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Boundary processes:

the calculus of processes diffusing on the boundary

by

Carl GRAHAM

ABSTRACT. — We extend the study in [/] of the transition proba-
bilities of boundary processes to the case of a process which diffuses on
the boundary. By means of the Malliavin Calculus, regularity is related
to the degree of degeneracy at the boundary of the diffusion operators;
we show interaction between the one acting within the domain and the
one on the boundary.

RisumE. — Nous étendons I’étude de [/] des probabilités de transition
de processus frontiére au cas d’un processus qui diffuse sur la frontiére
a laide du Calcul de Malliavin. La régularité est reliée au degré de dégéné-
rescence a la frontiére des opérateurs de diffusion ; nous montrons l'inter-
action dés deux opérateurs du domaine et de la frontiere.

INTRODUCTION

In [/], J.-M. Bismut investigates the regularity of the semi-groups of
the boundary processes of a certain class of reflecting or two-sided diffu-
sion processes. By means of the stochastic calculus of variations, this is
linked to the invertibility of a certain quadratic form (related to the diffu-
sion operators generating the process) and to the integrability of its inverse.
Then sufficient conditions on the generator of the Héormander form are
given, providing for a certain degeneracy at the boundary.

Here we extend the results to the case of a process which diffuses on
the boundary. We first perform the calculus in our new framework and
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74 C. GRAHAM

exhibit a quadratic form taking into account the diffusion operator on
the boundary. Then we extend results in [3] and give sufficient conditions
for the invertibility. For the integrability, we establish some estimates
and use them so as to give theorems under assumptions of a new kind.
Then we give a result showing that the operator on the boundary can
by itself induce regularity, and an example showing that this cannot be
done purely locally; the problems arise from the non-integrability of the
(multiplicative) inverse of the Brownian local time. Then we use the excur-
sion decomposition for the two-sided process; after extending an estimate
on its characteristic measure in order to have results under weaker assump-

tions, we show interaction between the diffusion operators on the boundary
and within the domain.

I. THE CALCULUS OF VARIATIONS

We study either a reflecting or a two-sided process (x, z) in R? x R.
We give some definitions:

Q=CR,,R", O =C(R,,R), the trajectory we Q (resp. w € Q') is
written w, = (w/, ..., w/") (resp. z,), (F,),»0 and (F),», are the usual filtra-
tions regularized and completed.

P is the Brownian measure on €, such that P(wy = 0) = 1.

In the reflecting case, P is the probability measure on Q' such that z
is a reflecting brownian motion; in the two-sided case, P;  is the regular
brownian measure. In both cases, P(z, = zo) = 1. We set P’ = Pg.

L is the local time at O of z, so normalized as to have L, = sup (— By)

O<s<t
where B,=| z,| — | zo| — L;isa Brownian motion. A, = inf { A>0,L,>1¢}.

Q=0 Y, P=PQ®P, F,=F ®F/, and the K”s are continuous
(F,)-martingales with ( K/ » = L, ( K, M > = 0if Me{ w', z, K*(j #k) }.
By theorem I1.7.3 in [5] there exists a g-dimensional brownian motion
(CY){<j<q independent of (z, w') with K/ = Cj.

All other notations are as in [/]; we furthermore recall that the X,’s
and Dj’s are R? valued vector fields, C* with bounded derivatives of all
orders, that d denotes the Stratonovitch differential, 6 the It differential,
and that if Y is a vector field on R% h a C* diffeomorphism R? — R%

oh\!
then (h*~1Y)(x) = (5—> Y(h(x)). The equations for the processes are
X

m

1.1 dx,=Xo(x,, z,)dt + Do(x,)d L, + Z Xi(x,, z,)dwi+
x(0)=x¢ i=1 j=1

D (x)dK]

Mn
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THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY 75
or

(I.2) dx,=1 Ze> O[Xo(xts z,)dt+ Xix,, Zt)dW;]

+1 z < O[Xf)(xu z,)dt 4+ Xi(x,, Zt)dwi] + Do(xt)d L+ Dj(xl‘)d Ktj
x(0)=x,.

Providing we replace (1.6) in [1] by
(I1.3) dx" = Dy(x)dt + D{x")dC/

X{0) = Xq

section 1 in [/] can be easily adapted to fit into our new framework, with
the possible exception of its subsection g) and the analytical and geo-
metrical interpretation it gives.

Thus, we can define in a proper way the reflecting process and its asso-
ciated flow, and then its boundary process. Naturally we can proceed in
a similar way for the two-sided process.

The purpose of [/] is to study the regularity of the semi-group of the
boundary process (A,, x,,); the necessity to mind the component A, appears
as soon as (1.5) in [/] (which can be derived in our new framework thanks
to the Burkholder-Davis-Gundy inequalities) and is exemplified in [/ ]-(1.37).
Naturally the effect of (1.5) in [/] is felt in the calculus of variations of
section 2 in [1]. This calculus brings forth the quadratic form (2.4) in [1],
and by means of the calculus of section 4 in [/] and of the results in har-
monic analysis recalled at the end of that section the regularity is linked
to the invertibility of this form and to the integrability of its inverse. We
shall now check that we can still perform the calculus of section 2 and
section 4 in [/], and exhibit a quadratic form in which the D;s, 1 <j < g,
appear. We recall that more general reflecting (or two-sided) processes
may be reduced to (I.1) (or I.2)). See section 1in [/]and IV.7,V.6in [5].

We shall follow [/], section 2, after having replaced its definition 2.1 by

DeFINITION I.1. — On Q, the process I'(w) with values in the linear
mappings from T#(R?) into T, (R?) is defined by

m

(1.4 peTi[RY) > Tywp = ZJ {p, 9F T Xilx0) > ¥ 1 Xi{xo)ds
4]

i=1

g
T
+ 2 J {p, ¥ 'Dfx0) > @F " 'Dfx0)d L.
0
j=1
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76 C. GRAHAM

It is convenient to consider I, as a quadratic form: we have

(1.5 <Ftp,p>=ZL<p,<0;‘“1X.»(xO)>2dS+ZJ {p, 0¥ 'D{(x0) Y2dL,. ‘
i=1 i=1

0p,\ "1t
Naturally, ¢*~ 'X(x,) = (ai) Xdx,, z,) and T, depends on (x,, z)

without this being explicitly stated.
In the two-sided case, we have

1.6) <Tip,p >=L 1250 <P, 0 Xilx0) Y2ds

1 t
+J 1,<0<p co;““X’i(xO»Zde {p, ¥ 'Dyxo) Y2dL;.
0 0

We shall replace (2.9), (2.11), (2.15) in [/] respectively by

o T ) ) T 12 T 12 T
(1.7) Z=expq — 1| udw'—1| v*6K+F— — |u|2ds——j |v2|dL}
0 0 2 Jo 2 Jo

t T
(1.8) whi = wi + J lu'ds, K4 = Ki + J IvidL

0 0

(1.9) dyi=(@¥ *X\)(J', Dhidt+(p¥ *Di)F, 2)I*dL,, Vo) = Xo -

Using the properties of the Girsanov transformation [5] and the qua-
dratic variational processes [5] we see that the law of (w"i, ..., wh™,
K", ..., K", B) under R' = Z%(P ® P;)) does not depend on leR.

