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SUMMARY. - Let E be an infinite dimensional Banach space with

norm [ [ Then for each ~ > 0, there exists a norm N which is (1 + s)-
equivalent and a centered Gaussian measure p on E such that the

distribution of N(’) for p has an unbounded density with respect to Lebesgue
measure.

RESUME. - Soit E un espace de Banach de dimension infinie avec la

norme ~..11. Alors, pour chaque s > 0, il y a une norme N qui est ( 1 + 8)-
equivalente à 1B . II, et une mesure gaussienne centrée  sur E telle que la
distribution de N( . ) pour  ait une densite non bornée par rapport a la
mesure de Lebesgue.

1. INTRODUCTION

Consider an infinite dimensional Banach space, and  a centered Gaus-
sian measure on E, that is a Radon measure on E such that for each x* E E*
the law of x* is Normal centered. For t E R +, let E E; 1B t ~,
and = The function has remarkable properties. Let 

given by 0(M) == exp A remarkable recent result
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278 W. T. RHEE

of A. Ehrhard [1 ] asserts that ’ = is concave. It follows that for

each to > 0, there is a constant Co such that ~(t)-~F(~ ~ Co(t - u)
for t, u >_ to. It follows that |03C6(t)-03C6(u)| ~ Co(t - u) for t, u >_ to since 03A6
is lipschutz of constant This shows that the distribution of 11.B1 (
has a bounded density with respect to Lebesgue measure on each inter-
val [to, oo [. (M. Talagrand recently showed that this density is conti-

nuous [8 ].) Let us consider the problem whether this density is bounded
on [0,oo[, that is whether there is C such that for 0  u _ t, we have

It has been shown by J. Kuelbs and T. Kurtz [3] ] that condition (*)
holds for each gaussian ,u when E = l2(N) provided with the usual norm.
These results have been considerably generalized by the author and M. Tala-
grand, who showed that it is enough to assume the norm of E is uniformly
convex and that the modulus of uniform convexity is of power type (that
is > ~p for some p and 8 > 0).

In the opposite direction, it has been shown independently by V. Pau-
laskas and by the author and M. Talagrand that condition (*) fails in gene-
ral [5 ]. A further example by the author and M. Talagrand exhibits a cøoo
renorming of 0.(N), such that all the differentials of the norm remain bounded
on the unit sphere, and still condition (*) fails for this renorming [~ ].

Closely connected to condition (*) is the problem of the rate of conver-
gence in the central limit theorem (C. L. T.). If X is an E-valued r. v. with zero

expectation and moments of order 2, we say that X is pregaussian if there
exists a gaussian measure  on E with the same covariance as S, that is

If are i. i. d. copies of X, the rate of convergence in the C. L. T. is
often estimated by

J. Kuelbs and T. Kutz showed that if condition (*) holds and the I
is three times differentiable with these differentials bounded on the unit

sphere, then Lln = o(n-1~6) ifX has a third moment. F. Gotze [7] ] reduced
this bound to the best estimate under slightly stronger conditions.
For a > 1, a linear isomorphism T from E to F is called an a-isomor-

phism if for x E E we have ~x~/03B1 ~ ~ T(x) ~~03B1~x ~. We say that E and F
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are a-isomorphic if there exists an a-isomorphism between E and F. We
say that two N( . ) on E are (x-equivalent if the identity is an a-iso-

morphism from to (E, N( . )).

THEOREM. - Let .11) be an infinite dimensional Banach space.
Let a > 0 and (çn) be a sequence converging to zero. Then there exists a
norm N( -) on E and an E valued r. v. X such that

a) N( . ) is ( 1 + ~-equivalent to ]] . ]] ,
b) X is bounded and pregaussian,
c) if J1 is the gaussian measure on E with the same covariance as X, J1 fails

condition (*) for the norm N( . ),
d ) the inequality

holds for infinitely many n.

2. SOME TOOLS

Let l2 be the n dimensional Hilbert space, and be the canonical

basis. Let y~ be the gaussian measure on l2 such that the dual functionals ei*
are independent and standard nomally distributed. The following obser-
vations are crucial.

OBSERVATION 1. - Since the variable (ei*)2 are equidistributed inde-
pendent of expectation 1 and variance 3, the one-dimensional C. L. T. asserts

that the distribution of ~ x~2 = (xi(x))2 is close to N(n, In particular
i-n

1.

