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ABSTRACT. - Let E’ be the separable dual of a Banach space E, ff the
class of all non-empty convex, weak* compact subsets of E’. We prove
weak* a. s. convergence for ff-valued amarts of class (B) and for pramarts
such that a subsequence is Li-bounded. If the limit random variable takes
values in a separable subset of ff, then strong convergence obtains for
pramarts. The martingale case of our results was obtained under the same
assumptions by J. Neveu. Our proof uses Neveu’s sub-martingale lemma
in the subpramart form.

RESUME. - Soit E’ le dual, suppose separable, d’un espace de Banach E.
Soit ff la classe des parties convexes de E’ qui sont compactes pour la
topologie E). Nous demontrons la convergence presque sure pour
cette topologie des amarts de classe (B) a valeur dans ff, et des pramarts
tels qu’une sous-suite soit bornee. Si la variable aléatoire limite prend p. p.
ses valeurs dans une partie separable de ff, alors pour les pramarts on
obtient la convergence forte p. p. Le cas de martingales a été obtenu par
J. Neveu, et notre demonstration est basee sur une variante d’un lemme
démontré par Neveu pour sous-martingales positives.

Let E be a Banach space. E-valued weak sequential amarts of class (B)
converge weakly a. s. if E has the Radon-Nikodym property (RNP) and
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the dual E’ is separable [Brunel and Sucheston, 7]. E-valued Li-bounded
pramarts converge strongly a. s. if E itself is a separable dual [Frangos, 6 ].
Neveu [9] ] has proved the a. s. convergence of Li-bounded multivalued

martingales which take values in the class of non-empty, convex, weak*-
compact subsets of the separable dual E’ of a Banach space E. The present
work takes as a starting point the work of Neveu mentioned above. We
give here complete generalizations to classes of asymptotic martingales,
namely, amarts and pramarts. The theory of multivalued random variables
has been studied by Castaing-Valadier [2], Neveu [9] ] and Hiai-

Umegaki [7], among others.
First, we give some known definitions and results. In this paper we

assume that E’ (and hence E) is separable.
Let

E’ : K is non-empty, convex and weak*-compact ) .
Then X is precisely the class of all non-empty subsets of E’ which are con- .

vex, strongly closed and strongly bounded. This is straightforward appli-
cation of the Banach-Alaoglu theorem and the Uniform Boundedness
principle. Let Jf be the class of all continuous sublinear functionals

~ : E -~ (~. For a continuous sublinear map ~ on E, define

0394(03C6) = sup A sublinear map 03C6 : E ~ [R is continuous iff 0394(03C6)  ~.
Ilyll-1

For every define the map K -~ as follows:

Also, for every (~ in define the map ~ -~ K~, as follows :

The following lemma then is a consequence of the Hahn-Banach theorem.

LEMMA 1.1. - The maps K -~ ~(K, . ) K~ as defined above
are from aT to Jf and from Jf to aT respectively. Each of them is the inverse
of the other and hence each is a one-one and onto map.
For Ki, K2 in Jf, x 1 in Ki 1 and x2 in K2, we define the Hausdorffs

metric A as follows:

It can be checked that -
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315ASYMPTOTIC MARTINGALES

With this alternate definition for A(Ki, K2), it is easy to check that A)
is a complete metric space. In general aT need not be separable. In view
of lemma 1.1, let us introduce the following notation: For K in aT,
0(K) - 0(K, ~ 0 ~ ).

Let (Q, 3-, P) be a probability space. A map X from (Q, g-) to Jf is called
a multivalued random variable (m. r. v.) if for every y in E, the map
cv -~ y) is a real valued random variable. Let D be a fixed countable
dense subset of E. Since sup ~(X, y) it follows that if X is an m. r. v.,

yeD

A(X) is a real valued random variable. Moreover, due to the inequality
I Yl) - 03C6(X, y2) |  ~ y1 - y2 ~, it follows that X is an m. r. v.,
if (~(X, y) is measurable for all y in D.