We can now follow [I], section 2, that is differentiate with respect
tolatl=0.As Lyisinall the L,, p < co, we may differentiate under the
expectation sign, and all the rest of [/], section 2, follows with I, instead
of C,, with the new choice

(1.10) U = T aa(0F 1 Xi)(x0)

s<Taad @F ~TDy)(Xo).

As in section 4 the calculus of variations is performed on the component z,
the presence of the K”’s does not matter. It suffices to make obvious changes,
as adding in [7]-(4.9) K/ = C{.. As the C’ and z are independant, this
does not affect the calculus. Also as Ly is in all the L, there are no integra-
bility problems. We obtain the results of the end of section 4 in [/] with I"
instead of C. We shall refer to our adapted theorems without changing
their denotations. We can summarize the results from [/] we use as follows:
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THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY 77

t 1 T
= exp {j b(x, z)5B——j b2(x, z)ds },
Fe 0 2 Jo

THEOREM 1.2. — If (x¢, o) € R x R and ¢’ > 0 are such that P ® P},
a.s. I'X? is invertible, then for t > ¢’ the law under Q, ., of (A,, x,) is given
by pda, y)dady. If moreover for all T>0,p>11,,<1|Tx!|eL(Q, PRPL),
then p,(a, y)e C*(R x R?).

dQ(xo,Zo)
dPQP.

Zo

for beC*(R**1, R) and
we have

II. THE EXISTENCE OF A DENSITY

We shall look into the existence of a density with respect to the Lebesgue
measure for the boundary semi-group. By [/], theorem 4.13, it suffices
that I', be invertible.

The main tool to prove this invertibility will be the action of ¢ on vector
fields, as in [/], section 5. We shall use theorem 1.1, chapter IV, in [2],
with the fact that if K is a vector field then Lx K = [X;, K].

To gather the most information from this action we shall use [3], espe-
cially theorems 2.1 and 2.3. The problem is to adapt them to our present
situation; that is, to the presence of the K”’s and to the two-sided process.
This will be done beforehand.

We notice here that as in [1] the vector fields of the half spaces z > 0
and z < 0 strongly interact; this shows nontrivial interactions of the
corresponding Levy kernels.

Let (Q, (F,), P) be a filtered probability space, and (z, B, C) a (F,)-Brownian
motion. L denotes the local time at O of z.

If Y is a process, then Y is the random set YO= {t=0,Y,=0},D,H,J,
K are continuous (F,)-predictable processes, and

0 0 0

t T 1 t
(I1.1) X, = J Dgds + J HSB, + J KdL, + J J0C,,.
4]
We now have:

THEOREM II.1. — Assume that an a.s. > 0 stopping time S exists
such that z° n [0,S[ < X%, a.s.
Then z°n [0,S[ < H°nJ° K", a.s.

THEOREM II.2. — Assume that H may be written

1 t T t
(II.2) H,=H,+ j' Dids + J KL, + j H(6B, + J J:0C,,

0 0 0 0
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78 C. GRAHAM

where H, is Fo-measurable, and D’, K’, H’, J’ are continuous predictable
processes. Then if an a.s. > 0 stopping time S exists such that z°n [0, S[ < X°,
then z° N [0,S[= D° " K° A H® ~ JO.

Proof. — We first apply theorem 2.1 in [3] to

t t

(I1.3) xf:zj

0

X .Dds+2 j
0

t t
XK d Ls+2f XSH35B5+2J XJ5Cy,
0

0

14 13
+ fHSZdS—I—J‘JSzdLS.
0 0

t t
As X,=0 on [0,S[n z° J XJ6C, =0 on [0,S[ and J X,KdL; =0
0 0
on [0, S[. Wemay apply [3]-theorem 2.1 and we get that J, = 0 on z°n ][0, S[.
T
This implies that J J,6C,, = 0 on [0,S], so that we may apply [3]-theo-
: 0

rem 2.1 to X, itself. Our first theorem follows. For the second theorem,
t

we subsequently apply theorem 2.1 in [3] to H? to get rid of the J J0Cy,
0
term as well; then we may use theorem 2.3 in [3] to conclude.

Remark. — 1If (z, B, CV) is a (F,)-Brownian motion and if we replace

t T
in (I1.1) the local martingale terms by E ‘[ HIOBL + E j Ji6CE,
0 0
7 7

then Theorem I1.7.1” in [5] enables us to use Theorem II.1, for then we
can find B, C with (z, B, C) an (F, )-Brownian motion such that the local

martingale terms may be written J / 25B + J‘ / Jf 25CLs

(in an enlarged space Q)
We can now give some results on the 1nvert1b111ty of I;:

DeriniTION 11.3. — For le N, E, B/, F,, F/ are the families of R%-valued
vector fields defined by
E; =Xy -oXw) Fi=F =(D,...,D,)
Ei+1 = [Xo, Xy, ..., X, 0/02), E]
Fiii = [(Do, Dy, ..., Dy), Ei]U [(Dg, Dy, ..., D, Xy, .. .3X,,,), F,]
Flor = [(Xi,. . ., X0, Do, Dy, ., D), EJU (X, . ., X, Do, Dy, .., D), Ell
U X, X X, - 3 X, Do, Dy, .,‘Dq), F;]
and E] is defined as E, after replacing X; by X{,i =0, ...,m.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY 9

Naturally if A, B are two families of vector fields, [A, B] denotes the
family of the vector fields [a, b], ac A, beB.
We state a theorem on the reflecting process:

THEOREM I1.4. — 1If x, € R? is such that the vector space spanned by
{E,Fi;1<l< + o0} is R in full, then P® P’ a.s. for all t > 0, I
is invertible.

Moreover, if Xy, .. ., X,, do not depend on z, then we may enlarge F,,
to Fiv1 = [(Do, ..., Dp), Ei]u [(Do, ..., D, Xo, .. ., Xi), Fr ]

We now state a theorem on the two-sided process:

TueoreM I1.5. — If x, is such that the vector space spanned by
{E,E,Fi;1<Il< + oo}isR?infull,then P ® P’ a.s. forallt > 0Iis
invertible.

Moreover if Xy, ..., Xm X4, ..., X, do not depend on z, Fj,; may
be enlarged to

;+1=[(X(,)’ Xia- . -sX;na DO:- . -aDq)a El]u[(X()a Xla~ . 'aXm7 DOr . ‘;Dq)o E;]
U[(X0>~ - -aXm,X(’)r . "X;mD()p- . -’Dq)a Fl]

Proof.— Asin [1]-Theorem 5.2, [4]-Theorem 2. 14, we get by the 0-1 law
that as soon as I, is not invertible, there is a fixed fe T¥(R?), f # 0, and
an a.s. > 0 (F,)-stopping time S such that { f, o*~*X(x,) > = 0 on [0,S].

