 . 2) and then we can proceed as in [1 ]
or [15] ] to show that 03A8 is a solution to (5 .1).

In (5 . 7) above, the solution to the Schrodinger equation was represented
as an integral over the path space Rt-which happens to be the RKHS

of the Wiener measure. We now show that instead of we can take the

path space to be Co[0, t ]-the space of real valued continuous functions X

on [0, t ] with X(0) = 0.
For X E let !! X ~ ~ o = sup X(t)!. Then I I . I I o is a measurable norm

i

on ~t and the completion of ~t under !! . ( o is Co[0, t ]. (See Kuo [13 ]).
For satisfying (5.6) and (5.7), let

Then, it is easy to see that is a continuous function on Co [0, t ] for all
A > 0 and its restriction to ~t is Thus we have by Theorem 6. 3 in [13 ])

where R is the « m-lifting » (see Section 2). Hence, by Remark 3,

and thus the solution 03C8 to the Schrödinger equation can also be represented
as

In other words, the solution to the Schrodinger equation can be represented
as a Feynman integral of a functional over either /i or Co[0, t ].

In most of the physical literature on Feynman integrals, H is taken to
be Rt2014the RKHS of the standard Wiener process with paths X E C [0, t ]
with X(t) = 0. We have used Rt instead of so that the representation
(5.6)-(5.7) is similar to the Feynman-Kac formula.

b ) Feynman integrals on the RKHS of the pinned Wiener process
and the Green’s function for the Schrodinger equation. 

’

According to Feynman, the Green’s function G (or the fundamental
solution) for the Schrodinger equation (5.1) is given by
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and

where the action functional

L being the Lagrangian and r is the ensemble of all possible quantum
mechanical paths with finite kinetic energy and ~(X) is a « uniform measure »
on r with the normalization

Here r’ = {X E r : X(0) = a, X(t) = b} is not a linear space (unless
a = b = 0) and thus we cannot use our definition of Feynman integrals
directly for the integral appearing in (5.14). Ito [9] ] has given a proof
of (5.14) (for a class of potentials V) by directly defining Feynman integrals
over r’ via an isometric mapping between r’ and a Hilbert space.
We shall proceed somewhat differently and follow Feynman more closely.

If one regards the path X of a quantum mechanical particle which is at
position at a time z = 0 and at position b at time i = t as a random path
which deviates in a random fashion from the classical path X (i. e. the path
it would follow under the laws of classical mechanics), then it is natural
to write X = X + Y, Y being the random deviate and write the integral
in (5.14) as an integral over Y.

In his book [7] with Hibbs, Feynman has included a brief discussion
of this point of view with special emphasis on the case of the harmonic
potential.

Let Vex) = so that the action S(X) is given by

Since the classical path X satisfies

it can be easily checked, using integration by parts, that
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Since is a « uniform » measure, + Y) = Feynman
argues that

in view of (5.16), where ro = ~ Y E r : Y(0) = Y(t) = 0 ~. It is a simple
exercise to show that the first factor on the RHS in (5.17) equals

We now show that the second factor can be expressed as a Feynman
integral as defined in Sections 3 and 4, and can be evaluated using the
Cameron-Martin formula (Theorem 3.4 and 4.2) and that G given by
(5.13), (5.14) is the Green’s function for the harmonic oscillator.

Let Yf O,t be the RKHS of the pinned Wiener process on [o, t ] i. e.

= {Y E Yft : Y(t) = 0 ~. Then, as sets = Fo. Let

Then

We shall regard Feynman’s heuristic integral

as the integral given by 2nit - in view of Remark 5 and the
normalization (5.15) ~ ~

We now show that g E and evaluate Iq(g) (with q = m/h) using
Theorem 4 . 2. We adopt a method used by Ph. Combe et al. in [4 for
the case of ~t.

Define a bilinear form A on by

It is easy to see that j~ is continuous and symmetric and hence
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for a symmetric bounded operator A. It can be checked that the eigen-
03C92t2

values of A are 2 2 for n 
= 1, 2, ... and hence A is a trace class operator.

n~

Let A 1 - - qA. Then

and hence

For ~ (l + -Ai) = (I - A) is invertible and hence 
~ B q / ’ 

.

and by Theorem (4.2)

where the largest integer less than 2014. Finally combining (5.17)-where [03C9t 03C0] is the largest integer less than 03C9t 03C0. Finally combining 95.17)-

(5.22), we have

.. - 

~Zx2
which is the Green’s function for the Schrodingcr equation when v(x) = 2 .
(See [9 ]). The Maslov index does not appear in the expression (111) obtained

by Ito in [9]. This is because he considers values of t  03C0 03C9. The Maslov

index is also missing in the expression given in Feynman-Hibbs [7, Chap-
ter 3 ].
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c) Polygonal approximations on path space.

