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Section B :

Calcul des Probabilités et Statistique.

RESUME. - Ce travail concerne les processus de branchement marko-

viens critiques comprenant un ensemble general de types et possédant
un semi-groupe de moments uniformément primitif au sens de [3 ]. Pour
démontrer le théorème limite exponentiel pour un tel processus, il faut

qu’un parametre dependant de la fonctionnelle du deuxieme moment

factoriel soit fini et positif. En permettant a ce parametre d’etre infini
et en utilisant une fonctionnelle linéaire particulièrement dependant de la

probabilité de survie comme normalisation, on obtient un théorème limite
conditionnel avec des conditions nécessaires et suffisantes. On montre

également, que si cette condition n’est pas satisfaite, il n’existe pas de

normalisation qui donne une loi limite non degeneree et propre. Les

résultats s’appliquent aux processus à d types avec un temps discret ou
continu, aux processus de branchement soumis a une diffusion simple ou
multiple sur les domaines bornés ainsi qu’a d’autres modèles.
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252 H. HERING AND F. M. HOPPE

0 . INTRODUCTION

Consider a critical Bienayme-Galton-Watson process {Zn}. If the
second factorial moment 2J1 of its offspring distribution is positive and
finite, the process becomes eventually extinct, P(Zn > 0) ~ (,un) -1, n ~ 00,
and > 2.) ) Zn > 0) - e-03BB, n - 00, 03BB ~ 0. In case ,u = 00

there is a necessary and sufficient condition on the tail of the offspring
distribution under which P(P(Zn > 0)Zn _> /-! Zn > 0) converges, as n - oo,
to a non-trivial distribution function; see [12 ], [13 ], [15 ], and for the exten-
sion of this result to d-type processes [1 ], [2 ], [14 ]. In an unpublished part
of his doctoral dissertation, which he kindly made available to us, R. S. Slack
has given a negative answer to the question, whether there exists a norma-
lization, necessarily different from P(Zn > 0), which leads to a proper
non-degenerate limit, if this condition is not satisfied. The argument is

long and cumbersome.
In this paper we treat critical branching processes with a general set of

types, whose moment semigroup is uniformly primitive in the sense of [3 ].
This setting includes positively regular d-type processes with discrete or
continuous parameter, simple or multigroup branching diffusions on

bounded domains with various boundary conditions, and related models.
The exponential limit theorem in this general framework is standard. For
its final form see [4 ], [5 ]. It requires that a certain parameter involving
the second factorial moment tunctional be positive and finite. We now
let this parameter be infinite and prove a corresponding limit theorem with
necessary and sufficient conditions. We also show in general that up to a
trivial factor a certain linear functional of the survival probability is the
only normalization leading to a proper, non-degenerate limit distribution.
The paper is organized as follows. In section 1 we define the model,

and in section 2 we present our results, deferring the proofs of the three
theorems to later sections. In section 3 we reformulate the crucial tail

condition appearing in the theorems in terms of processes with a branching
law. Sections 4, 5 and 6 contain the proofs of the theorems, and in the
appendix we collect without proof several results on slowly or regularly
varying functions. Some basic relations and conditions, we keep referring
to throughout the paper, are labelled in a suggestive way by letters instead
of numbers. Except condition (S), which is introduced in section 2, all

of these are defined in section 1. Results in the appendix are referred to
as A.1 to A. 4.
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253CRITICAL BRANCHING DIFFUSIONS

1. SETTING

The setting is the same as in [4 ]. Let (X, 9t) be a measurable space,
~ the Banach algebra of all bounded, ~-measurable, complex-valued
functions ç on X with supremum-norm ~03BE~, £3+ the cone of non-negative
functions in ~,

Let >_ 1, be the symmetrization of the direct product of n disjoint
copies of X and X~°~ := { 0 } with some extra point 0. Define

and let ~ be the o-algebra on X induced by 9t.
For 03BE ~ J set

and suppose to be given a branching transition function with type-

space (X, 8l), that is, a transition function A) I X ~  with parameter
set T = or T = (0, oo), whose generating functional,

satisfies the branching condition,

for t E T Defining Ft ~ --~ ~ by

Vol. XVII, n° 3-1981.