For the reflecting process: if V(x, z) is a R%valued vector field, then by
Theorem 1.1, Chapter IV, in [2] (or just by looking at [/], (1.4), (1.12))
we have

(I1.4) @ 'V=V+ f

0

t t

@¥ 1 [Xo, V]ds + J @¥ "' [Do, VAL,
0
t

T t
+ J @7 [X, Vidw + j @¥~1[D;, V1IdK{ +J~ @¥™1[0/0z, V1dz,

0 0 0

=V+Jt 0¥ Y[Xo, VI+ % X [Xi V114 % [0/0z, [6/0z, V]])ds
0

T

t 1 .
+ J ¢:=—1( [D()a V]+ 5 [Dja [Djs V]])dLs + J‘ q’;‘k_l [Xi, V](SW:‘
0 0

t T
+J ¥ '[D;, VI6K, + j Q¥ 1[0/0z, V]oz .

0 (4]

By separating the local-martingale and the bounded variation terms and
by using the fact the support of dL; is { z, = 0} which is ds-negligible,
we get that:

Vol. 21, n° 1-1985.



80 C. GRAHAM

IfC f, 0¥ " 'V(x0) >=0fors < Sthen { f, ¥ 1 [X;, V], { f, ¥ ' [X0, V1),
{f,0¥71[0/0z,V]) are equal to 0 for s<S and { £, @* *[D;,V]),
{fy ¥ 1[Dy, V] are equal to 0 for s < S, z, = 0.

Now we notice that if W(x, z), V(x, z) are two R? valued vector fields,
and if we set V(x, z) = V(x, 0), then [W, V](x,0)=[W, V](x,0). Also if
(L o¥ W(xg))> =0 for s<S, z,=0, then ¢ f¢* V(x0)> =0 for
s < S, z, = 0, and we may use theorems II.1 and II. 2 now that no terms in

J— oz are left. So we can state using theorem II.1 that:

If (f ¥ 'V(xg)) =0 for s<S, z,=0, then {f¢F '[Do,V]),
CLH@EHDLVI), {fioF X, V]) =0 for s<8, z,=0.

In order to use theorem I1.2 we must have that ¢* ![X;, V]is a semi-
martingale whose Itd decomposition containsno | — dz term. This happens

as soon as for 1 < i < m [0/0z, [X,, \7]] = (. The only simple assumption
we can give on the X;’s to get that is that for 1 < i < m the X;’s do not
depend on z. In which case we also get that { f, oF "1[Xo,V]) = 0 for
s<S,z,=0.

All this leads to theorem II.4 by a simple iteration.

For the two-sided process we follow the same proof after adapting
the results of [//] instead of [3]. We could also adapt the. tech-
niques of [/])-Theorem 6.6, [4]-Theorem 2.19; they use the time-change

t

K,=inf{,C,)t} where C, = J 1,>0ds; zg, is a reflecting brownian

0

K¢ -
motion, and J‘ 1,500w' (1 < i< m) are also independent brownian
0

motions independent of zg,. This is followed by a quite intricate and tech-
nical proof, (see (6.37) to (6.54) in [1]).

Remark. — Naturally we can try to enlarge E;, Ej, F,, F] knowing that
what really counts is the vector space they span. For example, it is easy
to prove by using the Jacobi identity that if B, A;,...,A, (p = 1) are
vector fields then [B, [A,, [..., [A2,A{]... 1] belongs to the vector space
spanned by all the [A,,), [Asp-1) [ .., [As1),Bl...]], for ¢ belonging
to the set of permutations of {1,...,p }.

We would also like to get rid of the restrictions on X, and 4/0z. The
latter stems from the way we get back within reach of theorem II1.1, and
thus seems difficult to be disposed of. For the former, we used theorem II. 2.
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THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY 81

It is to no avail to use theorem 2.2 in [3]as it requires that S should be + oo,

or at least bounded below uniformely in w; it is difficult to further localize
the theorem.

III. THE EXTENSION
OF THE EXISTING ESTIMATES

We shall now extend the estimates of [/], and in particular (5.37) and
(6.119). We get less interesting results, for K{ behaves somewhat like /4
(while L, behaves only like t'/%) and so moves around a lot for small ¢’s.

We use estimates on S.D.E. and also some classical estimates on Brownian
motion, which we shall now recall, as we shall recall the estimate [I]1-(5.29)
in a slightly enhanced form.

First for ae R, , if w is a brownian motion, it is classical that

2
(IT1.1) P [ sup ws>a]<exp{—a }

0<s<t 2t

Then for ye R, following [I1]-(5.42), (5.43), we have

O<s<t

t
(IT1.2) P[ sup |Ws|<)’]<ﬁexp{—p}.
¥4

Asin [1],(5.23) to (5.29), we get from the proof of Theorem 8.31 in [/0]
that for

Il,p = (Xl 3 e *9X;7)’ ;+1,p = [(Xf): ,13 . -:X:n)s ;,p]

p

CCRL = 2 L (Lo Xilxg) Y2ds  for  feTE(R")
1

= z Z <o N(xo), f )2,

n=1 YeE, ,

-1
o=inf{t>0,‘[aq)s(w,xo)] -1 21}
ox 2

there are D; > 0, D, > 0, D3 > 0, m; = 20" x 6, such that for any
xo€RY &£ > 0, we have

(I11.3) Pl CE0ami o [ < 85 fl5° 2 Dye®m

on [0’ D183/m1] : o= D183/"”] <K exp { _ D38—a/m, } )

Vol. 21, n°® 1-1985.



82 C. GRAHAM

Let’s put for X, Do, X, D ; having the same properties as Xo, Dy, X;, D;

m

4q
(I11.4) dX, =Xo(X,, z)dt + Do(X)dL + 2&(&, z)ow' + Zf),.(fc)éKf

5‘\:(O)zxo j=1 i=1
F=(n+4) sup {I1X0s 2PV D))
1$;’<m
1<j<gq
E= sup {1Ro(x 91V 1Dy}

T=inf {t > 0,| X, — x0| >0} .
We then have

ProrosiTiON III.1. — If 6> 0, T > 0 are such that 6 — E(T +T!?6*3)> 0,
then

PIT < T < { - } +2d (O—E(T+T"20")"
B % €X — —= €X — .
Pl P 2F(T+ P07

ProposiTiON II1.2. — If for 1<j<¢q D;=0, and >0, T>0, ¢>0 are
such that 6 — E(T + &60) = 0, then

2 — 2
F[TogT]<exp{—(;(-¥ }—!—Zdexp{—(e E2(’£T+ &0)) }

Proof. — Let

13 T 11 t
M,=J X,{SW‘#JDjéKf; then | X, —xo | < j IX0|du+I IﬁoldL+IM,{.
0 0 0 0
(I1.5) P[T’ < T] < P[Ly > TY3023] + P[T® < T, Ly < T3923]
. ) 94/3
1/3 3
(I11.6) P{LT>T/0/]<exp{—W}

by (III.1), knowing that L, = sup (— B,). If §—ET+TY39%3) >0,
we have Ossst

(1.7 BITST, Ly<TY20%°1<P[ sup |M,| > O—E(T+T3023),
Ly <TV3023], st

By a simple adaptation of the estimate (4.2.1) in [9], using that we are
on { Ly < T'26%3 3}, we get that

(I1.8)  P[T’<T,Ly<TY30%3]<2d exp {

(6—E(T+T'36%3))?
2F(T +T1/392/3)
and by using (III.5), (II1.6), (IT1. 8). Proposition III. 1. is proved.

