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Some results on the continuity
of stable processes and the domain

of attraction of continuous stable processes
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Equipe d’Analyse, Université Paris VI, 75230 Paris

Ann. Inst. Henri Poincaré,

Vol. 20, n° 2, 1984, p. 177-199. Probabilités et Statistiques

ABSTRACT. - We study the continuity of p-stable stochastic processes
(1 __ p  2) and their domain of attraction on the Banach space C. We
can improve several recent results by weakening the assumptions of the
metric entropy conditions. We also give some necessary conditions for
the continuity of p-stable random Fourier integrals which extend results
of Nisio and Salem-Zygmund for the case p = 2.

RESUME. - Nous étudions la continuité des processus p-stables
(1 __ p  2) et leur domaine d’attraction sur l’espace de Banach C. Notre
étude permet d’affaiblir les hypotheses sur 1’ « entropie métrique » dans
plusieurs travaux récents. Nous donnons aussi des conditions neces-

saires pour la continuité des « intégrales de Fourier aléatoires » qui étendent
au cas p-stable des résultats de Nisio et Salem-Zygmund.

In [8] ] necessary and sufficient conditions are obtained for the conti-
nuity of strongly stationary p-stable random Fourier series. Methods
used in [8 ] enable us to improve upon some of the results in [1 ] [3 and [4]
relating to the continuity of p-stable stochastic processes and the charac-
terization of their domains of attraction by weakening the requirements
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178 M. B. MARCUS AND G. PISIER

on the size of the metric entropy used in these results. We do this in Sec-
tion 1. In Section 2 we give some necessary conditions for the continuity
of p-stable random Fourier series and integrals, 1 _ p  2, that are ana-

logous to the classical results of Salem and Zygmund for series in the
case p = 2.

1 SUFFICIENT CONDITIONS FOR CONTINUITY

AND THE CENTRAL LIMIT THEOREM

Let D: R + -~ R+ be an increasing convex function with O(0) = 0.
For any probability space (Q, ~ , P) we denote by L~’(d P) the so called
« Orlicz space » formed by all measurable functions f : S~ -~ C for which
there is a c > 0 such that

We equip this space with the norm
,

We define

and

We will consider the Orlicz spaces 2  q  o~. We will also be

concerned with the weak Lp,co spaces defined as follows: These are the
spaces of all real valued random variables for which P( I X > ~.) = 0(1/~,p),
1  p  2. For these spaces we consider the function

which is equivalent to a norm for p > 1.
Let (T, p) be a compact metric or pseudo-metric space. We define by

N(T, p ; E) the minimum number of open balls of radius s > 0 in the p
metric or pseudo-metric, with centers in T, that is necessary to cover T.
We define

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



179SOME RESULTS ON THE CONTINUITY OF STABLE PROCESSES

and Jq( p ; oo ) = Jq( p), 2  q  ~. The first lemma is a variant of Dudley’s
Theorem for Gaussian processes. It has been observed in various forms

by many authors.

LEMMA 1.1. - Let {X(t), be in 2  q  oo and satisfy

If Jq(p)  oo, 2  q  oo then { X(t ), t E T } has a version with continuous
sample paths and

where CPq(u) = u (log + log 1/u) 1 ~q, 2  q  = u (log + log + log 1/u),
p = sup p(s, t ) and Dq is a constant depending only on q. Furthermore,

s,tET

for any to eT

where D~ is a constant depending only on q.
Proof - This is proved in Chapter II, Theorem 3.1 [7], in the case q = 2.

As we comment in Lemma 3 . 2 [8 ], the proof for 2  q  oo is completely
similar since ( 1.1 ) implies -

Likewise, the proof when follows because in this case ( 1.1 ) implies

The next Theorem gives conditions which imply tightness for normed
sums of i. i. d. C(T) valued random variables, where C(T) denotes the Banach
space of continuous functions on T with the sup norm.