As pointed out earlier, one important consequence of the equality of
analytic and sequential integrals in % is that the analytic Feynman integral
can be written as a limit of finite dimensional integrals. When the under-
lying Hilbert space is these approximating integrals can be taken to
be integrals over « polygonal paths ».

Let us fix a partition IIk = {0  t i  ... 
= t ~ of [0; t and

let .

Then it is easily seen that for i ~ j, 03C6ki and 03C6kj are orthogonal and |03C6ki| = 1,
i = 1, ..., mk. Let Pk denote the orthogonal projection onto span

(~k 1~ ..., ~). Then it is easily seen that for X E Yft

which is the usual polygonal approximation of X for the partition ~.
It can be checked that if = sup t~ - ( tends to zero as k -~ oo,

j

then pk 4 I. Let us fix such a double sequence { t~ }.
Then for g E we have by the definition of the sequential integral,

where zk E Q, zk --~ - iq.
Here, is a polygonal path which is equal to E~ -1 ~~(t J - ~ ~ ) 1 ~2

at t and linear elsewhere. Thus, for g E ~q(~t), the Feynman integral
of g can be obtained as the limit of « proper » integrals over polygonal
paths. The same is true for g E ~q(~o,t) as Pk given by (5 . 25) is also an
Vol. 21, n° 4-1985.
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orthogonal projection on Jfo,f. Of course, in this case Jfo,f and we
have to choose a different basis for 

d) Fourier series approximation of the Feynman path integrals.

In the sequential path integrals defined by Cameron and Storvick and
by Elworthy and Truman [3] ] [5] ] only the sequence of projections on
polygonal paths on or /i are considered (see (b)). Theorem 4. 3 enables
us to choose other sequences { that lead to interesting approximations.
For example, fix the complete orthonormal system { en }, where

2t n~ci

en(i) = - 
sin 
-, 

in and define Pn to be the orthogonal projection

with range, span { el, ..., In view of Theorem 4 . 3, for any g E 

Iq(g) can be calculated using ( Pn ~. With this choice of ( Pn ~, Theorem 4. 3
makes rigorous Feynman’s ideas of an alternative method of evaluating
path integrals using « Fourier series » (see [7 ], page 71 where the integrand g
of (b) is considered). 

"

e) Remarks on the m-lifting approach.

In Section 2, the m-lifting R( f ) has been defined as a random variable
on the abstract Wiener space B associated with a measurable norm II . I)
on H. It will be recalled that R has been defined in terms of (h, x) ~ which
itself has been defined to be a Gaussian random variable on (B, v) with
zero mean and variance I h 2.

Besides the examples of (H, B, v) already considered one could take (i)
B = ] and v to be a general Gaussian Markov process and (ii) B to
be the space of continuous functions x(i 1, i2), (z l, i2) E [0, t1 ] x [0, t2 ]
and v to be the 2-parameter Wiener measure (sometimes also called the
Yeh-Wiener process). It would appear that the former problem would lead
to Feynman integral representations of solutions of other types of Schro-

dinger-like equations. At present, we do not know of a physical motivation
for studying problem (ii) in detail.
We have defined m-lifting in such a way as to facilitate comparison of

our results on Feynman integrals for integrands on Hilbert space with

analogous results for classes of integrands on abstract Wiener space. Our
interest in abstract Wiener spaces as a « ground space » for functionals
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for which Feynman integrals can be defined is due principally to the
following reasons : (1) A great deal of effort has been devoted to the analytic
continuation approach based on Wiener integrals ; (2) The formal connec-
tion between Feynman’s representation of the solution to Schrodinger’s
equation and the so-called Feynman-Kac formula ; (3) The observation,
apparently due to Feynman (which might have inspired most of the Wiener
space approach) that the quantum mechanical paths may be compared
to the irregular paths of a particle performing Brownian motion.
The m-lifting approach seems to make clear, however, that the Hilbert

space is the basic path space rather than Wiener space of any sort. It is
possible, indeed to extend our definition of m-lifting to enable us to define
Feynman integrals for functionals of Gaussian white noise which may be
conceded to be even more « irregular » than the paths of Brownian motion.
We outline this procedure without going into details.
Take H = L2( f~ 1 ). The canonical Gauss measure on H is then called

