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1. INTRODUCTION

In [4] the problem was raised wether the fact, that a Banach space E
does not have ¢, as a spreading model, implies that L?([0,1]; E) has the
same property. [t was conjectured that the answer is no, as the property
of not having ¢, as a spreading model is somewhat dual to the Banach-
Saks property (see [2]) and for this latter property J. Bourgain has cons-
tructed a counterexample ([3]).

The present author has constructed independently of J. Bourgain another
space E with the Banach-Saks property and L*(E) failing it ([6]) and it
turns out that the dual E’ gives a counterexample to the problem raised
in the title.

2. THE EXAMPLE

Lety = { n, n,, . .., n ; anincreasing finite sequence of natural numbers.
Write n;= 2"+ v, where this expression is unique, if we require that < ;< 2",
As in [6] we associate to every n; the real number t(n;)=v;/2* € [0, 1] and
call y admissible if

(1) k < n,.
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2 W. SCHACHERMAYER

(2) For every 0 < j < 2“*! there is only one i such that #(n;) € [j/2*: %1,
( + 12m*1L

For an admissible 7 = (ny, ...,n) and xeR®™, the space of finite

sequences, we define .
| xIl, = lenil‘
i=1

For our purposes it will this time be convenient, not to use interpolation
but to follow Baernstein’s original definition ([/]): For xe R™ define

. 1/2
Il xle = sup {(Z Il x Hi) }
1=1

where the sup is taken over all increasing sequences { 7, };2; of admissible
sets (i. e. the last member of y, is smaller than the first member of y,, ;).

Let (E,|| [|g) be the completion of R™ with respect to this norm. In
an analogous way as in [6] we shall show that E has the Banach-Saks
property, i. €. that it does not have a spreading model isomorphic to I*;
we shall also show that E’ does not have a spreading model isomorphic
to co. In fact we shall prove a much stronger result.

PrROPOSITION 1. — a) Every spreading model based on a normalized
weak null sequence (x,); of E is isomorphic to I*.

b) Every spreading model based on a normalized weak null sequence
(Y= of E’ is isomorphic to [2.

Proof. — a) Let (x,)2-, be a normalized weak null sequence in E. As
(x); converges to zero coordinatewise, we may assume (by a standard
perturbation argument) that the x,’s are supported by disjoint blocks, i. €.
there is an increasing sequence (r(n));-; of natural numbers, such that

with 70) = 0 N

Xn = }.E-")ei .
i=r(n—1)+1
Then for every sequence oy, ..., % of scalars and n; < ... <mn, the
estimate
k k
1/2
H Z aixni g <Z ' ai |2> (1)
| E
i=1 i=1
holds trivially in view of the definition of || . ||g.
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CLASS OF BANACH SPACES 3

For the converse let 1 > ¢ > 0 and choose inductively an increasing
sequence (1)i=; in N and infinite subsets M, of N: Let My=N and n, =1
and suppose M, _, and n, are defined. Let p, be such that 2P~ 1 < r(n;) < 27«
and consider the partition of [0,1[ into the intervals [j/27%, (j+ 1)/*7],
j=0,...,2%"1 For n=n, define

W = max {| 20| 2 i) e /27, G + 1y2° [}

Note that, for every n,

2Pk—1
j=0

in view of the definition of the norm of E and the fact that || x, ||[g = 1.
Find an infinite subset M, of M,_; n [m + 1, m + 2, ..., oco[ such that
for every j =0, ...,27 — 1 the sequence (u!”),.q, converges, to u; say.
Clearly

2rk—1

=0
Finally let M, be the subset of M, consisting of those n for which for
every j=0,...,2% — 1
u < 4 277 g/3
and let n,,, be the first element of M,. This completes the induction.

Note that for an admissible y = (my,...,m,) and ke N such that
inf (y) = m; < r(n,) and for every choice of scalars oy, ..., %4

1
“ E Xt i Xy
i=1

Indeed, as m, < r(n,) < 27, we see that y may contain for every
j=0,...,2P 1 at most one index m, (1 £r < q) with t(m,)e [j/27, (j+ 1)/27[;
by construction the m,’th entry of each x,, . (1 < i < I)is bounded in absolut
value by u; + 277<.¢/3. As the x,, are disjointly supported we get

I
‘ Z O+ 1 Xy, (1)
i=1

Summing over j and recalling the definition of || .||, we get the first
inequality of (2), while the second is trivial.

1

1/2
g(1+s/3>1s3igl{|ak+i|};/Ha(Zwkw) @
! o 1

i=

< sup. {logail } (uj + 27P%.¢/3)
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4 W. SCHACHERMAYER

We now shall pass to the general case. Fix a sequence a,, ..., of
scalars. We shall show

-k
'IZ “ixni
i=1

which (in view of (1) and the arbitrarness of ¢ > 0) will readily prove (a).
So fix an increasing sequence y; < 7, < ... < y, of admissible sets. For
brevity we write

K
§\/6+38.(Z|(x,~]2)1/ 3)
i=1

k

X = % O(ixn‘_ .

i=1

For i =1, ...,k let J(i) be the set of je {1, ...,1} such that the last ele-
ment of y; lies in Jr(n;_ ), r(n))]. If J(i) is not empty denote j(i) the first ele-
ment of J(i) and let s(j(i)) be the element se { 1, ..., k }, such that the first
element of yj, lies Jr(n,_,, r(ny)]. Note that for the jeJ(i),j > j(i) the
first and the last element of y; lie in Jr(n;_,), r(n;)], while for j(i) in general
only the last element lies in ]r(n;_), r(n;)]. So we may estimate

(Zuxnsj)”z -( Z S o)

i=1 jeli)
MOEX
k
1/2
2
N < Z <||x”§j“) + Z HXHYJ))
i=1 Jeld
LOEX"] Jj> i)
i .
. 2 1/2
- ( z <H Z asxns + Z ” aixm Hﬁj(n))
Vi)
i=1 s=5(j(i)) Jjel@)
I+ @ J>j
k i—1
2
<
= < Z << H as(j(i))x"s(j(i)) H'Yj(i) + 'I 2 asxns + ” aixni H’)‘j(i))
i=1 s=sG) +1 7

1/2
+ Z ” aixni ”)%j(i))) .