THEOREM 1. 2. - Let {X(t), a real valued stochastic process
with continuous sample paths. If p > 1, we assume that E  00

and EX(t ) = 0 for all let {X(t), be symmetric. Let
be i. i. d. copies Let r be a continuous metric

or pseudo-metric on T and define

Vol. 20, n° 2-19R4.



180 M. B. MARCUS AND G. PISIER

Then, in the notation of Lemma 1.1,

where 1 + 1 =1 2   ~, and i = sup i s t . is defined in Lemma 1.1 .
p q s,teT

Proof be defined on the probability space (Q’, ~ ‘, P) with
expectation Let { be a Rademacher sequence independent of { Xk ~
defined on the probability space (Q", F", P") with expectation operator Eg.

n

We consider n-1/p 03A3 ~k(Xk(t) - Xk(s)) defined on the probability space

(Q’ x ~" ~ ’ x FII, P’ x P") which is equivalent to (i. e. has the same
n

finite joint distribution as) (Xk(t ) - Xk(s)).

Note that by the contraction principle, see e. g. (4. 8) Chapter II [7 ], and
the fact that is convex, we have for s, t E T and co E 0’ fixed,

By Lemma 3 .1 [8] ] (and its obvious extension for this is

is a non-decreasing rearrangement 
and Cp is a constant depending only on p. Let

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



181SOME RESULTS ON THE CONTINUITY OF STABLE PROCESSES

and

By Theorem 3 . 3 [8], for c > 0

where Àp is a constant depending only on p.
In order to obtain (1.4) we note that

where we use (1 . 9) at the last step.
We now consider

and

and note that for b > 0, = Nie/b). Using (1.11) and (1.12) and a
change of variables of integration we see that

Therefore by Lemma 1.1 (1.5) (1.6) and (1.7), with p nd d as given in (1.11)
Vol. 20, n° 2-1984.



182 M. B. MARCUS AND G. PISIER

and ( 1.12) and the fact that the second and first moments of Rademacher
series are equivalent we get

where at the last step we use (1.13). Therefore

where at the last step we use (1.9). We now get (1.4) (in the symmetric case)
by combining (1.10) and (1.14). We can remove the condition of symmetry
when p > 1, since in this case, it is easy to show that for Z, Z’ i. i. d. there

exists a constant C; depending only on p such that

This completes the proof of the theorem.
We note that the proof of this theorem was suggested by Theorem 2.1 [3 ].

REMARK 1. 3. - When p ==2 (1.4) is valid if Ap( ) is replaced by
(E [ 12)1/2 in the two places where it appears. The proof is essentially the
same as the one given here but somewhat easier.
We now give a central limit theorem for stochastic processes in the

domain of normal attraction of p-stable processes. Continuing the nota-
tion of Theorem 1. 2 we say that { X(t), t E T } is in the domain of normal
attraction of a p-stable process on a Banach space B if the measures induced

n

by Xk(t) converge weakly to a stable measure on B, 1  p  2.

Annales de l’lnstÜut Henri Poincaré - Probabilités et Statistiques



183SOME RESULTS ON THE CONTINUITY OF STABLE PROCESSES

COROLLARY 1. 4. - Let { X(t ), t E T } be as in Theorem 1. 2. Let 1  p  2

and assume that

i ) The n-dimensional finite joint distributions are in

the domain of normal attraction of a p-stable measure on Rn, for all

,

ii )  o~o, and

, iii )  00.

is in the domain of normal attraction of a p-stable
measure on C(T). (The measure is determined by the limits of the finite
joint distributions in (i ).)

Proof - There is nothing to prove. Theorem 1.2 gives tightness and
this and (i ) are all that is needed for this Corollary.

