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Calcul des Probabilités et Statistique.

ABSTRACT. - A result concerning conditional symmetries of symmetric
p-stable laws  on R2 is proved.  is said to be conditional symmetric w. r. t.
a real number c, if for all Borel sets Bl, B2

is valid.

It is given a characterization of conditional symmetric stable laws.

This result is then extended to R .

RESUME. - Pour des lois p-stables p dans R2, un résultat sur des syme-
tries conditionnelles est prouvé.  est dit conditionnellement symétrique
par rapport à un nombre reel c, au cas où vaut

pour tous les ensembles Borel Bi, B2.
On obtient une caracterisation de lois stables conditionnellement syme-

triques. On peut étendre ce résultat a Rn.
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58 W. LINDE AND P. MATHE

1. INTRODUCTION

All measures on Rn are assumed to be finite and they are defined on the
Borel subsets of Rn. A measure p is said to be symmetric if

for all Borel subsets B eRn. If a > 0 then is defined by

Given 0  p  2 the symmetric measure p is said to be p-stable if for
arbitrary 03B1, 03B2 > 0 the equality

holds where y > 0 can be calculated by yP = aP + ~p.
Let us denote by R p(n) the set of all p-stable symmetric measures on R’~.
Given Il E R2 (2), i. is Gaussian on R2, there exists a real number c

such that

provided 1 
= 0 } = 0.

One may ask now whether or not measures in Rp(2), 0  p  2, possess
the same property (+) as Gaussian ones. A first result in this direction
was proved by M. Kanter ( [1 ]) in 1972 : If (X, Y) is a random vector whose
distribution belongs to Rp(2), 1  p  2, then there is a constant c E R with

Here E(Z ~ X) means the conditional expectation of Z under the condi-
tion X. Later on A. Tortrat ([6]) stated the following theorem: For each
J1 E Rp(2) there exists a constant c E R such that ( + ) holds. Unfortunately
this is false in general. Thus the two following questions remained open :

(1) Which ~u E Rp(2) satisfy ( + ) with some e E R ?
(2) Is every ,u E Rp(2) invariant under some reflection ?
The purpose of this paper is to answer both questions. We hope that
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59CONDITIONAL SYMMETRIES OF STABLE MEASURES ON R"

these results clarify some geometric properties of p-stable symmetric
measures, 0  p  2, which are completely different from those of Gaus-
sian measures (compare also [3 ]).

2. AUXILIARY RESULTS

In the sequel p always denotes a real number with 0  p  2. If  is a
measure on Rn its characteristic function fi: C (field of complex
numbers) is defined by

Then the following are equivalent ([2]):

for all a = (at, ..., an) ERn.
(3) If ) ) . ) is a norm on Rn, au the unit sphere defined by this norm then

there is a measure A on au such that

The measure on au is called the spectral measure of . It is uniquely
determined in the following sense: If A also generates fi as in (3) then

for all Borel subsets B ~ 3U. Particularly,

whenever B = - B ~ ~U is measurable.

As a consequence of the uniqueness we get :

that

Vol. XIX, n° 1-1983.



60 W. LINDE AND P. MATHE

for all (a 1, a2) E R2. Then

and

the second equality is an easy consequence of the first one. 
and as mappings from Q and Q’ into R2, respectively. If !.!! (
is the Euclidean norm on R~ we put B == { 0 } x { 1, -1 } c~ aU. Then

Let ,u be in R p(n). Then we denote by Xl, ..., Xn the random variables
defined by

PROPOSITION 1 ( ~5 ~~. - Let p be in Rp(n) with

Then, f 1  k, l  n, the random variables Xk and Xl are (stochastically)
independent i~ and only if

- Clearly, 0) == 1 implies the independence of X~
and Xl .
To prove the converse it suffices to treat the case n = 2. This follows

by projecting Rn onto R2. Thus we assume that ,u belongs to Rp(2) with

(i) We enclose the proof of proposition I because the inequality used in [5] (p. 419)
is false in the case 1  p  2.
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61CONDITIONAL SYMMETRIES OF STABLE MEASURES ON R"

and Xi and X2 independent. Then

where

with e 1 = (1,0) and e2 = (0, 1). By lemma 1 we get

proving P( f 1 . , f ’2 ~ 0) = 0 .