Annales de IInstitut Henri Poincaré - Probabilités et Statistiques



THE CALCULUS OF PROCESSES DIFFUSING ON THE BOUNDARY 83

If moreover D; = ... = D, = 0, we may replace (III.6) and (IIL.8)
respectively by
(I11.9) P[L; > 0] < (£0)°
. 0] <expy —
T Y T
(I11.10)

- 0 —(T+80))2}
PIT°<T,L;<e0]<2d -7
[ Ly < 0] exp{ T

and we shall obtain Proposition III.2.

ReMARK 1. — When using Prop. III.2 we shall choose ¢ > 0 such
that 1 — E¢ > 0. Then when 60 is large enough, 8 — E(T + ¢6) = 0 and
furthermore for 6 going to + oo we get an estimate of the exp { — ¢6* } kind.

RemMARK 2. — In our paper, either T goes to 0 as in [/]-(5.37), or 6
goes to infinity as in [/ ]-(6.119). There exists Ty > 0 depending, only on E,

d, 0, and 0, > 0 depending only on E, d, T such that for T < Ty or 6 > 8,
we have

= 1 g3
1 P <T]< ———— >,
(II1.11) [T ] exp{ 3 3F T8 }
We shall then set
g3 1
(T11.12) Gy,

= Kiy=— .
3+ 3F T 3+ 3T

ReMARk 3. — Naturally to use all these estimates in our paper it
suffices to write the Stratonovitch equations in 1td6 form. We have ana-
logous estimates on the two-sided process, by modifying the proof in an
obvious way after having changed E and F so as to take into account the
vector fields in the half space z < 0.

IV. SMOOTHNESS: THE REFLECTING PROCESS

We shall now investigate the smoothness of the densities of the boundary
semi-group. This is linked to the integrability of I, ! by theorems 2.4, 2.5,
4.9,4.10,4.11,4.12in [/].

The principle of the proofs is to estimate—by the results of the previous
section—the probability that the diffusion gets away from the boundary
without getting to far from the starting point, and then use the estimate
(IIT.3) inside the half-space. We cannot thus hope to get results involving
the Dy’s.
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As our estimates are not as good as those in [/], we get weaker results
on local conditions. This leads us to introduce new hypotheses and new
techniques in order to exploit better our estimates.

We use these new techniques to prove a result involving the D;’s.

For the reflecting process, we have

DErFINITION TV . 1.

El = (Xls .. .,Xm), El+1 = [(Xo, Xl, . .,Xm, 6/62), El]
1

K(x, z) = inf { z Z {Y(x, z), f)H2 }
SeR4, || f]|=1

Jj=1 YeE;

TueoreM IV.2. — Let x,€R? be such that for a given IeN, § > 0,
one of the following hypotheses holds:

i) lim 7z Log ( mfI kKi(x, z)) = 0
z> x—xp0| <6
z—0

ii) there is yoeR? such that lig(l) zLog( inf  ki(x,z)=0.

z-0 |x=yol S 2173
Then for any t > 0, T > 0, 15,<r|[[°] '] is in all the L,(Q, P ® P).

Proof. — We shall adapt the proof for [/ ]-Theorem 5.9. 1is a > 0 real,
which will tend to + 0. yis a > 0 real number, depending on 4, which will
become arbitrarly small as A — + oo. We will determine y at the end
of the proof. We have

(IV.1) P[|Ti| = 2; A < T]<P[A, < 217/2]
+PLITC = 452002 <A, < T]
we know that

_ t
1V.2 PIA, <2 212 _ .
(IV.2) [ t9/2] exp{ 4;45}

Let T, be the stopping time
(Iv.3) To=inf{t=20;|x,—x0|=0}.

By Prop. I1I.1 we have for small enough vy

_ ~ G,
V.4 P[T, < 2ty./2 < A, ] < S
(V.4 T /2 I < exp { 2ty /2) }
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and thus

§5) 5 G
(AV.5) PTill>420/2 <A <T]< exp{_ _g}
(21?}'\/2)1"3

+P[IT3 21 = A3 A A Ty = 269/2].
Putting T{”” = inf {t > 0, z, = y** }, we have the key estimate

(IV.6) PITy” = 19/2] < /2 °"P{ Jz}

Defining T3 =inf {t > T1"", |z, — zpya | = y%3/2 1, we have

— y ) 2 Pm y4/3 J312m
Iv.7 Pl T — T7” < Dy| — <2 7 4.
( ) [ 2 1 l[ﬁ] :I CXP{ 8D123/m1 }

We shall choose y so that

3/my
(IV.8) ty/2 = Dl[—\%] .

Now we have

(IV.9) P[IT5Lzl = A;A, A To = 269/2] < \/Eexp{ tﬂ}

4/3}‘3/2m1

2/3 2 3 2 3/m1
Wf T - 17" = 1[\—/—1] )

On T} < tyﬁ, using (IV.8), we have (™ denoting transposition)

Iv.10) T° Tt 3my| =
( ) my2 = |:0XTV2/3:| T¥2/3+D1 [%] m aXT;,z/s

where

KLAf) = [ {(@uo @3 V1 XKilxo), f Hdu

+ j!< (q)u ° Qg 1)*—1D](x0)af>2dLu 5

and so

AV.11) P[|T5lz] =4 A, A To = 209/2, TP < t9/2, I =11
3/m; - a
> Dl[\/i,] ] < P[ ¢ =4 T < tyﬁ < A,}
2

2/3 2/3 2 3/mx
+P[t[ Tv2/3+D[ ]3,,,.,] U Y2 TyA Ty =T + D1|:“—'] ]

aka,z/a
/i
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By [/]-theorem 1.1e) we know that for any p > 1, there is A > 0 with

o

> Y4 TP < 29 /2 < A,:l < A/AP.

oo _ _ -1 1
_ (GT},z/zw, ¢T¥2/3(a)’ xo)) —1 = 5 .