254 H. HERING AND F. M. HOPPE

it follows from (F .1) and the Markov property that

That is a semigroup, the so-called generating semigroup.
Let 0(x) = 0 and 1M = 1 VxeX, and define for 03BE ~ B

Suppose that for ç = 1 and thus all ç E f!À

is bounded as a function of x E X for every fixed t E T. Noting that

it follows by (F. 2) that { Mt is a semigroup of linear-bounded operators
on E3. We assume that the following condition is satisfied :

(M) The moment semigroup {Mt}t~T can be represented as

where p E (0, 00 ),

with "1>* : B ~  non-negative, linear-bounded, 03C6 E B+, and 1>* = 1,
further 0~ : ~ ~ ~ such that for all t E T

with a, : T --~ !R + satisfying

Given Mt : ~ -~ ~, there exists a mapping R~(’)[-]: ~ 0 ~ -~ ~,
sequentially continuous respective the product topology on bounded
regions, non-increasing in the first variable and linear-bounded in the
second, such that

Annales de l’Institut Henri Poincaré-Section B



255CRITICAL BRANCHING DIFFUSIONS

cf. [4] ] [5 ]. Keeping t E T and ~ E J+ fixed, Ri(q) is by definition a linear-
bounded operator on E3. We assume that the following condition is satisfied :

(R) For every t E T there exists a mapping gt : Q+ - ~ such that

The problem of existence and construction of Markov branching pro-
cesses, i. e., Markov processes with a branching transition function, has
been extensively treated in [6], see also [10] ] and section 3 below. The
conditions (M) and (R) are empty, if X is finite and Mt primitive. This is a
direct consequence of Perron’s theorem on primitive positive matrices.
For infinite X both, (M) and (R), are non-trivial : A simple counter-example
is homogeneous branching Brownian motion on R. However, for branching
diffusions on bounded domains, (M) has been verified quite generally,
cf. [3 ], [5 ]. Conditions implying (R) for processes which can be constructed
from a Markov process on X, a termination density, and a branching
kernel, can be found together with branching diffusion examples in [4 ], [5 ].
Again, see also section 3 below.

2. RESULTS ..

It is tacitly assumed that (M) and (R) are satisfied with p = 1. Then

is constant as a function of t E T, 0 : ~  oo, cf. [4 ] . Noting that

Pix, {03B8})=Ft(,0) and that, in consequence of (F .1 ), Ft[0] is non-

decreasing in t, define

Quite generally either  = 0 and Pt(x~, X(1») --_ 1, that is, q = 0, or
0  ,u  oo and q = 1. If q = 1 and J1  oo, it is well-known that

and for

cf. [4 ]. We are now interested in the case that 

Vol. XVII, n° 3-1980.



256 H. HERING AND F. M. HOPPE

We begin with some preparatory results. Define

and let c (0, oo) be such that ct - 0, as t - 00. the
Laplace-Stieltjes transform of Q~ {c~[~] ~ 1 ) ) is given by

PROPOSITION. - The limit

exists for all x EX"" { 8 ~ if and only if

exists, and if these limits exist, then

The proof is immediate from (F .1 ) and the following lemma.