COROLLARY 1 ( [6 ]). - Let {Y1, ..., Yn) be a random vector whose dis-
tribution belongs to Then it is independent if and only if it is pairwise
independent.
The next proposition is a slight modification of a theorem due to

Rudin { [4 ]). Originally it was formulated for complex valued random
variables.

PROPOSITION 2. - Let f and g be two real valued random variables with
.f, g E Lp(Q, P). If

for all real t numbers a then

Proof We want to reduce the real version of Rudin’s theorem to its
complex one. To do so choose a complex number z = a + if3. If yi, y~
are independent standard Gaussian random variables it follows

for all E o’. Multiplying both sides with p by integrating with
respect to OJ’ we get

Vol. XIX, n° 1-1983.



62 W. LINDE AND P. MATHE

proving

for all complex numbers z. Now, proposition 2 follows by Rudin’s theorem.

Remar~k. - Rudin’s theorem remains true for all p E (0, oo) with

p ~ 2, 4, 6, ....
The formulation of our main result requires a representation theorem

for the characteristic function of measures in Rp(2).
PROPOSITION 3. - ,u belongs to Rp(2) if and only if there are a finite

measure 6 on R with E t ~ pd6(t )  oo and a real number b > 0 such that

Moreover, ~ and b are uniquely determined.

Proof Of course, ,u belongs to RF(2) whenever its characteristic func-
tion can be represented in this way. Now, let J1 be in Rp(2) with characte-
ristic function

Defining a and b by

and

we get a representation of fi as stated in the proposition. It remains to
prove that a and b are uniquely determined. Because of proposition 2 it

suffices to show that b is uniquely determined. But this easily follows from
lemma 1 above.

In view of proposition 3 we may write ~ ~ (cr, b) whenever

for all a == E R2.
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63CONDITIONAL SYMMETRIES OF STABLE MEASURES ON Rn

3. p-STABLE MEASURES INVARIANT
UNDER REFLECTIONS

Let ,u be in Rp(2) and let c be a real number. Then J1 is said to be condi-
tional symmetric with respect to c if

for all Borel subsets Bi, R.

We denote in the following the matrix

by T~. Then fl is conditional symmetric with respect to c if and only if

p. Without loss of generality we can and do assume

supp = R2

since otherwise fl is concentrated on an 1-dimensional subspace. Those
measures are conditional symmetric. We start with a formula for the cal-
culation of c provided it exists. Besides it proves that c is uniquely deter-
mined.

l.f 0  p  1 then c E R is the uniquely determined real number with

for some (each) q c p.

If a = ( l, a) this implies

Vol. XIX, n° 1-1983.



64 W. LINDE AND P. MATHE

for all a E R. Consequently, by proposition 2

for all Borel sets B ~ R. If q > 1 then the integral

exists and

which proves the first part of proposition 4.
Now we choose B = ( - oo, c). Then the second equality is satisfied.

Moreover, if oc then

because of supp (,u) = R2. Thus c is uniquely determined by the second

equality.
Now we are able to prove the main result of this section.

PROPOSITION 5. - Let ,u ~ (0", b) in R p(2) be given. Then T~(,u) _ ,~ if
and only f = a where = 2c - t.

Proof: - The equality = 6 implies fi(a), a E R2, i. e.

~~

On the other hand, then = 6 because of (h~(6), b)
by the uniqueness of the generating measure on R.

COROLLARY 2. - Let p be in R p(2). Then T~(,u) - ,u f and only if
p = v * Tc(v) for some v E Rp(2).
Proof 2014 Given  E Rp(2) with Tc( ) = p such that  ~ (a, b) we define v

by v ~ ( p, b/2) where

Then J1 = Tc(v) * v. The converse follows immediately.