Oxe- T}»Z/3

Iv.12) F[

X ry2/3
7

Let T2’ =inf {L‘}T}’m,

3/m,
When T3 > T7"°+ I:——] , L does not increase on

S
I: 2 Prm
sz/s T},2/3 I DII:__j] :|,
7

and so using the Markov properties of the flow

2/3 2/3 2 3/"” . 2/3 2/3 2 3/m'
(Iv.13) P[TY’ Ty +D[ﬁ] LTS >T¥/+D1[7J }
A

<C éxp { — a3y
(by the estimate (4.2.1) in [9]). Using lemma V.8.4 in [5], we get that

2/3 3 /my
(v.14) P[|[" o I B AT AT 2T+ Dl[\i/] ]
A

T“{2/3+D1[‘/ 2]

N
= y2/3
< Cexp{ _ 0113/2"11} + z P[< :72/3+D [ ]3/mlf;,f;>

i=

2 2/3 "w2/3 2/3 2 3/ml
S—,ToAaTI" ATy 2T + Dy —
7 7
where fi, . . ., fy are unit vectors of R and N < C4 2 .

We must now choose y such that if |x — x| <6, v—z— <z —y?B3,

[\S NN

2 3/m;
then k'(x, z) > 4D2[7:| . Then on the set of w’s
A

( / / / 2 Sim
To A T3 A T} TY“+D[ ] )
JA

2 3/m;
we see that on the interval [TYZ’ T +D, [t/ﬂ ] L does not increase,
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so that we may use the estimate (I11.3). So for a > 0, independent of 4,

N
) 1733 2 2 .2 3
(IV.lS) ZP[ < rT}'Z/3+D1[%]3/mlﬁ,ﬁ > < —,To /\T%’ /3 /\Té /3>T}'2/
i=1 M

7
2 3/my a—1 D )“B/Z
+D1[~—:| ]SCAZ exp — 3ﬂ .
NZ 2

Under the hypothesis (i), we know that for 6 > 0 we can find #; > 0
such that if z < n, then for all xeR? |x — x| < 6, then

0

-

(IV.16) Log ki(x,z) > —

3/my
To have k'(x, Z)>4D2[ﬁ] it is now enough that z < #; and

( m16 2
zz= s
Log 4
and so we take

3
(IV.17) y = 23/2<m—’5—) .

3
For large 4, (IV.8) will be true, and > 923 < ;5. Checking our estimates,

we see that we shall have for given é > 0 and large enough 1

S 2 1
(IV 18) P[ l rA(‘]] ' = A’ At < T] < t(Log 4)> + Gao
/"1’16(mzz5)3 ,'{(21\'7)! 3 Zmé
2 A
+ \[t +2exp{ — A"} + — 4 Cexp { — ¢'23?™}
)m AP

a1 D,
+Ca? exp{—z—ﬁlﬂ/z}

and ¢ being arbitrarly small, the theorem follows.

Let us now suppose that hypothesis (ii) is fulfilled. We shall adapt the
proof for (i). This time (as in [/]-Theorem 5.9) we shall take T? instead
of TI*,1 < i < 3, and shall change all y*/ into y. We shall not introduce Ty, ;
we want to choose

2m,5
(IV.19) y =

" Log 4
and the r. h.t. in (IV.4) would be to large. Under the stronger hypothesis
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lim z Log inf k!(x, z) = O the rest of the proof would follow without any
xeR4

problem. Now, we need new techniques.
We first notice that if (ii) holds, then for all y e R? we have

limz Log( inf kY(x,2)=0.
z>0 2
z—0 lx=yl< 7

We shall use this with y = x;.

2 3/m,;
Let us now control T{ + Dl[—] LI (AV.8) and TT < tyﬁ hold

For o > 0 to be determined afterward we shall replace (IV.15) by

— y 2 —
. rTl 3m : )R —= Y 4 > Y
(Iv.21) P[< TY+D1[72i]‘ -lfz; fi> < \/}.’ 257’\/2 AT AT; 2Ty

AL NS C SN
s S S s — X [0 4
! \/j. 0<32£y\/2' X © 0

— v 2 2 3/my
+ P[( eyl < L2 2ATS AT§>TZ+D1[——::| ,
(4D 2=

\/:1 \/2
Log A\'/?
sup  |xs — x| <o .

0<s< 2192 1]

0 .
™ 7 we have by Proposi-

2
For a given 6 > 0, for large 4, by taking y = I
tion III.1, (II1.11), (ITI.12) 08

. Log A\'?
(Iv.22) p sup | xs — xo| > «a 5

0<s<219/2
Log A\1/2\*3
<)
0 1

< eXp 4 — =g
RVE 5\ ilz\l/sa
Log 4

with a K depending only on m, and on the bounds on the vector fields and
on their derivatives

3
Forz< v,
2

1/2
(Iv.23) 6/2 - 0 (Log i)

227 2\ 3mes
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0/2 Log A\'? -
which leads us to choose, so as to have = s

1/2/Ot

0
(IV.24) __?
2(3m))'1?
and then hypothesis (ii) enables us to estimate the second right hand term
in (IV.21)asin (IV.14), (IV.15) with the difference that we take ~ <z <37y

0/2 Log i
Then, as —— i = o

1/2
) , for (almost) all w’s such that

L /'Ll/Z
sup |xs—x0|<oc( 0(?) , forany o > 0,

0<s<2ty/2

)
we shall have thanks to (ii) that for large A’s, Log k'(x, z) > — —. Then we
z

3/m;
shall have k'(x, z) = 4D2[——} for large A’s (as z = 7/2). We can now
A

proceed as in (IV.14), (IV.15).

We must see what becomes of all the other estimates. They are the same
as in the proof of [/]-theorem 5.9. More precisely if we follow the proof
of theorem IV .2 (i) after replacing T/ by T7, 1 < i < 3, the estimate (IV.2)
doesn’t change, (IV.4) is not to be taken into account, (IV.6) becomes

(IV.25) P[T} > 17/2] < /2 exp { - t—g\{é }

we replace (IV.7) by

] 2 3/m, y2/13/2m1,
(Iv.26) P[T% -Ti< Dx[ﬁ:l ] < 2 exp { - W}

and the only change in (IV.13) is that for 1 < i < 3 we have T} instead

2md -
of T/, With y = Lml 7 as in (IV.19), all the estimates above plus (IV.21),
og

(IV.22) enable us to get (for all p < + )

2 2 N
vany PITE[ s A ST <o+ Y2 e (2]
Jfom - jT6ms

CEN
A t1/38
A

A 113/2m '-g_Tl‘ D3 B2
+ﬁ+Cexp(~c). )+ Ci“ exp _?,,1 +

The theorem follows as é is arbitrarly small.
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By reasoning as for (i), we could easily adapt theorem 5.10 in [/], with
lim \/; Log h(z) = 0 in the hypotheses. We can also adapt theorem 5.11
in [/] and its corollary, in which § = + oo and so we do not need to use
our new estimates to control the way the diffusion gets away from the
starting point; the proof is then exactly the same as in [/].

For the two-sided process, this kind of estimation is not adapted, as we
already saw in [/], section 6. Naturally if the vector fields in both half
spaces z > 0 and z < 0 satisfy the assumptions of any of our theorems,
then the result in the theorem holds, as seen in subsection f) of section 6
in [I].