LEMMA. - For every t E T there exists a mapping ht : ~+ --~ ~ such
that

where 1>* [1 - Ft [~ ] ] > 0 for all t E T and r~ E n ~ 1>* [1 - r~ ] > 0 } .
For the proof of this lemma see [4 ], [5 ]. Define

and note that - 1, as t - oo, by (F. 2), (FM), (M) and (R) with

PROPOSITION. - If ~’~ with Ct == at exists for some ç E ~+ with 1>* [ç] ] > 0,
then it exists for all 03BE E B+ and

Proof - Fix u > 0. Using (F. 2), (FM), (RM) and (M) with p = 1, we
can choose for every 8 > 0 a 5 E T such that for all t E T n (5, oo),

Annales de l’Institut Henri Poincaré-Section B



257CRITICAL BRANCHING DIFFUSIONS

Similarly, drawing also on (R), we can find for every B > 0 a ~ E T and
a to > 6 such that for all t e T n (to, oo)

Since by assumption, a-1t03A6*[1 - ] converges to a limit conti-
nuous in u > 0, further - 1, as t ~ oo, it follows that

converges to the same limit. Now reverse the argument, using again the
continuity in n and the fact that ç enters only through the numerical
factor 1>* [ç] ] of u. D
From now on q = 1 and J1 = 00. A crucial role will then by played by

the following condition :

with 0  a  1, independent of t, and Lt(s) slowly varying as s 1 0.

Using (F. 2), (FM), (RM), (M) and (R) with p = 1,

Hence, if (S) holds for some ~ ~ T, it is satisfied for all ~ ~ T, and by the
uniform convergence property for slowly varying functions,

THEOREM 1. - If (S) is satisfied, then for all ~~ ~ 8

where L* is slowly varying at infinity, and

where D has the Laplace-Stieltjes transform

The proof will be given in Section 4 below. Setting

Vol. XVII, n° 3-1981.



258 H. HERING AND F. M. HOPPE

with some measurable decomposition { 1 ~ y ~ n of X and applying (2. 3),
we immediately obtain the following :

COROLLARY. - If (S) is satisfied, then for any measurable decomposition

with D as in Theorem 1.

More intuitively, is a Markov process in (X, with transi-
tion probability Pt, then (2.7) means that

where W has the d. f. D.

THEOREM 2. - If for some ç E ~+ with ~* [~ ] > 0 and all x E X

where D ç is non-degenerate, admittedly defective, then (S) is satisfied.
The proof will be given in Section 5 below. Suppose now that J1 = 00

with (S) not satisfied. Does there exist a normalization (Ct)teT leading to a
non-trivial, proper conditional limit d. f. ? 

_ 

-

THEOREM 3. - Suppose for some for all x E X

where is proper and non-degenerate at zero, then

The proof is to be found in Section 6.

3 CONDITION (S) IN TERMS

OF THE BRANCHING LAW

Throughout this section T = (0, oo). is constructed from a

transition semigroup { on f!Ã, a termination density k, and a branching
kernel x, there exist not only sufficient conditions for (M) and (R) in terms
of these components, but also an explicit representation of [3 ], [4], [5].
We now derive a corresponding form of (S)..

Annales de l’Institut Henri Poincaré-Section B



259CRITICAL BRANCHING DIFFUSIONS

Let { be a transition semigroup on PÀ, not necessarily conservative,
let and define {T~} as the transition semigroup obtained as the
unique solution of the semigroup perturbation equation

Let 7T = A) be a stochastic kernel on X (8) ~ with bounded first moment
operator m,

and define f as the generating mapping of x,

Since

there exists exactly one set of mappings Ft : Y  E T, satisfying the

non-linear perturbation equation

Using the semigroup property 

Hence, by uniqueness, {Ft} is a semigroup. Representing ] as the

limit of the iteration sequence of (3 .1 ), beginning with 0, it is easily verified
that 

.

(a) for every finite, measurable decomposition {A03BD}1~03BD~n of X,
is analytic in (si, ...,  1, with non-negative

coefficients, 
,

(b) F~ [q ] is sequentially continuous in ~ with respect to the product
topology on .~.
Given (b), (a) is equivalent to

Vol. XVII, n° 3-1981.



260 H. HERING AND F. M. HOPPE

(a’) Ft is analytic on J with non-negative Frechet derivatives on J+.
Finally, again by uniqueness, ] = 1 for all t E T.