Gaussian white noise. Let us write ( , )o for the inner product in H. Let
~ _ be the space of rapidly decreasing functions regarded as a
countably Hilbertian nuclear space with semi-norms such that

II y - ~ p= o f(l + u2)p 12du, (p = 0, 1, ... ), being the jth

order derivative of y.
Then !/’ the strong dual of ~ ’is also a nuclear space (but no longer

metrizable). For convenience let us write Q( y, y~) == ( y, y’)o for y, 
By the Minlos-Bochner theorem, there is a unique (countably additive)
Gaussian probability measure v with covariance kernel Q (the ’« white
noise » measure) on (~’, ~(~’)) where ~(~’) is the a-field generated by
the cylinder sets { x e V : [ ~ yi, x ~ , ... , ( ] E B }, B being a Borel
set in IRk, y 1, . - . , It is well known that ~ is ) . o-dense in 
and we have the following continuous imbedding ~ c L2(~) c ~’. For
any h E we now define (h, x) ~ exactly as was done in Section 2,
taking { ej } ~ F to be an orthonormal basis in L2(R) and ( x ) to the
evaluation of the functional x at e~. For any continuous, complex-
valued function f on the definition of R( f ) is now obvious with (B, v)
replaced by (9~, v). Thus the entire theory of analytic Feynman and sequen-
tial Feynman integrals can be transferred to functionals defined on (9~, v).
Theorems 3.1 and 3 . 2 immediately apply to classes ~ (~’) and ~~(~’)
whose definition is analogous to that of ~(B) and ~q(B) and the solution
to the Schrodinger equation can be represented as a Feynman integral
over ~’.
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6. CONNECTIONS WITH SOME RELATED WORK

1) Relationship to Cameron and Storvick’s papers.

We now turn to some recent work of Cameron and Storvick. In [2],
they have given a definition of the analytic Feynman integral on Co [a, b ],
the space of continuous functions x : [a, b ] --~ f~’’ vanishing at a. In their
latest paper [3 ], Cameron and Storvick have introduced a sequential
definition of the Feynman integral in apparently a more general setting
than [15 ]. The main result of [3 establishes the existence of this integral
for integrands belonging to two classes Sand S* which are closely related
to the class S of [2]. We shall now discuss in some detail the relationship
of Cameron and Storvick’s work with the approach and results of the
present paper. Before we do so, however, two general comments seem
to be in order: (i) The integrands in [3] are functions on domains contained
in Co [a, ~] ] or on the RKHS of v-dimensional Wiener process. Even for
this case, while the sequential integral defined by Cameron and Storvick
deals only with polygonal approximations, the application of our results
permits other kinds of finite dimensional approximations. One typical
and important special case of the latter, as pointed out in the preceding
section, leads to a rigorous justification of the « Fourier series » method
of approximation alluded to in Feynman and Hibbs. (ii) All the integrands
considered in [3 belong to the Fresnel class (as will be seen later) except
for an example of a cylinder function (see Sec. 2) which can be treated
easily in our set up. The Fresnel class cannot be used when unbounded
potentials are to be considered (see example of the harmonic potential
of the previous section). For this purpose, we need to consider the classes
~q(H) and ~R(B) for which a Cameron-Martin formula has been proved.
To relate their work with our present work, let us assume, for simplicity,

that v = 1 and [a, b ] _ [0, 1 ]. Let Ye be the RKHS of the Wiener measure
on Co [O, 1 ]. Then, as observed in Section 5, (i, Ye, Co [0, 1 ]) is an abstract
Wiener space (there, R was denoted by The analytic Feynman

integral, F(x)dx in the notation of [2 ] coincides with in our

notation for the choice (H, B) = Co [0, 1 ]). In fact, the definitions

themselves coincide. See Kallianpur and Bromley, and Johnson [77] ] [10 ]
for the relationship of this definition to that of Albeverio and 
Krohn [7] ] when F belongs to the Fresnel class.
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Let us begin by recalling Cameron and Storvick’s definition of sequential
integral, again for the case v = 1, [a, b] = [0, 1] ] for simplicity.
The sequential Feynman integral of a functional F on Co.[0, 1 ], denoted

by was defined in [3] as

where TIn = ~ 0  ti  ...  tmn = a sequence of partitions
of [0, 1 ] such that = I - 0 ; z" - - i,

and is the poly-

gonal path given by X(0, ç) = 0, 03A0n03BE) = 03BEj and linear in each
of the intervals t~~ ; 1  j - mn. (It is required that the lim in 6 .11
exists for all zn - - I, 0 and is independent of the sequences
~Zn~, ~II"~).