REMARK 1. 5. - When p = 2 we can replace (ii ) in Corollary 1. 4 by
 oo and by J~(r). Then we get the central limit theorem

of [6]. In this case (i ) can be simplified to Ex(to)2  oo for some to E T,
since this condition and  oo imply sup EX2(t)  oo and this

tET

implies (i ) as given in the statement of Corollary 1.4. Note that by
Remark 1. 3 we also have a proof of the central limit theorem of [6 ]. When
1  p  2 Corollary 1.4 seems to be the correct generalization of this
central limit theorem. Corollary 1.4 improves upon Theorem 3 .1 [3],
in that it weakens the metric entropy condition. Theorem 2.1 [3 ], which
deals with triangular arrays can be similarly improved.
We now obtain a sufficient condition for a stable process to have conti-

nuous sample paths. Let (U, m) be a measure space where m is a positive
(7-finite measure. We say that M is an independently scattered random
p-stable measure on (U, with control measure m if the following two
conditions are satisfied :

(1.15) If k = 1, ..., are disjoint then ~==1, ... are

independent and

(1.16) There exists ap, 1  p  2 such that for all U E ~C, M(U) ~ ml/P(U)8
where 8 is a canonical p-stable random variable, i. e.

and means equal in distribution.

Let m be a finite positive symmetric measure on the boundary of the
unit ball B of C(T) centered at 0. Let  denote the Borel sets of C(T) (with

Vol. 20, n° 2-1984.



184 M. B. MARCUS AND G. PISIER

respect to the sup norm) and let M be an independently scattered random

p-stable measure on (C, ~) with control measure m. Let x E C(T) and for

fixed t E T let xt denote the value of x at t. The stochastic integral 1 XtM(dx)
is well defined and satisfies ~

for some constant Cp depending only on p. We will be concerned with the
stochastic process

which we will also denote, simply, as

Note that by using (1.17) on finite linear combinations of Z(t ) we see that
~ Z(t ), t E T ~ has stable finite dimensional distributions. We will now give
a sufficient condition for Z to have a version in C(T).

THEOREM 1. 6. - Let Z be given by (1.19) and let (T, r) be a compact
metric or pseudo-metric space. For x E C(T) define

Let 1 _ p  2, - + - - 1. Then, if 03B4)  oo for some 6 > 0, { Z(t ), t E T}
p_ q

has a version ( Z(t ), t E T ~ with continuous sample paths satisfying

for some constant Cp depending only on p.
Proof - The proof follows that of Corollary 3 . 2 [3 ] except that we use

our Theorem 1.2. Without loss of generality we assume that m(B) = 1.
Let X be a C(T) valued random variable with distribution m and let e be
a real valued random variable, independent of X, with characteristic func-

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



185SOME RESULTS ON THE CONTINUITY OF STABLE PROCESSES

tion E exp iu 03B8=exp- |u|p. Let Cp=sup upP(|03B8| > u). Using the nota-
tion of (1.3) we note that

Let { denote independent copies of B and X and let { and ( Xk ~
be independent of each other. By Theorem 1.2 and (1.22) we have

~ 

n
. 

One can check that the finite joint distributions of 03B8kXk converge
k=1

to those of Z. This fact and (1.23) shows that Z has a version with continuous
sample paths and that 0X is in the domain of attraction of Z. We get (1.21)
from simple facts on the weak convergence of measures.

REMARK 1. 7. - Theorem 1. 6 is also valid when p = 2 with Ap( )
replaced by (E I 12)1/2, although in this case the result is a simple conse-
quence of Dudley’s sufficient condition for the continuity of Gaussian
processes. Theorem 1. 6 improves upon [1 ] by relaxing the condition
on the metric entropy and extending the result to the case p = 1. Theo-
rem 1. 6 can be quite sharp. This was pointed out in [1 ] in the case p = 2
and the same argument can be used for 1  p _ 2. Consider the random
Fourier series

where 0 is p-stable, 1  p _ 2. Choose a function r(s, t ) = r( s - t ~ ) such
that u/ i (u) = 0(1) as u 1 0 and is non-decreasing for u > 0. Under
these conditions

where, as usual, 1 -I- 1 - 1, 1 _  2. B means there exist 0  C ,
p q

Vol. 20, n° 2-1984.