We now give a result on both the reflected and the two-sided processes,
which takes at last into account the D;’s.

THEOREM IV.3. — Let xo€R?; assuming there exist y,eR?, 5 > 0.
a < 4/3, such that
q
(IV.28) VxeRY, inf Z (Dfx), fY*=nexp(—|x—yl9.
SeRA [ flI=1 et
=

Then VT > 0, V¢ > 0, 1o, <7 |[T5°] ! |is in all the L(Q, P ® P’).

4
Proof. — By taking a greater a < 3 and a smaller n > 0 we may take

yo = Xo. For convenience we shall work only on the reflecting process.
We shall end up using lemma V.8.4 in [5], as in [/]-(6.129) or (IV.14),
We take 1 — oo and 6 = 2/1; and we take b > 3/4 with ab < 1

(IV.29) F[(FA,f,f><5,AI<T]<F[ sup || 2P

0<s<T

> Log 1/5}

X

+ P[ sup |x, — xo| > (Log 1/6)] + F[ sup

O0<s<T 0<s<T

0
i“ < Log 1/5.
0x

sup | x; — xo| < (Log 1/8)’, {Ta fi f> <6, A, < T]
0<s<T
4b

(IV.30) P[ sup |x, — xo| > (Log1/0)*] < exp { — K (Log 1/8)3 }

O0ss<T

by (III.11)

(IV.31) F|: sup

O0<s<T

0
6—2“ > Log 1/5] <exp{— K(Log1/8)*?}
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by (III.11)
If sup |x, — x| < (Log1/8), since A, < T, for all se [0, t] we have
0<s<T
{Dj(xa, ) f>* = nexp { — (Log 1/0)* }.
So if sup |x,— x| < (Logl/8)® and sup

0<s<T 0ss<

< Log1/6, then

A

(Iv.32) j‘

0

2ds

CpE I Dyfxo), f %L, = j (D

€Xp { - (LOg ]_/5)“13} B 6(L°g 1/8)ab—1
(Log1/5r " (Log /oy
and as ab < 1, for small enough &'s, (T f.f > > & and so

4b

(IV.33) P[(Taff> < <T]<exp{—K(Log1/8)>}
+ exp{ — K (Log 1/8)*?}
and we conclude as in (6.129), (6.130), (6.131) in [/] by lemma V.8.4
in [5]
We did not succeed in giving assumptions taking into account the Lie

brackets of D;’s. This is probably because the set of times of sejourn at
the boundary is « small ».

We now give an example similar to [/]-(6.60) to show we cannot com-
pletely localize Theorem IV . 3. This is because L, can be small for great ¢’s,
and so the diffusion can be carried away without having had enough time
to be regularized on the boundary. More quantitatively, the problems arise

1
fromE| — | = .
TO [LJ +

(IV.34) dx; = 1,<1dCp,
Xo = 0.

As in [1]-(6.60) we need not look into the component A,. x5, = C, 1.,
and since z and C are independent the law of x,, is 6(x)dx, where

x2

C 20A0D) 7
57 dl

.35) 0(x) =2 B .
V.35 o) Jm NS

xl 12

1
Ifwesetf(x)= J 20 2T~ { hassamesmoothnessasf, f € C*(R*)
0

</ 2nl
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and
2 o _ x*u? 1 du

(IV.36) f(x) =—— | e 2 e 2™
2 Jda u
x2u? ) 1

2 g 2Mulgy (x #0).

(Iv.37)  f'(x) =

2 [ —
— J (— x)e
2 1
For x > 0, set xu = s

2 (= b, —
(IV.38) f'(x) = T (=De =%¢ 2Ts%ds andso f'(0+)= —1.
TT Jx
Likewise f'(0—) = + 1, and it is easy to see that
2
0'0—) =

2
N J2nT

and 0 is not even differentiable at 0.

(IV .39) 00+) = —

V. THE EXPONENTIAL MARTINGALE TECHNIQUES
AND THE TWO-SIDED PROCESS

We shall now use the exponential martingale techniques proper for
estimating on jump processes. This will enable us to keep track all at
once of the positive excursions, the negative excursions, and of what goes
on the boundary. The regularization might well be achieved by all these
factors relaying one another.

We show at last interaction between the D; and the X; leading to C*-
regularity of the semi-group. We fail to give assumptions taking into account
the Lie brackets of the D;.

We first investigate the dependence on # of u in [/]-Theorem 6.10
(which uses the estimate (II1.3) on the excursions).

We shall again use in a basic way that we may take A, < T.

DEerFINITION V.1. — W istheset of continuous functionse: R, — R,
such that ¢(0) = 0 and that there exists a(e), 0 < a(e) < + o0, for which
if 0 < s < o(e) then e(s) > 0 and if s > o(e) then e(s) = 0.

W+ will be the set of positive excursions for the brownian motion z.
Let n* the characteristic measure for the excursions of a reflecting brownian
motion; let W~ = — W, n~ the image of n*, let ¢, be the process defined
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by eds) = ze4a,. for O <s< A, —A_ f A_ <A, 0if s=2A, —A,_,
and e(s) = § if A, = A,_. Then e, is a Poisson point process whose charac-

1
teristic measure is n = E(n‘L +n)on WHUW U{d}.

W, is the subset of @ x W of the elements (¢, e) such that &(s)=¢(s A a(e)).
That is, we stop w at the end of the excursion of z. For more details, see [/ ],
section 3 @) and theorem 6.3.

For ee W* (resp. W7), W(s, ¢,.) (resp. W'(s, ¢,.)) is the flow of diffeo-
morphisms of R? associated to the stochastic differential equation on (Q, P)

V.1 dx = Xo(x, e)dt + X{x, e)de'
(resp. (V.1)dx = Xi(x, e)dt + Xi(x, e)de')

and CX(s, e) (resp. C/X(s, e)) is the linear mapping
T

(V.2) feTiR! » Ci(e,0)f = J CPFTIXix), S WET X (x)ds

0

resp.(V.2) Ci*e e)f = f (W IXYx), [ Pix 1X;(x)ds> .
0

Recall that m; = 20"~ ! x 6; E, and E/, have been defined in definition II.3,
definition II.4, and definition IV.1.

THEOREM V.2. — Therearen, > 0,7 > 0 only depending on the vector
fields such that for all xe R? fe T*R? with || f|| = 1, n € [0,n0], if

1

(vV.3) EEU,Y(JC,O))Z?W

n=1 YeE,
1

(resp. Z Z LY(x,0))% = 'I)

n=1 YeE,

then for 0 < p < (yn)™/* = u(n) we have

1/2

(V.4) n({ Coofe. ) f S > 2 p) > i

B 12
(resp. W Chole, —) L f> =2 p) 2 ﬁ)
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Proof. — We shall only prove the first result. (1) is to be chosen later,
with 0 < x(y) < 1/2.