It is easy to see that for all TIm ç X(., ç) belongs to Yf and thus in (6 .1)
above, we can replace F by f, its restriction to Jf. Indeed, denoting by Pnn
the orthogonal projection on Jf given by (5.25), we have

Also, if (4)i, ..., ~m") is the orthogonal basis for given by (5 . 24),
then it is easy to see that

and

Thus, substituting ~~ _ (~~ - ~~ _ 1 ) . (t~ - t~ -1 ) -1 ~2 in (6.1) (with .~o = 0)
and recalling that f = F X(., IIn, ~) E ~, we get (using (6 . 2), (6 . 3)),
that the integral appearing on the RHS of (6.1) is P03A0n) (see (4.1)).
Thus their definition can be rewritten in our notations as
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if the limit exists for all zn -~ - i, ~ such that 0 and f = F ~~.
Thus it is clear that in the definition of the sequential integral of F, the
values of F outside Yf do not play any role. Also it is easy to see that

if the latter exists, where f == F ~~. These remarks show that the sequential
integral of Cameron-Storvick is really an integral over ~f and not over
Co [0, 1 ]. (The authors of [3 ] themselves seem to have realized this. See
note at the end of Section 3 and the counterexample in [3 ]).

In [3], Cameron and Storvick have shown the existence of and evaluated

the integral for F E S, where (in our notation)

As has been pointed out in Johnson [70] and Kallianpur-Bromley [~ ~ ],
the evaluation of this integral follows immediately upon observing that
S is, in fact, the Fresnel class

As regards the sequential integral, they have shown its existence for
F E S, where

It is clear that S essentially coincides with ~ (~) and the existence of
the sequential integral for F E S follows from our result (Theorem 4.1),
the proof of the latter being quite elementary and short. ,

In addition to S and S, Cameron and Storvick introduce yet another
class of integrands S*, the motivation for which seems to be to get a class
of functions F on C [0, 1 ] such that the restriction f of F to Jf contains
all the « information » about F (or in other words uniquely determines F)
so that even though their definition of the sequential integral involves
only f, the integral can be called « the integral of F ». The class S* is defined
as
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and

For F e S*, we have for all À > 0,

where f = F ~~ and thus for F e S*, we have

Thus, for F e S*, the Cameron-Storvick definition does give the « right »
answer, but that is because (6. 7) holds and the fact remains that their
definition of the sequential Feynman integral of F over Co [o, 1 ] really
defines the sequential Feynman integral of f = F ~~ over ~f.
We feel that though the analytic Feynman integral on C [0, 1 ] can be

defined without any reference to the RKHS Jf of the Wiener measure,
the abstract Wiener space structure (i, ~, C [o, 1 ]) and the m-lifting R
are crucial for the definition of a sequential Feynman integral over C [o, 1 ], 

’

as indeed they are for the general theory developed in this paper.

2) Elworthy and Truman [5].

These authors have given a sequential definition of the Feynman integral,
not for an abstract Hilbert space, but for the Hilbert space :1ft of paths.
They use polygonal projections Pn of the form (5.25). For a function f
on H, they first define the Feynman integral of the finite dimensional
functional f o Pm denoted as an appropriate improper integral
in and oscillatory integral in [5 ]. Then the Feynman integral of f,
(f) is defined as the limit (if it exists) of ~°~( f ) as --~ 0.

Their definition for the class ~1(H) can be stated in our notation as
follows :

and

The above definition involves a repeated limit and as a consequence does
not yield a formula like (4.46) that evaluates the Feynman integral as a
single limit of proper Lebesgue integrals.
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3) In [14]. Tarski has given a sequential definition for an abstract
Hilbert space which is closer in spirit to our sequential definition. His
definition can be roughly described in our notation as follows: If

and

exist, then define Iq(f) to be the Feynman integral. He states (6 . 8) in a
different form : i

where { Pn } belongs to a « determining » class. (6. 8)’ can easily be seen
to be equivalent to (6.8). However, this is not his precise definition. It is
more complicated, and it is such that the formula

is built into the definition.

. 

Observe that the limit in (6.8)’ is taken along increasing sequences { Pn ~
in a « determining class », and thus in the case when the underlying Hilbert
space is the space of paths Yet or the polygonal approximation to the
Feynman integral may not be valid. Even if the determining class consists
of all increasing sequences, the polygonal approximation will be valid
for only successively finer partitions.

Since Tarski’s definition also uses a repeated limit (see (6.8) and (6.9)
above) like that of Elworthy and Truman though in the reverse order-
the same remarks apply to Tarski’s definition as well.
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