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ABSTRACT. - Let X(t ), t E T, be a real Gaussian process with mean 0,
continuous covariance function, and continuous sample paths, where T
is a closed cube in 1. The main result is a new bound for the pro-

bability P (maxT X(t ) &#x3E; u), for u &#x3E; 0. It is obtained by an extension of
the original Fernique inequality. This bound is asymptotically smaller,
for u - oo, than the bound that can be obtained directly from the ori-
ginal inequality. -

Key words and phrases, Gaussian process, maximum.

RESUME. - Soit X(t ), t E T, un processus Gaussien reel centre, de tra-
jectoires continues, où T est un cube fermé dans 1. Le résultat

principal consiste en une nouvelle borne de la probabilité P (maxT X(t ) &#x3E; u),
pour u &#x3E; 0. Elle est obtenue par une extension d’une inégalité de Fernique
et est asymptotiquement plus petite lorsque u - oo, que la borne qui
peut etre obtenue directement de l’inégalité de Fernique.
AMS classification Numbers, 60G 15, 60G 17.
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48 S. M. BERMAN

1 INTRODUCTION AND SUMMARY

One of the very useful tools of the theory of Gaussian processes is the
inequality of Fernique [3 ] for the tail of the distribution of the supremum
of the modulus of the sample function on a set T of parameter values:
P (sup ( &#x3E; u). The bound for this probability, which is reviewed

tET

in Section 2, has been used in several subareas of Gaussian process theory,
including extreme value theory (see [5 ], and the references to earlier work,
particularly [6 ].) The general nature of the bound is the relation of the
distribution of supT X(t ) ~ to the distribution of X(to) for a particular to E T.
Let ç be a standard normal random variable, and put = P(ç &#x3E; x).
If we define aT as supT { Var X(t ) } 1/2, then the Fernique inequality states
that there is a functional q &#x3E; 0, depending on E(X(t ) - X(s))2 and the set T,
such that

for all u ~ uo, for some uo &#x3E; 0.

In extreme value theory, there is much interest in obtaining the asymp-
totic form of P (supT X(t ) &#x3E; u) for u - oo and T fixed. One of the main
steps in determining such a bound is the establishment of a bound of the
form

for a suitable function v(u). The most extensively studied case is that of
a stationary Gaussian process with mean 0 and variance 1, and where
the covariance function r(t ), satisfies 1 - r(t ) rv - 0 for some

C &#x3E; 0, 0  a ~ 2. In this example, the function v in ( 1. 2) may be taken
as a certain power of u, namely, v(u) = u2~°‘. It then follows from the form
of W that the bound in (1.2) is of much smaller order than that in (1.1).
The purpose of this paper is to show that the original inequality (1.1)

can, in general, be extended to a version of (1.2) which leads directly to
a sharper estimate in the case u - 00. This was done in particular cases
in [7] ] and [2 ], namely for stationary, or « locally » stationary Gaussian
processes. Here we give an extended version of Fernique’s inequality which
holds for nonstationary processes as well as random fields with several-
dimensional time parameters. The extension is carried out by comparing
the maximum of the sample function to its value at the point where the
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49TAIL OF THE DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS

variance is largest, and conditioning by the value of the latter random
variable. The original Fernique inequality is then applied to the condi-
tioned process.
The extended inequality is stated in Theorem 3.1, and the asymptotic

form in Theorem 3 . 2. In Section 4 it is shown that the asymptotic inequality
in the latter theorem is, in cases of most interest, sharper than that obtai-
nable directly from the original inequality.

2. FERNIQUE’S INEQUALITY
AND ITS MODIFICATIONS

Let X(t), t E [0,1]" be a real separable Gaussian process with mean 0
and continuous covariance function r(s,~), s, t E [0,1]". We define the
metric 5(~, t ) = max { I Si 2014 ~ : : = 1, ... , n ~ where (s;) and (td are the
real components of s and t, respectively. Define the function cp(h),

Fernique showed that if

then the sample functions are almost surely continuous ; and that, for every
closed set T of 5-diameter at most h,

for all integers p ~ 2 and all x.a (1 + where

This is a slightly more general statement of [4 ], Theorem 4.1.1, and
corresponds to the lemma stated in Section 4.1.3.
We note this simple consequence of the Cauchy-Schwartz inequality:

We note also that (2.2) remains valid of we put

Vol. 21, n° 1-1985.