Notice also that ~~ x = n.

OBSERVATION 2. - Let Yn be a r. v. valued in 12 such that for i e { 1, 2,
3, ... , n ~ 1, 1 }, it takes the value with probability 1/2n.
Let (Y~) be i. i. d. like Yn. If q is much smaller than n, with probability close

to 1, the r. v. Sn,q = q-1~2 y~ takes values of the type aiei where
ieI
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card I = q = so ~Sn,g~ = in this case. So for q fixed,

We shall also make essential use of the following Banach space result.

THEOREM 1. - Let E be an infinite dimensional Banach space, and F

be a finite dimensional subspace of E, r > 1 and n E N. Then there is an
n-dimensional subspace G of E of dimension n, that is i-isomorphic to ln2
and such that for x E G, y E F we i II x + y ~.
We shall need the following version of Dvoretzski’s theorem : Given a > 1,

and p ~ N, there is a number q(p, a) such that any finite dimensional Banach
space H of dimension > q(p, a) contains a subspace a-isomorphic to 1~ [4 ].

Let H be a complement of F. Let a = -rl/4. We can assume n >_ 1 + dim F.
Let G1 be a subspace of H that is a-isomorphic to 1’2 with q = q(2n, a).
On G1 consider the norm ~.111 given = x + y II ; y E F }.
Dvoretzski’s theorem gives a subspace G2 of Gl such that (G2, I I !!i) is
a-isomorphic to 1)~.

Let Ti (resp. T~) be an a-isomorphism from ]] ) (resp. 
to l2n and let T = Tl 1). The quadratic form Q(x) _ ~ ~ on l2~
can be diagonalized in an orthonormal We can assume

the eigenvalues are such that ~ ~ ~ ~ . - ~ ~2~- For i  n, there exist Ui,

vi with uf + vf = 1, + = ~n. Let G’ be the space generated
by the vectors uiei + For x E G’, we have ~ T(x)~2 = 03BBn I x 
Let G = T1-1(G’). For x E G, we have

and similarly À~/211 x ~ ~ 1  (X211 Since dim G > dim F, it follows from [4],
lemma 2 . 8 C that there is x0~G with ~x0~ = 1 and ~x0~1 == 1. This

shows that ~,n ~~ _ (x~. Hence !! II X 111 for x E G.

3. CONSTRUCTION

Let 03B2p be a sequence with > 1, fl j3i  1 + e. By induction over p,

we construct sets Bp of E, integers q( p), real numbers and r. v. Zp such
that the following conditions are satisfied.

( 1) B p is convex balanced; B1 is the unit ball of E ; 2,
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281ON THE DISTRIBUTION OF THE NORM FOR A GAUSSIAN MEASURE

(2) Z p is valued in a finite dimensional space ; for each 2 - p

and the sequence (Zp) is independent.
(3) If is the gaussian measure with the same covariance as Z p, then

(4) If vp is the gaussian measure with the same covariance as Xp = I Z~,
and Np is the gauge of Bp, we have for r - p, ~

(5) If (X)i are i. i. d. copies of Xp, for r _ p, we have

~p ~~tP)’p’ 
" ’ 

.

We proceed to the first step of the construction. We choose such that

q(1)  1/6, and 03B41 = follows from observations 1 and 2 that there

exists n such that 10n-l/2  5i and that

There exists d with n 1 ~2 > d > n 1 ~2/2 such that

and automatically we have

There is 1  a  2 such that

From Dvoretzski’s theorem, there is a subspace G of E and an a-isomor-
phism T from l2 to G. Let b =1/(8d) and Zl = bT(Yn).

Vol. 20, n° 3-1984.
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(2) follows from )) 2bn 1 ~2 __ 1/2.
We check (3). Since = we have

so (3) holds. Let al = 1/8. We check (4). Since ~1/b >_ 10, we have

and hence (4) holds. To check (5), we note that

so (5) follows from (12). Finally (6) holds by construction. The first step is
completed.