Jel()
J>J)
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CLASS OF BANACH SPACES 5

Using (2) and the fact that (a2 + b2 + ¢¥?)> < 3(|a|+|b|+|c|) we get

k % i—1 é_
2 2
= ( z <<< I s Fnsgiciy “y,-(,-,) +J1+ 3( z | o | )
— s=sG)+1
0P 1
1\2 2
F ) + ) e i,)
jelt)
J>j)
k i—1 1
- 2
= ( 2 3( | otg(jany P+(1+e 2 log|? + Z I[ 0t ”«i-(,»)>
i=1 s=s(j(i)+1 Je @)
1i)# 0

k 1
2
§<3(1+1+s)2|ai|2>
=1
k 1

2
=./6 + 38.(2|0€i|2> .
i=1
Hence we have proved (3) and thus part (a) of proposition 1.
Proof of (b). — 1t is easily seen using (a) that the unit vector basis (e;){Z ,
of E is shrinking and boundedly complete (see [/] or [6]), hence the dual
unit vectors (e}){2 ; form a basis of E’. So let ( y,);% ; be a normalized sequence

tending weakly (and therefore coordinatewise) to zero. Similarly as in (a)
we may suppose that there is an increasing sequence (#(n)),-; such that

r(n
Yn= pie; -
i=r(n—1)+1
Now choose a sequence (x,)2; in E, || x,|| = {x,, y,» = 1, which
clearly implies that x, is of the form
rin
Xy = AMe; .
i=r(n—1)+1

As in the prove of (a) find a subsequence (n,);=; such that (x,,)¢= spans
a space /6 + ¢ isomorphic to .
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6 W. SCHACHERMAYER

Now fix a sequence 3y, .. ., B, of scalars and find a sequence «;, . . ., o

such that
k

k k 1
Z|°¢i|2=1 and Zaiﬁi=<}:lﬁilz> .

i=1

X = Zaixn‘,
i=1
k
y_z Biyni'
i=1

Ixlle = /6 +e.

I ylle =sup {I<E ) EeE (1€ =1}
Z(6+¢ "<xy>]

= (6 + 8)_1/2 . Zaiﬁi < xnka ynk >

Denote

By (a) we know that

Hence

i

=1
k 1
2
=6+ 8)‘”2<ZI w) .
i=1
On the other hand the reverse inequality

g
Iy lle é(ZIﬁi|2>

is again easily checked directly from the definition of || . ||5. This proves (b)
and therefore proposition 1. O

Remark. — Consider the sequence of unit-vectors (ey._;)<2; in E
(resp. (€5n—4);%; in E).

It may be checked that every spreading model based on (e;._;)%,
(resp. (e5n_4);=,) is isometric to a countable [?-sum of 2-dimensional I'’s,
hence in this case the Banach-Mazur distance equals precisely ﬁ

To show that L*(E’) does have ¢, as spreading model we need a trivial
probabilistic lemma, whose proof is left to the reader.

LEMMA. — Let ke N and ¢ > 0; there is N(k, ¢) such that for M > N(k, ¢)
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CLASS OF BANACH SPACES 7
and for independent randomvariables X,, ..., X, taking their values in
{1,...,M} in a uniformly distributed way, we have
{w:thereis 1<i<j<k with }
P <e
Xi(w) = X{w)
PropOSITION 2. — L. 1(E)has ¢, isometrically as spreading model.

Proof. — Similarly as in [6] we let { }”u >_, be an independent sequence
in L*(E’) such that f; takes the value e,.,, with probability 27 (for
v=0,...,2* — 1). This times the e,..,, are unit-vectors in E’".

Clearly || f,: 2@y = 1 and for every sequence u; < u,<...<u, and

8i: i 1 X
S
i=1

Hence the following claim will prove the proposition.

1

=
L2(E")

Cram. — For every ke N

k
1Lmsup{ “28i]_’;i’1:u§ul<...<uk}:1
umo = Sl:__‘—_l

To prove the claim fix k and ¢ > 0 and let u be such that
2* > max (k, N(k, ¢)), where the N(k, ¢) is defined in the preceeding lemma.
Now fix u<u, <u,<...<u and a sequence of signs g, ...,&,.

To apply the above lemma let X, .. ., X, be the random variables with
values in {1,...,2""} defined by

X{o)=m i  fuo)=eu;,,

and
t2% + v) = v/2%e [(m — 1)/2m*1;  m2u Tt

1t follows form the above lemma and the definition of admissible sets y

that there is a subset A < [0, 1[ of measure greater than 1 — ¢ such that

for weA the set y, = { ny,...,n } corresponding to the indices of the

unit vectors { f,:l(a)), RV f,,k(w)} is admissible. Hence for w € A we have

\Zsjui(w) ,=sup{<Eeiﬁf<w),x>:nxns 1}

i=1
< sup { <zaiﬁi(w),x > lxll,, 1}

= 1. i=1

lIA

=

IIA
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8 W. SCHACHERMAYER
Integrating we obtain

k k k
Nk R 2 R 2
” Z&-JZE = J Zﬂf(a)) do + f <Z Il Ju ”E’) dw
— L2(E’) Al 4 E’ (0,104 \ &

<1+ k%.
This proves the claim and therefore proposition 2. 0
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