Let us call a semigroup on ~ with fixed point 1 and properties (a) (or (a’))
and (b) a pre-generating semigroup. Clearly, every generating semigroup
is a pre-generating semigroup. For the reverse some restrictions on (X, 8l)
are needed to ensure the applicability of standard extension procedures
in the construction of measures on (X, ~t). The topological structure

assumed in the subsequent remark is sufficient. However, leaving aside
technical convenience and conditions coming in via verification of (M),
all we really need in this paper is a pre-generating semigroup.

Remark. The above construction of ~ is to be interpreted as follows.
Assume that (X, 9t) is a locally compact Hausdorff space with countable
open base and Borel algebra. be the transition semigroup of a
right-continuous strong Markov process {xt} on (X, 91) with life time i
and trap 3, possessing left limits for t  i. In particular, {xt} could be a
diffusion with (or without) absorbing barriers. Then { T° ~ is the transition
semigroup of a process {x0t} obtained from {xt} by curtailing the life

time with termination density k, using a second trap A in case of termina-
tion before i. Given that k and m are bounded, { and x uniquely deter-
mine a conservative, right-continuous strong Markov process on (X, #)
constructed to the following intuitive rules: All particles at a time move
independently of each other, each according A particle hitting 3

disappears, a particle hitting A is instantaneously replaced by a population
of new particles according to ), where XtA - is the left limit of the

path at the hitting time io of A. The transition function of this process has
the branching property, and writing down the strong Markov property
respective the time of first absorption or branching yields (3.1) for the
corresponding generating semigroup, cf. [6], [lo ].

In analogy to (FM) we expand

with 0 = _ m~, (1], ç) @ ~+, and the same continuity
properties of r as stated in section 1 for Rt.

PROPOSITION. be a pre-generating semigroup determined by
a system [Tt, k, ~c ] with bounded k and m. Suppose that (M) is satisfied and
that there exist constants c and c* for which c03C6 and

Annales de l’Institut Henri Poincaré-Section B



261CRITICAL BRANCHING DIFFUSIONS

Then (S) is equivalent to

where L(s) is slowly varying as s ,~ 0, in fact

For the proof we need the following two facts :

( 1 ) Linearization of (3 .1 ) in the fixed point ~=1 results in the linear per-
turbation equation.

for the moment semigroup {Mt}. Again, by boundedness of km, the
solution of (3.5) is unique.

(2) The assumptions of the Proposition imply that (R) is satisfied uni-

formly in t E [a, b ] for any fixed a > 0 and b  oo, cf. [4 ], [5 ].

Proof of the proposition. By (3 . .1) and (3 . 5), solves

By (3 . 5), so that O*[T~°j] K 4$* [j], j e k+. Hence, using
r(~)~ ~ m~, (n, ~) E ~+ 0 ~+, and (3.2),

and using the last inequality of (2.4),

From (3.5) and

Then, using the first inequality of (2.4),

Vol. XVII, n° 3-1981.



262 H. HERING AND F. M. HOPPE

Assuming (S), set 1/§,~, := From (3.6-3. 8)

Choose t, E, and v in this order. It follows that lim inf~o (1. h. s.) > ~.°‘.

Similarly, lim supu~0 (1. h. s.)  03BB03B1. That is, (S) implies (3.3).
Now assume (3 . 3) and define y~(.s) := 1,

Then by induction, using (2.4) and (3.6-3.8),

Fixing t, n, £ in this order leads to lim sups!O (1. h. s.) ~ ~. Similarly,
lim infs~0 (1. h. s.) > 03BB03B1. That is, (3. 3) implies (S).
The same estimates also yield (3.4). D

4. PROOF OF THEOREM 1

LEMMA. - Given (S),

Proof. - It suffices to prove that for every ~ ~ T

The continuous-parameter result then follows by the monotonicity of ar
in t and that of RE(~) in ç. Without loss of generality 8=1. Let

Annales de l’lnstitut Henri Poincaré-Section B



263CRITICAL BRANCHING DIFFUSIONS

Then using (FM), 1 = (in - and by the mean value theorem

with some 8n, 0  en  1. Thus

Clearly, A~ -~ a. By the uniform convergence
property of slowly varying functions, 1, and by (2.2), Dn  1.