186 M. B. MARCUS AND G. PISIER

C2  oo such that C1B  A  C2B.) In order to represent (1.24) as a
stochastic integral of the type (1.8) we take f (u) = and m({eitk}) = |ak |p,
k = 1..... Thus

Note that  oo if log (log + log + log k) - ~ 1 + £), ~ > 0
and  oo for i( 1/k) _ (log (log + log k) - ~ 1 + E~, 2  q  E. Using
this in (1. 25) along with Theorem 1. 6 we get, for p = 1, that

is a sufficient condition for (1.24) to converge uniformly a. s. and for

1  p  2 we get that

is a sufficient condition for (1.24) to converge uniformly a. s. (The best
00

we can do, by more subtle arguments, is that I ak (log + log k)  o0

k=2

is sufficient when p = 1 and / (log  00 is sufficient

k=2 n=k

when 1  p  2. In fact these conditions are necessary and sufficient

when I ak is non-increasing.)
In the last topic of this section we exhibit certain p-stable processes

along with stochastic processes in their domain of normal attraction.
The results that we give here are the principle results of [4 ], however,
as in Theorems 1.2 and 1.6 we can weaken the condition on the metric

entropy that is used in [4 ]. Following [~] ] we define a class of random
measures that extends (1.15) and (1.16).

Let (Q, iF, P) be a probability space and (U, U) be a measurable space.
Let M = M(., be a random measure on (U, U). That is, if Ui, ..., Un E U

are disjoint sets then M (~ Ui, a) = M(Ui, co) a. s. and if furthermore
i= 1 .

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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~ 
n

[ J U~ f U then co) converges to M(U, m) in probability. We
’=~ 

~ 

"~
require that M satisfy the following properties :

(1.26) Let U~ e == 1, ..., be disjoint and let { e~ } be a Rademacher
sequence independent of M. Then { M(U~) } and { have
the same probability law;

(1.27) There exists a 1 ~ ~  2 and a real positive finite measure ~2

on (U, such that for each finite collection of disjoint sets

Ui, ..., U~ e the random vector ..., M(UJ) is in the
domain of normal attraction ..., where
the random variables 0i, ...~ are i. i. d. with

for some constant Cp.
Note that an independently scattered randomp-stable measure (see (1.15)

and (1.16)) satisfies (1.26)-(1.28). In fact, for a given control measure m
we will be interested in the corresponding independently scattered random
p-stable measure M and the corresponding class of random measures M
that satisfy ( 1. 26)-( 1. 28) for this measure m.
The definition of the stochastic integral with respect to M, given in (1.17)

and (1.18) can be extended to stochastic integrals with respect to M.
Thus for t E T we can extend (1.17) to

and define

or simply

as we did in (1.18) and (1.19). Note that Z defined in (1.19) is now a special
case of (1.31).

In the next theorem we take T = [ - 1/2, 1/2 ]n, for some integer n and

Vol. 20, n° 2-1984.



188 M. B. MARCUS AND G. PISIER

have the control measure m supported on the functions X = where

u ~ Rn so that [ -1/2, 1/2 ]n. We define, for 1  p  2,

in which the inequality follows from (1.29). We have the following theorem:

THEOREM 1.8. 2014 Fix p, 1  ,p  2 and let - + - = 1. Let m be a finite
~ ?

positive symmetric measure on C([20141/2,1/2]") supported on the func-
tions ~ ’~, Let M be a random measure satisfying (1.26)-(1.28)
for this ~ and control measure ~. Assume that

where 2  q’  q and K is given in (1.32). Then the stochastic integral

has a version with continuous sample paths and is in the domain of nor-
mal attraction of the p-stable process

where M is an independently scattered random p-stable measure with
control measure m (i. e. M satisfies’ ( 1.15) and ( 1.16).