An m. r. v. X is called integrable if A(X) is. It follows that if X is an inte-
grable m. r. v., then for each y in E, ~(X, y) is also integrable.
Suppose that X is an integrable m. r. v.. Then ~( y) = ] is a

continuous sublinear functional from E to R. Hence by lemma 1.1, there
is K in K such that 03C6(y) = 03C6(K, y). We define the expectation of the m. r. v.
X to be K, i. e.; E(X) = K. Thus E [cp(X, y)] = y) for y in E. The
following lemma has been proved by Neveu ([9], p. 3).

LEMMA 1. 2. - Let y - Z(., y) be a sublinear map from E to P) ;
such that E [ sup Z(., y) ]  oo. Then there exists an integrable m. r. v. X

~y~~1
such that (~(X, y) = Z( y), a. e., for every y in E.

Let % be a sub-6-field of % and let X be an m. r. v.. Define
Z( y) = E [~(X, y) ~ ]. Then the map y -~ Z( y) satisfies all the hypotheses
of lemma 1. 2. Hence there is an integrable m. r. v. Y such that ~(Y, y) = Z( y),
a. e. We define E(X ~ I rg) = Y. In that case, we have that

a. e., for y in E.
Let (Un)~n= 1 be a sequence of increasing sub-03C3-fields of U. We shall

assume that % is generated by ~ Un. Let T denote the class of simple
n=1 i

stopping times. (T, ) is a directed set filtering to the right, where  is
the usual order on T. A sequence of multivalued random variables (Xn)
such that each Xn is Un-measurable is called a multivalued process. For i
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n

in T, define Xz = ~ i}, where ~  n. A multivalued process ~n)
i= 1

is called (i) integrable, if for every n > 1, E [0(Xn) ]  oo, (it) L1-bounded,
if sup E [0(Xn) ]  oo and (iii) of class (B) if sup E [0(X~) ]  oo. We now

T

define various kinds of processes.

DEFINITION 2.1. An integrable multivalued process (Xn, 3"n) is called

(i) a martingale if E(Xn+ 1 I 3"n) = Xn, a. e., for every n 2 1.

(ii) an amart if the net converges in the A-metric, i. e., if there
is K in K such that lim K) = 0,

(iii) a w*-amart if there is K in aT such that for every y in E,

(iv) a pramart if slim 0394(X(03C3, E(X,) U03C3)) = 0,

(v) a w*-pramart if for every y in E, slim y) - y) - 0.

Here « slim » is an abbreviation for stochastic limit (limit in probability).
Clearly, an amart is a w*-amart and a pramart is a w*-pramart. A martin-
gale is both an amart and a pramart. There is an example ( [8 ], p. 123)
to show that an amart need not be a pramart even in the single valued
case. A pramart need not be an amart even in the real (single) valued case
as shown in ([8], p. 108). Finally a w*-amart is a w*-pramart. We now pro-
ceed to prove some convergence theorems for w*-amarts and pramarts.

THEOREM 2 . 2. - Suppose that (Xn) is a multivalued w*-amart of class (B).
Then there is an integrable m. r. v. X ~ such that lim y) = y),

. noo

for every y in E, outside of a null set independent of y.
First, we state a lemma which is a direct application of the maximal

inequality proved by Chacon and Sucheston ( [3 ], p. 56).

LEMMA 2. 3. - Let (Xn) be a multivalued process of class (B). Then for

any fixed a > 0, P( { sup 0(Xn) > a } ) _ - sup E [0(XT) ].
n a T

Proof Apply the maximal inequality ( [3 ], p. 56) to the real valued
process 
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Now consider a multivalued process of class (B) and for a fixed a > 0
define a stopping time 7 as follows:

Therefore, for a large enough a > 0, the processes (Xn " ~) and (Xn) coincide
except on a set of arbitrarily small probability. Let y = sup ~(X n " 6). On

n

~ ~  oo ~ , 0(Xn " ~)  0(X~) and hence Y ~ 0(X6). On ( 6 = oo ~ , a

for every n and thus Y  a. Moreover, on ( 6  oo ~ , lim 0(Xn " ~) = 0(X6).
Therefore, 

n~’ °°

Hence is a process such that sup 0(Xn ~ 6) E L 1. Thus we shall assume
n

that (Xn) itself is a process such that sup 0(Xn) E L 1.
n

Let (Xn, 3"n) be a multivalued w*-amart of class (B). For every fixed y
in E, the process y), ~n) is an Li-bounded real-valued amart. By the
real valued amart convergence theorem [4], there is Z(y, .) such that

Let } be a countable dense subset ofE. Since sup is in L~ there is
n

a set Qi, such that P(Qi) = 1 and for every 03C9 ~ 03A91, sup 0394(Xn(03C9))  oo

and lim ~,) = 
n

noo

Thus,

Since ~(X n(cc~), . ) is a sublinear map on E for every n, so is Z(., and
moreover.

Hence
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Thus, by lemma 1. 2, there is an m. r. v. X ~ such that

lim y) = Z( y, w) = y) for every y in E and every 03C9 ~ O2

where P(Q2) = 1.
Moreover,

This proves the theorem. Our next theorem is about the strong conver-
gence of multivalued pramarts. Real valued pramarts were introduced
by Millet and Sucheston in [8 ].

THEOREM 2.4. - (I) Let (Xn) be a multivalued w*-pramart such that
lim inf E [0(Xn)  oo. Then there exists an integrable m. r. v. X~ such
noo

that we have, for every y in E,

(The exceptional null set depends on y even in the single-valued case).
(ii) If moreover, (Xn) is an Li-bounded multivalued pramart such that

X ~ takes values a. s. in a separable subset of 3i, then we have that

Proof If (Xn) is a w*-pramart, then for every fixed y in E, y), ~n)
is a real valued pramart. Since

lim inf E y) + ] + lim inf E y) - ]  2 . ~ ~ lim inf E [0(Xn) ]  oo,
n -~ oo n -~ oo noo

by the real-valued pramart convergence theorem of Millet and Suches-
ton ( [8 ], p. 98) we have the existence of a real valued random variable Z( y)
such that for every y in E,

Now, ! (  lim 0(Xn). Hence, by Fatou’s lemma, we have
noo

E[sup From lemma 1. 2, it follows
~y~1

that there is an integrable m. r. v. Xoo such that

This proves (i). To prove (ii), we shall use a lemma by Egghe [5].
Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



319ASYMPTOTIC MARTINGALES

LEMMA 2. 5. - Let I be a counatble set. Suppose that for each i E I,
there is a process 1 satisfying the following conditions :

Then, for every i in I, there is Ui such that lim Uin = Ui, a. s. and moreover

Suppose now that (Xn) is an Li-bounded multivalued pramart. Since E is

separable, we can choose a countable set { yi : i E I } dense in the unit ball
of E. For Q in aT, define Uin = | 03C6(Xn, Yi) - Clearly U;, is Un-
measurable and non-negative.

Therefore,

Hence,

since (Xn) is a pramart.
Also,

- 

n

Hence, by this lemma,

That is,

Suppose now that X~ takes its values a. s. in a separable subset Jfo of Jf.
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Then there is a countable dense set {Qi : i >_ 1 ~ and a set Qo such that
P(Qo) = 1 and for every cc~ E Qo and every i > 1, we have that

Since { Qi : i > 1 ~ is dense in it follows that

for every 03C9 ~ 03A90 and every Q in 
Taking Q = we have that

This completes the proof of the theorem.
As a consequence of this theorem we obtain a theorem proved by

Neveu [9 ].

THEOREM 2.6. - Let (Xn, be an L 1- bounded martingale. Then there
is an m. r. v. X ~ such that ]  oo and lim y) _ y).

n-r

a. s., for every y E E. Moreover, if X~o takes its values a. s. in a separable
subset of aT, then we have

Proof - This follows from theorem 2.3 and the fact that a multivalued
martingale is a multivalued pramart.
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