Hence

Cesaro summation completes the proof. D

Proof of theorem 1. - From (4 .1 ) and (S)

It suffices to consider £ > 1. By the monotonicity of at

In the notation of the preceding proof, A(av) ’" ((xv) B v - oo, so

that for sufficiently large t

with c independent of t. Hence, by the uniform convergence property,
- 1, thus ~, -1 ~«, i. e., at = t - I ~«L*(t), L* slowly varying

at infinity. In case T = Fl we have made use of A. 2 at this point. Recalling
(F .1), we have (2 . 5).
We now prove (2.6). Fix 1 > 0 and set

Vol. XVII, n° 3-1981.



264 H. HERING AND F. M. HOPPE

As we have seen in Section 2, it suffices to show that

Pick 8b 82 e(0, 1). Since 0  at 1 0, we can choose u(t) - oo, as t - oo,
such that

By (2.2) for sufficiently large t

Using (FM), (RM), and 1 - e~ - x(1 + O(x)), x ~, 0,

From the second inequality in (4.3) and (4.4)

From this and (4.5)

Similarly, there is some r(t) - oo, t - oc, such that for sufficiently
large t

and from this

Combining (4.6) and (4.7), we arrive at

Using (FM) and (2.2),

Hence, by (4.3),

From this, by (4.1) and the uniform convergence property of slowly varying
functions,

Annales de l’lnstitut Henri Poincaré-Section B



265CRITICAL BRANCHING DIFFUSIONS

Also by (4 .1 )

Proceeding as in the first part of the proof, ~ 1, so that,

by (4 .1 ), (4 . 9),

Similarly,

Applying 1>* to (4.8), then using the last two relations, and finally letting
81,82 ~ 0 yields (4 . 2), thus completing the proof. D

5. PROOF OF THEOREM 2

PROPOSITION. - The hypothesis of Theorem 2 implies

where 0  a ~ 1 and L1 is slowly varying at infinity.

Proof - Step I. - We show that

Let À E [0, 1 ] and for convenience ( ( § ) = 1. Define

Since the derivative A’(~,) is concave,

and from this

That is, B(À) is non-decreasing and (1 - /.)B(~) is non-increasing. Hence,
for 0 ~ Â1  /2  ~

With 21 := 1 and ~,2 := 1 - an+ 1

Vol. XVII, n° 3-1981.
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By (FM) and (2.2), 1. Furthermore, for such that
11  ~ we have

so that

Hence,

Recalling the definition ofBM and once more applying (5.3) yields (5.2).

f Step 2. - We show (5 . 1) with some 03B1 not necessarily in (0, 1 ]. According
to A. 3 it suffices to show that > 0 for every We proceedby induction. That is, we assume Cj > 0 and proceed to

1 > 0. Define

By (2. 2) there is for every e > 0 an no such that for 

That is,

By hypothesis and the Proposition preceding the statement of Theorem 1,
converges, as n - oo, to a function continuous in t > 0. Since

the family {03C8n} is equicontinuous, so that the conver g ence is uniform
on compact t-intervals not containing 0. Hence, letting n - 00 in (5.4)yields

Now let ~ --+ 0, and recall the non-degeneracy assumption.
Step 3. - It remains to show a E (0, 1 ]. By Step 1 it suffices to verify

/ ~ ,-"

Annales de l’Institut Henri Poincaré-Section B



267CRITICAL BRANCHING DIFFUSIONS

Using (FM),

Hence, if £ > 1,

so that, by Step 2,

Similarly, with %, i 1,

Proof of theorem 2. It suffices to derive (S) with t = 1. The proof
is the same for any other t E T. For 0  s  ai we can choose £ = ~(~) E T
such that

Then

Multiplying through by ~,, applying (5 . 3) and (5 . 5), then letting s 1 0
leads to

From the preceding Proposition

From this, by A. 4,

where LZ is slowly varying at infinity. By definition of £, a~,~s~/s - 1, s - 0.
Thus, by the uniform convergence property, L2(ljs), s - 0.