Proof - This theorem is the same as Theorem 4.1 [~] ] except that
J2(x)  oo is replaced by (1. 33). We can use the proof of Theorem 4.1 [4]
if we only improve one point. i be disjoint sets covering the
support of m and let E Define

and

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



189SOME RESULTS ON THE CONTINUITY OF STABLE PROCESSES

We can adopt the proof of Theorem 4 .1 [4 ], to prove this theorem if we show

for some constant Dq depending only on q.
By symmetry is equivalent to

. is a Rademacher sequence independent of { i.

in (1.35) and consider only as a function 
1 1

We have for -, + -, = 1,
p q

where

(Note that for the last inequality in (1.36) we use the simple observation

that sup k1/p’( I ~k| )* _ (| ~k |*)p’)1/p’  (03A3| ~k |p’)1/p’ for any

k=1 k=1

sequence of real numbers { ~k }.) Note that by (1.28)

Therefore

Vol. 20, n° 2-1984.



190 M. B. MARCUS AND G. PISIER

and

One obtains (1.38) from (2 . 4) of Lemma 2.1 [4 ] ; (1.34) is obtained in
a similar fashion.

Let Eg denote expectation with respect to { ~a ~. By Lemma 1.1, (1. 2 a)
and (1.36) we have

Taking expectation with respect to ~ ~~ ~ and using (1. 37) and (1. 38) we
get (1. 34). (We also use the fact that for a random metric p~"

see Lemma 3.1 [8 ]). This completes the proof of the theorem.
The next theorem is a version of Theorem 1. 8 for the more general class

of stochastic processes defined in (1.30) and (1.31).

THEOREM

compact metric space and m be a positive symmetric measure supported
on the unit ball of C(T) such that

where ~ ~03C4 is defined in (1.20). Assume that

for some 2  q’  q. Let M be a random measure satisfying (1.26), (1.28)
for this p and control measure m. Then the stochastic integral

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



191SOME RESULTS ON THE CONTINUITY OF STABLE PROCESSES

(see (1.30) and (1.31)), has a version with continuous sample paths and is
in the domain of normal attraction of the p-stable process

where M is an independently scattered p-stable measure with control
measure m.

Proof - This theorem improves Theorem 4 . 4 [4 ] just as Theorem 1. 8
improved Theorem 4.1 [4 ]. The necessary changes are similar to those
in the proof of Theorem 1.8.

REMARKS 1.10. - We don’t know whether Theorems 1. 8 and 1.9

are valid with Jq( ) replacing Jq’( ). When p = 2 this is the case (see [2 ]).
The place we need q’ instead of q is in the second inequality in (1.36) so
that we can obtain (1. 37). If were independent we wouldn’t have
to do this since we could use Theorem 3 . 3 and Corollary 3 . 8 [8 ] to obtain

(This is what we do in Section 3 [8 ]).

2. NECESSARY CONDITIONS FOR THE CONTINUITY
OF p-STABLE RANDOM FOURIER SERIES

Let G be a compact Abelian group with dual group r. Let 03B8 be a cano-
nical p-stable real valued random variable, i. e. E exp iu03B8=exp- ( u p,
0  p  2. Let { 03B803B3} be i. i. d. copies of 03B8 (i. e. we index the i. i. d. copies
of 03B8 by the countable set r) and let be complex numbers. Fix a p,

1  p  2 and assume that  00. We will be concerned with

yer

the random Fourier series

Vol. 20, n° 2-1984.
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A subset A of r is called a Sidon set if there exists a constant x > 0 such
that for all sequences ( ay ~

x is called the Sidon constant of A. Now be disjoint subsets ofr.
We a Sidon partition if there is a constant K > 0 such that
any with for each j E J is a Sidon set with Sidon

constant K.

The next theorem extends Theorem VII. 1.6 [7] ] from the case p = 2
to 1  p  2. It is actually a simple consequence of Theorem VII .1. 6 [7 ].

THEOREM 2.1. - Fix a p, 1 _ p  2 and assume that the series in (2.1)
converges uniformly a. s. (or, equivalently, has a version with continuous
sample paths). Then for any Sidon partition { Aj }j~J of r we must have

or, for p = 1, we must have

where Lx = max (1, log x).