50 S. M. BERMAN

and take u to satisfy

Put

Now we establish two modified versions of (2.2), one for the process
X(t ) - X(c), where C E T, and another for X(t ) - E(X(t) X(c)).

LEMMA 2.1. - For T c [0,1 ]" and ofdiameter at most h, and any c E T,

for all u &#x3E; (1 + 4n log p)1~2Q(h).
Proof - The (p-function for the process X(t) - X(c) is identical with

the one for the original process X(t), defined by (2.1). Furthermore, by (2. 3),
the covariance of the process X(t ) - X(c) is dominated by the maximum
of the function E(X(t) - X(e))2, t E T, which is at most equal to ~p2(h). The
assertion of the lemma now follows from (2. 2), (2.4) and (2. 6).

LEMMA 2 . 2. - For any T c [0,1 ]n of diameter at most h, and any c E T,

for all u &#x3E; (1 + 4n 

Proof - The proof is similar to that of Lemma 2.1. The only
modification is to note that the variances of X(t) - E(X(t ) ( X(c)) and

l x(~)) l ~ [X(s) - E(X(s) ~ X(c))] are, as conditional variances,
less than or equal to the corresponding unconditional variances.

Finally we need the following elementary result :

LEMMA 2 . 3. - Let ceT be a point such that

then, for t E T and y ;::: 0,

Proof. By definition, we have
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51TAIL OF THE DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS

If EX( t )X( c)  0, the result is trivial. If EX( t )X( c) &#x3E; 0, then the result
follows upon application of the Cauchy-Schwarz inequality.

3. THE MAIN RESULTS

We use C(z) to represent the standard normal distribution function,
and ~‘(z) and = 1 - 4jz). We note the inequality

and the well known relations,

and

The number (1 + 4n which appears in Section 2 and in the rest

of this work will, for simplicity, be denoted as y :

Our first result is an extension of the inequality (2 . 2) ; here max X is used
in the place of max X I.

THEOREM 3.1. - For any closed set T, define

c [0,1 ]" and diam (T)  h, then

for all u &#x3E; yQ(h).

Proof Let c be a point in T satisfying (2 . 9). The event maxT X(t ) &#x3E; u

is included in the union of the three events,

and

This can be verified by a direct enumeration of possibilities.

Vol. 21, n° 1-1985.



52 S. M. BERMAN

The probability of (3.7) is, by definition, equal to the first term on the
right hand side of (3 . 6). By Lemma 2.1, the probability of (3 . 8) is at most
equal to the second term on the right hand side of (3 . 6).

In order to complete the proof, we show that the probability of (3 . 9) is at
most equal to the last member of (3.6). By Lemma 2. 3, E(X(t ) X(c)) ~ X(c)
on the set where X(c) ~ 0 ; therefore, the event (3.9) implies

maxT [X(t) - E(X(t) X(c)) ] &#x3E; u - X(c), 0 ~ X(c) ~ u - yQ(h) .

Since X(t ) - E(X(t) X(c)) and X(c) are independent, the probability of
the event above is, by the total probability formula, representable as

By Lemma 2.2, the integral above is at most equal to

By the change of variable z = u(u - y), the latter is at most equal to

By (3.1), this is at most equal to

which, by a change of variable from z to is equal to

By integration by parts, the integral in (3.10) is equal to

which, by the moment generating function formula, is at most equal to
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Therefore (3.10) is at most equal to the last member of (3.6); this completes
the proof.

In the following corollary we show that if T is a set of diameter at most h,
1

and then, for u - oo the probability P (maxT X(t) &#x3E; u) is
u

of the same order as P(X(c) &#x3E; u), where c is defined by (2.9).

COROLLARY 3.1. - Let S be a subset of [0, such that

then

Proof - (3 . 3) implies that
/

Thus we obtain the first term on the right hand side of (3.12) when we
consider the first term in the bound (3.6).

Since Q(~) -~ 0, the second term on the right hand side of (3.6) is

for u - oo.

The last term in (3 .12) is obtained by dividing the corresponding term
in (3.6) by applying (3.2), and then taking the lim sup.