Substituting t = ~(~) yields

Combined with (5.6), this completes the proof. D

Vol. XVII, n° 3-1981.



268 H. HERING AND F. M. HOPPE

6. PROOF OF THEOREM 3

The assumption is that for some 

where T* is the Laplace-Stieltjes transform of a proper d. f., non-degenerate
at zero. We shall repeatedly use the fact that the convergence in (6.1) is
automatically uniform on bounded u-intervals.
The aim is to prove ct/at - y where y > 0. Since we can assume without

loss of generality that ct is monotone, we may restrict ourselves to the
case T = N. In fact, and ci is monotone,

so that, if ~ y, also ct/at ~ y.

LEMMA 1. Suppose for some m, n : ~! -~ N with m(k), n(k) ~ 00, as

Then

and vice versa.

Proof - It suffices to prove the explicitly stated direction. Clearly
Ke [0, 1 ]. First let Ke(0, 1). We are done, if we can show y,
where y is the (unique) solution of 1 - ~P*(y) = K. Suppose, for some
subsequence { k’ ~ c { k ~~ , - /. ~ y. If 7  /.  oc, then, using
(2. 2), for some s > 0 and sufficiently large k’,

so that ’

and thus K > 1 - T*(y + 8). On the other hand, K = 1 - ~*(y), so that
+ 8) > ~F*(y), which is impossible. Similarly the assumption that

0  ~  y leads to T*(y 2014 s)  ~P*(y), which again is impossible. Hence,
~=y.
Next let K = 0. Then it suffices to show that 0. Suppose the

latter is not the case. Then, for some 8 > 0 and some subsequence

Annales de l’Institut Henri Poincaré-Section B
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~ k’ ~ c {~}, > E > 0, and thus, by (2. 2), for some 6 > 0 and
sufficiently large k’,

that is,

Since the quotient on the left tends to K = 0, we have a contradiction.
Hence, 0.

The case K = 1 is handled similarly. D
such that

Then oo, and in view of (6.1),

LEMMA 2. - There exists a sequence n’ : Fl with n’(n) -~ 00, as
n -~ 00, such that tends to a finite positive number, as n ~ 00.

Proof Define

Then, using (2.2) and convexity,

so that

Hence, there exist de [c2, c] ] f~, n’(n) - 00,
such that

Then, by Lemma 1, as n - oo,

and from this, by (6 .1 ),

i. e., - a. From this, again by Lemma 1,

Vol. XVII, n° 3-1981.



270 H. HERING AND F. M. HOPPE

which, by (6 .1 ), implies

Lemma 2 implies that cn/ an can tend neither to 0 nor to oo. In addition,

so that

Assume the cn to be normalized in such a way that

so that, in particular, M:= - + ) - 1. If --~ 1 there exist a
1  K ~ 00 and i : N, i(n) ~ 00, such that ci/ai ~ K.

LEMMA 3. If there exist K > 1 and i : N with i(n) -~ n - 00,
such that ci/ai ~ K, n ~ 00, then

Proof - Under the hypothesis of the lemma

Defining

it follows by induction that, for every N,

Since g is concave, non-decreasing with g(0) = 0, and g’(0 + ) = M/K  1,
we have

Using (6 .1 ), this implies

so that

Annales de l’lnstitut Henri Poincaré-Section B
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LEMMA 4. Under the hypothesis of Theorem 3