Proof Fix p, 1  p  2. Without loss of generality we will assume

~ = 1. Let m be a probability measure on r such that m( { y ~ ) = lay ~p.
yer

We now recall a useful representation of p-stable processes that was used
in [8 ]. be i. i. d. copies of Y where P(Y > ~,) = e - ~, ~, >_ 0 and
define rj = Y1 + ... + Yj. Let { ~k ~ be a Rademacher sequence inde-
pendent of { Consider v as a random variable with values in r dis-

tributed according to m and let { be i. i. d. copies of v. The series

is equivalent to the series in (2.1), (i. e. they have the same finite joint dis-
tributions).

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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We can now prove the theorem. Fix { and { v~ ~ and consider (2. 4)
as a Rademacher series. If (2.1) converges uniformly a. s. then (2.4) must
converge for { hJ ~, ~ v~ } in a set of measure 1. Therefore, by Theorem 1. 6,
Chapter VII [7] we must have

on a set of measure 1. It follows from Lemma 1. 4 [8 ] that

where 8~ is a non-negative canonical p/2 stable real valued random variable,
Cp/2 is a constant and ~~~~~ denotes equal in distribution. Furthermore { 8~ ~
are i. i. d. (This follows from Lemma 1. 4 [8 ] by using characteristic func-
tions ; see the proof of Lemma 1. 5 [8 ] as well). Therefore the convergence
a. s. of (2.5) is equivalent to the convergence a. s. of

Using the Three Series Theorem we see that for 1  p  2 (2. 6) converges
a. s. if and only if (2 . 2) holds, while for p = 1, (2 . 6) converges uniformly a. s.
if and only if (2. 3) holds. Considering the relation between (2. 5) and (2.6)
we have proved the theorem when 1  p  2. The case p = 2 is Theo-

rem 1. 6 [7].
We will now extend Theorem 2.1 to locally compact Abelian groups.

This will enable us to obtain necessary conditions for the existence of

continuous p-stable random Fourier transforms (i. e. stochastic integrals
on the character group). For the remainder of this paper we take G to be
a locally compact Abelian group, r its dual group and K ~ G a compact,
symmetric, neighborhood of the identity in G. Following [8], Defini-

tion 6 . I, a subset A = ~ yn ~ is called a topological Sidon set with
respect to if there exists a constant C > 0 such that

Now, let { J } be disjoint subsets of r. We say that { is a topo-

Vol. 20, n° 2-1984.



194 M. B. MARCUS AND G. PISIER

logical Sidon partition with respect to KeG if all subsets ~ y~ / j E J ~
with y J E A J for each j e J are topological Sidon sets satisfying (2. 7).
Let m be a a-finite positive measure on r. Fix d  p  2 and let M be

an independently scattered random p-stable measure on r with control
measure m (i. e. M satisfies (1.15) and (1.16)). The stochastic integral,
referred to just before (1.17) will now be denoted

THEOREM 2 . 2. - Let 1  p  2. Suppose that the stochastic integral
in (2.8) has a version with continuous paths, which we will also denote
by (2 . 8). Then for each topological Sidon partition { AJ j E J } we must have

and, for p = 1, we must have

Note that Theorem 2. 2 contains Theorem 2.1. In order to prove Theo-
rem 2.2 we will need the following lemma which is a generalization of
Theorem 1.6, page 131 [7].

LEMMA 2. 3. - Let ~ A~ ~ be a topological Sidon partition of r with
respect to K c=: G and let r’ be any countable subset of r. be

complex numbers. Then we must have

/V~ B1/2
where p = p(s, t) = ~ y(t ) - y(s) ( 2 , s, t E K, J2(p) is as defined

yer’

just before Lemma 1.1 but with respect to the compact pseudo-metric
space (K, p) and B is a constant independent and r’.