REMARK 1. - Using proposition 5 it is rather easy to construct

measures ,u in Rp(2) with for all ceR. Thus, theorem 2 of [6] ]
is false.

Annales de 1’Institut Henri Poincaré-Section B



65CONDITIONAL SYMMETRIES OF STABLE MEASURES ON R"

REMARK 2. - If with ~ ~ (6, b) then c can be calculated by

provided the integral exists (for instance if p > 1).

REMARK 3. - Corollary 2 is a special case of a more general result
proved by the second named author.
The equality means that p is invariant under a very special

reflection. But as we saw not every measure in Rp(2) has this property.
Thus it is very natural to ask whether or not each measure in Rp(2) is inva-
riant under an appropriate reflection. It turns out that this is not true in

general. We give an example of an element in Rp(2) which is only invariant
under some trivial linear mappings, namely under the identity map and
under the transformation mapping x onto - x.
To construct such an example we need the following proposition :

PROPOSITION 6. - (a, 0) be in Rp(2) and let

be a matrix. Then T(~) _ ,u if and only if

and

for all Borel subsets B ~ R.

Proof Because of

provided T(~c) _ ~ ~ (6, 0) (lemma 1). Then either or

there is a t ER with 

Since we assumed supp T( ) = supp ( ) =R2 the mapping T must be

Vol. XIX, n° 1-1983.



66 W. LINDE AND P. MATHE

an automorphism. Consequently, the second case cannot happen prov-
ing (1). (2) is an easy consequence of proposition 2.
The converse follows immediately.

PROPOSITION 7. - Let p E Rp(2) be defined by

Then T(,u) _ ,u implies either

Proof - Assume T(~c) _ p. Then, if tl == 1, t2 = 1/2 and t3 = - 1,
for each k, k = 1, 2, 3, there exists a uniquely determined tj, j =1, 2, 3,
such that

(03C421 + 03C422tk)/(03C41 1 + 03C412tk) - tj and |03C411 + 212tk 1 - 1 .

By some easy calculations it follows that this is possible if and only
if L 21 == 03C412 = 0 and T 22 = + 1.

This proves proposition 7.

4. REFLECTIONS IN Rn

The purpose of this section is to extend some results of the third section

to the n-dimensional case. As in [6 ] we only investigate measures in R p(n)
for which the first n -1 coordinate functionals ..., Xn - I are indepen-
dent. Let c = (ci, be given. Then we define an n x ~T
matrix Se by

We want to investigate measures 11 in Rp(n) having n - 1 independent
coordinate functionals such that

for arbitrary Borel sets B 1, ..., R.
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67CONDITIONAL SYMMETRIES OF STABLE MEASURES ON R"

The following was stated in [6 ], Let  be in with X 1, ..., 
independent. Then there is a vector c = (c 1, ... , c,~ _ 1 ) such that = p.
But this is false in general. This follows for instance by proposition 9 below.

Let us start with a representation theorem for measures having n - 1
independent coordinate functionals.

PROPOSITION 8. - Let 11 be in Rp(n) with Xi, ... , Xn _ ~ independent.
Let Vi in Rp(2) be the distribution of Xn), 1  i  n -1, and let vn be the
distribution of Xn on R. T hen -

Proof - Assume.

If Ai = ~ 5~ 0 ~ by proposition 1

Putting

we get

This proves proposition 8.

PROPOSITION 9. - Let ,u and V 1, ..., i be defined as above. Then

,~ if and only if

Vol. XIX, n° 1-1983.
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where c = (e 1, ..., cn- 1) and

Proof - Because of

by proposition 8 we get

provided that

To prove the converse we fix i with 1 1. If

and proposition 8 it follows

Then the quotient

is independent of a. Choosing a = - f3 - 2ci03B1n we get

Since > 0 we have = 1 for each 

Consequently,

and

This proves proposition 9.
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