To(e, ) = inf{t > 0,| We,e,x) — x| = x(n) }
Anfqt>0,||—@Eex)| —1|=xMn
ox

fe) =inf{t>0, e = pl/m}.

We know that

x(n)?
(V.5) P[To < Ti/e] < 1 p<aemy + 2d.exp (— 4T

by (4.2.1) in [9], for a ¢ depending only on the vector fields. It is easy to
see that

2¢TY
(V'6) 1]1(11)<2L"T51’ é X(I’l)
and as for positive x we have x < exp (x),
2 4 /Tp
(V.7) exp (- 2 ) L 2T
4c'T?) — xn)
and so
(V.8) P[T, < T¢/e] < (26' + 8"6') )
. < T{le] = —
° xo) )

Also, by theorem 3.6 in [/] under n and conditionally on (Tf(e) ¢ + c©),
e(0 < t < Tf(e)) is a Bes(3) process starting at 0 and stopped when it hits

1
pY/™. We have EP=C)Tf) = 3 p*™ so

(V.9) n(To(e, &) < Tf(e)/TE(e)< + o0) < ( 2 + 8dc’> 1 p2im 2/
. y < e < _ 1— p my
’ B xn) " xmy?) 3 o
Putting
ﬁ; ! s ' ~1\%x—1 2
gle, &)= T Eex| [LCGppY=| (@uops P Xi(xo),f D2du
R(e) s

(V.10) "((Ci( WLfD < p/TE + )
< Cypp®™+n({ Cilg, g > < p, T4 To/TE { + c0)
and as soon as p''™ < y(y), if T < T,, by the mean-value theorem
I
(V.11) 2 2 { gle, e), Y(¥role, €, x), p'™) D2 = 0 — cxln)?.
n=1 YeE,
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We shall choose 5, such that ? < 1/2 and such that y(n) = /g’- is
c ¢

a good choice. We now have our first restriction on p:

(V.12) pim < ) = [
2c

gle, e)
llgle, e) |l

<llge o)l < x so that

Let us put g’(é, e) = If T¢ < T, as x(n) < 1/2, we have

N =

(V . 13) z 2 < g’(é), e)> Y(\PT‘{(S’ e, X), pllml) >2 = ”/9

n=1 YeE,

and moreover

(V.14) n(<{Clig,g> < p.TE < To/TE{ +0) < n(< CJfg', g’ >
< dp, T < Ty/TY < + ).
We know that under n( /T{ < + ), if (%,);»0 is the canonical filtra-
tion on W*OUW ™~ U{é}, conditionally on %, for t =T (¢, e;) is a m+1-
dimensional brownian motion stopped when ¢ hits 0. On (Q, PQ Pim )
let us put S =inf{t >0, |z, — p'/™| = p'/™ }.
Let x’e R, he T*, R? with || k|| = 1, such that

(V.15) z z Chy Y, primy »2 = 5/9.
n=1 YeE,
Then we are led to estimate
(V.16) P ® Plum({ CS(W)h, h> < 4p)
and use this estimate in (V.14) with x" = Ws(e, €, x), h = g'(¢, ).
Let %'(n) be such that 0 < ¥'(n) < 1/2, U be the stopping time
U=inf{t>0,|¥wx)—x|=xMn}

. oY, o1
Anfst=20, || — W, x) —1
Ox

For t < U and 2p*™ < x'(n), by the mean-value theorem,

>x’(n)} AS.

1
(V.17) Z z CWFTY(X, 2,), hD? 2 /9 — ex'(n)* -

n=1 YeE,
4
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We shall take y'(n) = x(n)/3 = /%, and we have a stronger restriction
on p: ¢
xm) 1
V.18 Ump & 20 = [ 2|
(V.18) p g %
We have for small p’s, by (4.2.1) in [9], that

(X'(n)—C,Dy(4p)*>™)? }
C,D 1(4P)3/m'

(V.19) P@P,um(U < Dy(4p)*m) < 2d exp { -

( 1/m1)2
2 _—
’ e"p{ 2D1(4p)3/'"’}
We shall ask for C,D;(4p)>™ < p'/™, which will be enough if (V.18)

holds, for then p'™ < y'(1)/2. As already 6 < m;, we have 4*™ < 2, and
we only need

(V.20) ‘ 2C,D,(plmi)d < ptim

and there exists an o > 0 such that (V.20) holds for p'/™* < «. We shall
take 77, > 0 small enough for (V.18) to imply p'/™ < . We then have for
a k > 0 depending only on the vector fields

k
(V-2) P ® Phum(U < D,(4p)*™) < 2d + 1) exp{ B T/W}
p 1
so that
—, k
(V.22)  P®Ppum( <@ h> < 4p) < 2d+1) exp{ _ ke } s
. i
P ® Pluml < CB,appm(Wh, h ) <4p; U= Ds(dp)>™).

Thanks to (IIL.3), to estimate the second right hand term, we only need

(v.23) n/18 = D,(4p)*™
or equivalently

1 n 1/3
(V.24) plimr < —

4\18D,

which will be implied by (V. 18) for 5, small enough. Then the second r.h.t.
in (V.22) is dominated by K exp [— Ds(4p)”*™].
By using this and (V.22) and the results following (V.14), for small p’s
_T1 k
(V.25) n((C,g ¢ ><4p,T{ < Ty/Tf < +00) < 2d+1)expq — —m
o

+ Kexp [~ Dadp) "]
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and by (V.10), (V.14), (V.25) we get
(V.26) n(<CSff> = p/Th < +00) 2 1 — Cypp™

k
—2(d + 1) exp {— W} — K exp [— Dj(dp) %™

. 1
and as by theorem 3.6 in [I], n(T{ < + o) = —m» We shall have (V.4)
as soon as P

2¢" 8dc'\1 k
(V.27) ( + )—p2/"”+2(d+1)exp{——}
xm - xm)?) 3 ptim .
+ Kexp [ Di(dp) ™) < 5
. . 1
To obtain this, we first take 7, small enough for y(7) < —. Then we shall
1/2¢  8dc K’
have K’ such that (—c~ + ‘c2> < —05-
3\xm) ) x(n)
By taking again 7, small enough, if (V.18) holds, we have

K’ k
(V.28) — 5 p*™ + 2d + Dexpy — —o ¢ +K exp [—Da(4p) ™™ ]
x(n) pmt
2K’
<

2/my

<—p
So, to get (V.27).it is enough to have )

1 1 [ g
V.29 Lmy < — .
( ) b 2. /K’ 1) 24\ 2¢K’

So, if y(n) = \/EW— , taking #, small enough for (V.18) to imply (V.24),
c
there will be a constant y > 0, such that if
(V.30) plm < (yn)'?

then (V.18), (V.29) hold. The theorem follows.
We can now state some results:

DEFINITION V.3.
El = (Xla . -3Xm)’ El+1 = [(XOa Xla,- . -sXma 6/62), El]
E\ =X, ... X,),  Eli= (X6, XY, ..., X, 0/02), Ef]

1

(V.31 T(x) = inf [Z (Z £ Y (x,0) )2 -+ Z  f,Y'(x, 0) >2)
=t n=1 YeE, Y'eE;,
+ Z < D,-(X)>2].
j=1
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98 C. GRAHAM

THEOREM V.4. — Assume there exist [eN, y,eR?Y 4 >0, a < —,
such that for all x e R?,

(V.32 rx)znexp{—|x—yol}.