THEOREM 3.2. - Define

Let S be a closed cube in [0,1 ]n ofedge ð such that (3 I I) holds. Then, for p &#x3E; 2,

Proof. - For every h &#x3E; 0, S is representable as the union of at most

closed cubes T, each of edge of length h. For these cubes we have

Vol. 21, n° 1-1985.
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therefore, by Boole’s inequality,

Put h = and apply Corollary 3 .1 to the right hand member
of (3.15) : The latter is asymptotically at most equal to 
times the right hand member of (3.14). This completes the proof.
We have the following version of Theorem 3.2 without the assump-

tion (3 .11 ).

THEOREM 3 . 3. - In Theorem 3 . 2, the assumption (3 .11) may be dropped,
and then a is replaced by as on the right hand side o~ f ’ (3 .14).

Proof For every 8 &#x3E; 0, let S£ be the union of the cubes T in the proof
of Theorem 3.2 such that as - 8. (The dependence of S~ on u is

understood but not explicitly noted.) According to the original Fernique
inequality (2.2), we have

thus, by the reasoning leading to (3.15),

Put h = and divide each side of (3.16) by 
It follows from (3 . 2) that the quotient on the right hand side of (3.16)
converges to 0.

As a consequence of the result above, it follows that, in the estimation
of the left hand member of (3.14), we may omit the subset SE and consider the
maximum only over S - SE. Then the constant a in the right hand member of
(3.14), originally defined by (3.11), may be taken as a = min aT, so that

Since e &#x3E; 0 is arbitrary, the proof is complete.

4. COMPARISON
WITH THE ORIGINAL BOUND OF FERNIQUE

Theorem 3.2 usually provides a sharper asymptotic bound on the tail
of the distribution of the maximum than that furnished by Fernique’s
original result.

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



55TAIL OF THE DISTRIBUTION OF THE MAXIMUM OF A GAUSSIAN PROCESS

First we note the obvious fact that P (max X(t) &#x3E; u)  P (max X(t) ~ &#x3E; u).
Then we note that if X(t ) is a Gaussian process with mean 0, then it is
equivalent in distribution to the process - X(t ) ; therefore,

Therefore a bound for P (max X(t ) &#x3E; u) furnishes a bound for

of the same order, and conversely.
The main idea of Theorem 3.2 is to cover the set T with cubes of dia-

meter at most h = Q’~(1/M), and then estimate the tail of the distribution
of the maximum over each cube. As a result we find that P (maxT X(t) &#x3E; u)
is of the order

for u - 00.

An estimate of P (maxT &#x3E; u) for each cube T is obtained directly
from Fernique’s inequality by a similar covering operation. Put

then (2.2) is equivalent to

for u &#x3E; y(aT + q(h)). Write, for u - 0,

If we cover a fixed cube T with cubes of diameter h, and let h -~ 0 and
u - oo, as we did to obtain (4.1), then we find, by applying (4. 2) and (4. 3)
to each of the latter cubes, that P (maxT &#x3E; u) is of the order

The bound (4.1) is compared to the bound (4. 4) in the following theorem.

THEOREM 4.1. - If
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56 S. M. BERMAN

and

then the bound (4 .1 ) is of smaller order than (4 . 4) for u - 00 and h - 0.

Proof It follows from {3.2) and the fact that q(h) ~ 0 that (4.4) is
asymptotically equal to

By the form of ~, and another application of (3.2), the expression above
is asymptotically equal to

Hence, the ratio of (4.1) to (4.4) is asymptotically equal to

Under the assumption (4. 5), we have, by Fatou’s lemma,

hence,

hence, (4. 7) is at most equal to

for some k &#x3E; 0. Now define h’ = then the expression above is
equal to

which, by the assumption (4. 6), has the limit 0.

EXAMPLE 4.1. - Suppose that cp(t) ~ t - 0, for some C &#x3E; 0

and 0  a ~ 2; then, it follows that Q(t) ~ Ci f ~°‘~2, for some C1 &#x3E; 0,
and thus (4.5) and (4.6) hold. In this case is of the order 
so that the asymptotic form of the bound in Theorem 3.2 is of the same
order as the exact asymptotic value [5 ], p. 232.
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EXAMPLE 4 . 2. - Suppose that p(f) - C I log t 1-(1/2)(1 ~B t - 0, for

some C &#x3E; 0 and s &#x3E; 0 ; then, Q(f) 2014 C | log t |-~/2 for C 1 &#x3E; 0, and condi-
tions (4. 5) and (4.6) hold.
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