Let us now assume that the first p steps have been completed. There
exist two numbers 1  a  [3p and b > 0 such that for r _ p we have

We can assume b _ 2~P~~. Let c = bjq(p). Let q(p + 1) be large enough
that

= ~q( p + ~ ~l(p + 1). From observations 1 and 2, there exists n
with 5p+~ ~ 2on -1~2 and
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283ON THE DISTRIBUTION OF THE NORM FOR A GAUSSIAN MEASURE

Let d with  d  and

Let T with T3 = (a + 1)/2.
Let F be a finite dimensional space of E in which Xp is valued. We use

Theorem 1 for (E, Np). So there is a finite dimensional space G of E and
i-isomorphism T from 11 to G such that for x E G, y E F we have

We define Bp+ 1 as the closed convex hull of the set

For xeG, y E F, II [ T -1 (x) [ [ _ ~ 2, II (a - 1)/2, we have N p(x)  23,
so Np(x + y) c Np(x) + a.

In particular Bp cr Bp+ 1 c so (1) holds since a  /3p.
Moreover for xeE we have NpM.
We now propose the following fact.

Fact. - For x E G, II = i2, y G F, 11 (cc - 1)/2, we have

Np+ 1(x + y) = 1.

We already know that + y)  1. There is a linear functional 03C61
on G such that 03C61(x) = 1 1 when [ T-1(x’) [ [ -- z 2, so there
is a linear functional ~ 2 on F + G such that = 1, ~2(~) ~ 1 whenever

1, x’ E G and 4>2 = 0 on F. In If

then i, so ’[z, so ~2(x’+y’) __ 1. This
shows that Np( ~2) __ 1. So 4>z can be extended on E by with 1.

Since + y’) -- 1 for x’ E G, II z2 and y’ E F and since 4>  1

on Bp, the definition of shows that Np+ 1( ~) _ 1. As ~(x + y) = 1,
the fact is proved.

Remark. This fact motivated the choice of Bp + 1.
We set Zp+ 1 (cv) = (c/d )T(Y(co)). Now (2) follows from

Also, (3) follows from

Vol. 20, n° 3-1984.
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We now check (4). We first show that for r _ p, we have

We notice that vp + 1 is a measure on F + G, that identifies to vp @ r~ p + 1. Let

A= ~ xEG; II x II  16c ~. For ZE l2, II z II  2n1~2, we have II (c/d)T(z) II  16c.

It follows from (17) and the fact that r~p+ ~ that ~p+ 1{A) ? 1-b.
Let

For x E A, since Np+ 1{x) _ we have Np+ 16c _ 16b. For y E B,
since Np(Y)  we have

So, for xEA, YEB, we have ~ 2014 6~  + y)  ~.

It follows from (13) that

Let ap+ 1 = c/,r2. To finish the proof that (4) holds at rank p + 1, it

remains to show if

then vp+ i(H) > 2~q(p+ 1)’ Let

For

since (d/c)5p+i ~ d a p + 1 >-- 10. In particular, ~p+i(C) ~ 1/3 from (20).
Let D y ~ ~ c((x -1)/3 }. We c/6, and we can

assume --2  4/3. We then have c(oc2014l)/3 ~ 
It follows that for x E C, we have Np + i(x), so x + yEH.

Hence from ( 15), so (4) holds.
We now check (5). We first show that for r  p, we have
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We have seen that!! 8 b/q( p), so since Xp + 1= X~ + Zp + 1, we get

so the result follows from (14). To check (5), it remains to show that

We first note that for x E G, y e F, we have + y) >_ since
+ Ày) is a convex function of £ that is equal to for small ~.

Hence

and the result follows from (19) and the definition of Z. The construction
is complete since (6) holds by construction.

4. PROOF OF THE THEOREM

It follows from (2) that one can define a bounded r. v. X by X(03C9)=
For each 1, let UI be a Gaussian r. v. with the same covariance as Zi, and
such that the sequence (Uz) is independent. It follows from (3) that the
series (UI) is summable in Its sum V is Gaussian, and has the same
covariance as X, so X is pregaussian. Let  be the distribution of V.

Let N(x) = lim N p(x) and 8p = fli. From condition (1) we get

N(x)  0pN(x). It follows from (4) that for q _ p, r  p we get

Since v03C1 is the distribution of Vp = Ul, we get by letting p - 00
i i p
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and letting ~ 2014~ oo gives

It follows from (6) that condition (*) fails for ~. It follows from (5) that for

Letting p - 00 gives

In particular,

which completes the proof of the theorem.
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