Proof - Using (6 . 2), Lemma 1, and the fact that ~ +1/~ - 1, as n - oo,

and from this, by (6 .1 ), -~ ~’ * 1 ( 1 - c) = 1. D

LEMMA 5. Let be a subsequence of such that ci/ai ~ K  00

as n -~ 00. 1 f K is sufficiently large, then

Proof - In the proof of Lemma 3 we had

Setting N = 2, 3

Hence, by (6 .1 ),

Suppose K* > (2K) 1. Then, by the monotonicity and concavity of W*,

so that, by (6. 3), c  2/K. For sufficiently large K this is impossible. Hence
K* (2K)’~ and thus

LEMMA 6. Suppose 1, as n -~ 00, and K > 2/c. Then there
exist subsequences and of such that

Proof - Set n E Fl. Since an+ - 1 and, by Lemma 4,

Vol. XVII, n° 3-1981.



272 H. HERING AND F. M. HOPPE

also 1, as n - oo, there exists an increasing sequence of

integers M(n) such that for N > M(n)

Since lim sup there exist N(n) >_ M(n) such that > K, and
since lim inf yn = 1, there exist > N(n) such that

Let j(n) - 1 be the largest integer smaller l(n) such that y~~n~ _ 1 >_ K. Then

that is,

By Lemma 5 this implies > K for sufficiently large n. By definition
of j(n), any integer mE [ j(n), ] satisfies 1/~  K, so that 2j(n) > 
Now let ~(~) 2014 1 be the smallest integer larger than such that 1  K.

Then  m(n) _ 2j(n) and

that is,

Proof of theorem 3. - Suppose -h 1 and let K, l(n), and m(n)
be as in Lemma 6. Then, since an+ l/an - 1, as n - oo, and

-~ 1, as in the proof of Lemma 3, ~~)/~(n) ~ 1- ’P*(l) == c.
From -~ K, on the other hand, ~3/~2  K - 2.

Hence, C4 ::;; K - 2. Since we can choose K arbitrarily large, this contradicts
c > 0. Thus -~ 1, as n - 00. D

Annales de l’Institut Henri Poincaré-Section B
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APPENDIX

SOME FACTS ABOUT REGULAR VARIATION

We compile here for convenience, and without proofs, useful properties of regularly
varying functions which we have used. In addition to the references cited in each instance,
there is a thorough treatment with proofs in the book by E. Seneta [11 ].

DEFINITIONS. - A measurable real function L(x) defined on [a, oo) is called slowly
varying at infinity if it is positive and for each i~ > 0

A measurable real function R(x) is regularly varying at infinity with exponent aE( - oo, oo)
if it is of the form for some slowly varying L.

It is enough for (1) to hold for À in an open interval, and more over the convergence is
uniform for À in any finite interval [a, b ], 0  a  b, [11 (uniform convergence property).
We say that R(x) is slowly (regularly) varying at 0 if R(l/x) is slowly (regularly) varying
at oo, and by translation of the origin we can define slow (regular) variation at any point.

A .1. (Lamperti [8 ]). Suppose that f (x) > 0 and f’(x) exists for x E (0, c), c > 0. Then

implies

where L is slowly varying at 0. Conversely, if (3) holds and f’(x) exists and is monotone
near 0, then (2) is true.

A. 2. (Rubin and Vere-Jones [9 ]). Suppose that f (x) is non-decreasing for x E (0, c)
and { 0~ ) is a sequence of positive reals tending to 0 in such a way that 1  C  00.

If

for all I in some bounded interval then f (x) is regularly varying with exponent a.

A. 3. (Slack [13 ]). Suppose that f (t) is decreasing to 0 as t - 00, f (n + 1)/ f(n) - 1
as N 3 n - oo, and for each integer k > 2

exists and is positive. Then f(t) is regularly varying at 00.

A. 4. (Kohlbecker [7], Lemma 3). Suppose that L is slowly varying at 00, 0  a  1,
and u is sufficiently large. Then there exists an asymptotically (u - oo) unique func-
tion Su such that 

where L* is slowly varying at x.
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