Then for all x,eR%, T > 0,2 > 0,14, <7 | [Ta°] ! lisinall the L(Q, PR P’).
If moreover Dy = ... = D, =0, we may take a < 2.

Proof. — Naturally, by taking perhaps a smaller # > 0 and a greater
8 4
a< o (ifl=1)ora< 3 (if I = 0), we may take xo = yo. We also take
m;

n < no. We shall follow the proof of [/]-theorem 6.12 after writing the
process [/]-(6.101) as follows:

(V.33) N:(W,.B)=€Xp{ —BLTX ff>+f[ﬁ<<pi;lD,-(xO),f>2

~ %(r{(@, B) + t(w, ﬁ))]dS}

where 1/, 1./ are defined by (~ denoting transposition)

(V.34) rsf(w,ﬁ)=f 1,<q {exp[— B Cipy™
Yo (6, QDAL W, X0) [, DAl (W, xo)f > | — 1} dn(e, e)

W, B) = j o<y {exp[— B Cig™
" (e — )P (W, X0 f: GAL(W, x0) [ > ] = 1} dnfe, ).
Take feT#(R?) with || f|| =1, and § > 0. We estimate first
P{(TXff><d,A <T]
asin(IV.31),(IV.32),(IV.33).b > 3/4depends on a and is to be chosen later.
(V.35) P[CTRASD<8A<T]<P[ sup |x,— x| > (Log 1/0)"]

0ss<T

+ P[ sup

0<s<T

>L0g1/5jl+P[<rﬁff> <T,
sup | x,—xo| < (Log 1/8)®, sup &” < Log 1/5} .
0<s<T oss<T || Ox

0, -1
} [ﬁ (w, xo)] > 1/51/4 } As
ox

Ny(w, p)is exactly as in [/ ], we may reason as in [/], (6.95) through (6. 106),
that is express ( CRf, /> in terms of the underlying point process and

Let’s put T; = 1nf{t>0 1—(w Xo)
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notice first that for s <_LT5, 7/ and 1Y/ are uniformly bounded and then
that N, 1, (W, f) is a (Fy, )>o supermartingale. So
(V.36) EP [N, L., W, )1 < 1
and as 6 — 0, Ly, » 400, so that by Fatou’s lemma
(v.37) EP N, < 1.
For x¥ eR?, geT*, R with || g]| = 1, B > 0, we define

(V.38) 05(x. ) = f o<1 {exp (=B Cie, )2, 8>)— 1} dnle, €)

Wo

0"%(x’, B) = f To<1 {exp (=B Coife. e)g, 8 >)—1 }dn(e, e).

Wo

Now, if | x’ — xo | < (Log 1/6)’, at least one of the following statements
is true:
1

(V.39) Z z (g Y(,0)>% > gexp { — (Log1/6)™}

n=1 YeE,
1

(V40) Z Z < g, Y'(x’> 0) >2 = gexp { - (Log 1/5)nb }

n=1 YeE;

exp{ — (Log 1/6)* }.

(PSR

(V.41) Z < &Dj(x0) >* =
j=1

Our aim is to choose as in [/ ]-(6.117)

ny
Dt mi=1
-1
2m15 2m,

(V.42) B(S) =

s0 as to replace (1)-(6.124), which may be written

15 I
(V.43) %(rsf(w, BSY + fw, BN <— f‘ )
by

1 3B
(V.44) L (o B0+, B0~ B0) C o8 Do 17 < = TR

t
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If (V.39) holds, we notice that if p < u= ”(g exp{ — (Log 1 /5)01!})
(V.45) 04X, B)= —ﬁj e Pn({ Cyofe, €)g,8> = p,o < )dp

0

H o= bBp 1 Bu e~ H
—B/2 __ _dp = —— 1/m d
& J o = =30 L utme

and so, as soon as

1 k;
(V.46) p= =
u(ﬂ exp{ —(Log 1/5)"1’}) piten i
we get 3
(v.47) 0%(x’, B) < — Dplm,

We choose b > 3/4 with ab < 1 and f(d) as in (V.42). Then for small
enough 6 (V.46) will hold. We proceed likewise when (V .40) holds.
Now if (V.41) holds, we again choose b > 3/4, ab < 1, and if

sup
O0<s<T

(V.48) <ok 'Dfxo) f>*

5(Log 1/8)ab -1 5
= { Dj(xa._ f> n S Mo
“ 3(Log 1/ T ¢

< Logl1/é and A, < T then

for t > 0, and small enough §s.

If we bave (V.47) and (V.42), as by putting g ) = 220 %0/

ﬁ——- .
B) = | @509, x0) /[, we have Hoa. 0% xo) ]
(V.49) (W, B) = 0 (xs, (W), Bhi(w))
1 _
and as hy(w) 2 ————— = (Log 1/6) ™', we get for small §’s
a_(p A(W_,xo)
ox —

(V.50) BOZ(W) =

we can conclude that

m;

V.S BS) < D[Dt]’""‘ 1 :2m,6ﬁ(5)_
2m, 52(T3_T) t
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As we have either (V.39) or (V.40) or (V.41) that holds, we get (V.44)
with the choice (V.42) of B(d). Then

(V.52) P[TIXff><8,A <T, sup |x,— xo| < (Log1/5),

0<ss<T

sup
0<s<T

> exp{ ~ BE + f [3(5) (Do 1Y L (oL + r;f)}ds }

% ” < Log 1/5} < PIN/w, B5))
ox

sup | x, — xo| < (Log 1/6)", sup

0<s<T 0<s<T

0
G-z“ < Log 1/5}

and so, by using (V.35), (V.52), (IV.32), (IV.33), we get

4b
(V.53) P[CIXff><dA <T]<exp{— K(Log1/s)3 }

my

D m;—1 -1
+exp{ — K(Log 1/6)*3} + exp{ — (m,—l)(f) §2mi= b }
my

because the right hand term in (V.53) is dominated by
(V.54 P[N/w, B) = exp { — (0)0 + mdp(3) } |

which by Cebysev’s inequality and (V.37) is less than exp { —(m,—1)p(9) .
We conclude by use of the lemma V.84 in [5] as in [/]-(6.129). The
theorem follows.
IfD;, = ... = D, =0, we use theorem III.2 instead of theorem III.1
in (IV.32), so we may take b > 1/2 instead of b > 3/4.

Remark. — The statement for [ = 0 is exactly theorem IV .3, of which
we give another proof.
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