Proof To prove this lemma we extend the proof of Theorem VII . 1 . 6
in [7]: be a topological Sidon set with respect to K and

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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with constant C. Then there exists a constant (3 depending only on C and K
such that for all finitely supported scalar sequences { ~.~ ~ we have

where we have denoted by mK Haar measure restricted to K and by 
the corresponding Orlicz space as defined in § 1 (this definition still makes
sense if P is not a probability measure, equivalently, we can always nor-
malize so that ~(K)== 1.) Note that (2.12) extends (1.29), Chapter VII [7 ].
To verify (2.12) it suffices to show that there exists a constant /3’ such that
for all p > 2

(cf. e. g. [7], p. 90). This can be shown by following a classical argument
of Rudin, which we sketch for the convenience of the reader. Since { E J}
satisfies (2. 7) then, a fortiori, for all choices of ( ~~ ~, with ~~ _ + 1

Therefore, the linear map E can be extended to a linear map

~ : C(K) --~ C by the Hahn Banach Theorem such 
and Vj E J, ( ~, y~ ~ _ ~~. Therefore for each choice of 
with ~~ _ + 1, there exists a measure ,ua supported by K such that

and

Now let

and

We have

By the convexity of the LP-norm

Vol. 20, n° 2-1984.



196 M. B. MARCUS AND G. PISIER

Finally we average the last term of (2.15) over all choices of signs { ~~ ~
and obtain, by Khintchine’s Inequality,

where P’ is a constant depending only on K and C. This establishes (2.13)
and consequently (2.12).
Using (2.12) in place of (1. 29) p. 131 [7] we can obtain, in place of (1.28)

p. 131 [7] ]

We now consider theorem 1. 6, p. 131 [7]. Replacing (1.28) in [7] by (2.16)
and using ~ A~ n in place of ( we have that

for some constant C, where Xt is defined on page 132 [7]. It then follows
from Theorem 3.1, page 25 [7] that

(The unfamiliar notation in (2.17) is from [7].) By definition

Also since

it follows from (2.1;?), with = a03B3/ 
// 

03A3 |a03B3|2)
1/2 

that/ B 
03B3~Aj~0393’
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Here ~3 and are constants independent and r’. These final remarks

and (2.17) complete the proof of Lemma 2. 3.

Proof of Theorem 2 . 2. We first consider the case p = 2. Without loss
of generality we can take the control measure m that determines the sto-
chastic integral in (2.8) to be a probability measure. Let { yk 1 be an i. i. d.

sequence of random variables with values in r each one distributed accor-

ding to m. Let us consider one particular realization of this sequence and
denote it by { i, (cv E Q, the infinite product space generated by m).
Consider

By (2 .11 ) we have

where

Note that

Using this along with Lemma 3.6, p. 37 [7] and ( 1. 7), p. 52 [7] (or more
generally Lemma 2. 3, p. 22 [7]), we have

for some absolute constant B’ (i. e. B’ may depend on G and K but it does
not depend on { A~ ~ ). It follows by the Dudley-Fernique theorem (see [7]
for references) that (2 . 8) has a version with continuous paths iff  oo.

Thus we get

for some constant C independent of n. By the strong law of large numbers
(2 .18) implies (2. 9) when p = 2.
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The proof in the cases 1  p  2 is easier; it is essentially the same as
the proof of Theorem 2.1. The series in (2.4) (for t E K) is equivalent to (2 . 8)
when { are i. i. d. according to the new control measure m. If we use
(2.11) in place of (1.29), p. 131 [7] ] we get

on a set of measure 1 with respect and { vk }. As in Theorem 2.1

for C p/2 and 8~ as in Theorem 2 .1. The result now follows as in Theorem 2 .1.
As an application of Theorem 2 . 2 we obtain a result of Nisio [9 ]. Let

G = Rand K = [ - 1, 1 ]. Consider

where M has control measure m, which we take to be symmetric, in the
sense that m( ~ ~. E (0, a) ~ ) = m( ~ ~~ ~, E ( - a, 0) ~ ). Let

Both { o and { o are topological Sidon partitions. Using Theo-
rem 2 . 2 first with ~ A~ ~ and then with { B~ ~ we see that if (2.19) has a ver-
sion with continuous paths then necessarily

Now since (2 .16) has a version with continuous paths if and only if

has a version with continuous paths (see Theorem 1. 3, p. 10 [7]) we get
Nisio’s result: If the real valued stationary Gaussian process (2 . 21) has
a version with continuous paths then (2.20) must hold.
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