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Bochner property in Banach spaces
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Section B :

Calcul des Probabilités et Statistique.

ABSTRACT. - This paper is a study of the relation between the geometry
of Banach spaces and the topological solutions to Bochner-type theorems.
We obtain two theorems which extend some results of Sazanov, Gross,
Mustari and Kuelbs.

(1) A real separable Banach space E with b. a. p. is of stable type p and
embeddable in LP [0, 1 ] (and hence in P)) iff the continuity of a
positive definite function 03A6 (with 03A6(0) = 1) in a certain topology defined
on the topological dual E’ is a necessary and sufficient condition for c~
to be a characteristic functional of a Borel probability measure on E.
(Here 0  p  2).

(2) A real separable Banach space E is of cotype 2 iff the equicontinuity
of a family { a E I ~ of characteristic functionals in the topology gene-
rated by the Gaussian ch. f ’s is a sufficient condition for the corresponding
family { 03B1, a E I} of Borel probability measures on E to be tight.

0 . INTRODUCTION

In this paper we introduce the following property of real separable
Banach spaces.

BOCHNER PROPERTY I. - A real separable Banach space E is said to
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2 U. NAIK-NIMBALKAR

have Bochner Property I if there exists a topology T on its topological
dual E’ such that a positive definite function C with 0(0) = 1, is continuous
in T iff it is a characteristic functional (cf. f.) of a probability measure on
the borel sets B(E) of E.
From the results of Sazanov [28], Gross [70] ] and Mustari [23], it

follows that a real separable Banach space is isomorphic to a Hilbert
space iff it has Bochner Property I with respect to topology i generated
by the ch. F. ’s of Gaussian measures. Our purpose here is to study embed-
dable Banach spaces with bounded approximation property (b. a. p.)
which have Bochner Property I with respect to topology Tp generated by
forms associated with ch. f. ’s of stable measures of order p. A complete
characterization of such spaces can be given. Since a real separable Hilbert
space is embeddable and has b. a. p. this work constitutes an extension of
the result mentioned above.

In ( [22 ], Theorem 1 c)) Mustari has shown that embeddability in P)
is a sufficient condition for real separable spaces with b. a. p. to have Bochner
Property I. We observe that the main tool of his proof is an inequality
first proved by Levy for which the above two hypotheses of embeddability
and bounded approximation property seem to be tailor-made. In order
to bring this point across, using techniques of [13 ] we give a simpler proof
of Mustari’s result in Section 2. This proof together with results of [19] ]
enable us to obtain explicit topological solutions for Banach spaces with
a certain geometric structure.

In section 3, using a result of it is shown that Banach spaces having
Bochner Property I with respect to certain explicit topologies are necessa-
rily embeddable in P), giving a partial converse of Mustari’s result (1).

In the final section we consider a related problem. We denote by T2 the
topology on E’ generated by ch. f. of Gaussian probability measures.
Sazanov and Prohorov’s [2~] ] [25] ] result shows that for real separable
Hilbert spaces, the equicontinuity in T 2 of ch. f. ’s of a family of probability
measures implies the tightness of the family. It is shown that the validity
of this result, in fact, characterizes the cotype 2 spaces, a class larger than
the class of Hilbert spaces.

1 PRELIMINARIES AND NOTATION

A « Banach Space » E will mean a real separable complete normed
linear space with norm II We will denote its topological dual by E’.

addendum.
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3BOCHNER PROPERTY IN BANACH SPACES

A Banach space E is said to be ofRadcmacher type p if for every sequence
00

{ x~} ~ ci E  oo we have converges a. e., where { ~ }
zLj i

is a sequence of i. i. d. Bernoulli random variables

A Banach space E is said to be of cotype 2 if for every sequence xi j c E
satisfying 03A3XiEi converges a. e. we have £ ) ) ~xi~2 is finite.

1.1. REMARK . Spaces of Rademacher type 2 and cotype 2 can be
equivalently defined by replacing the Bernoulli random variables by the
standard Gaussian r. v. (i. e. variables having ch. f. e - t2). We will use this
definition.

A Banach space E is said to be of stable type p, 1  p  2 if for every
sequence {xj}~j=1 1 c E with 03A3~xj~p  oo we have 03A3Xj~j converges a. e.

where ~~ are i. i. d. symmetric stable r. v. of index p (i. e. the ch. f. of each ~~
is of the form exp (- I tiP) for real t). For p = 2, this notion is equivalent
to Rademacher type 2.

It is known that an analogous definition of stable cotype p, 1  p  2
does not restrict the class of Banach spaces, since if ~~ are i. i. d. symmetric
stable r. v. of index p, 1  p  2, then the a. e. convergence of implies

is finite.

For the definitions of Gaussian, stable and infinitely divisible distribu-
tions on a Banach space E, and also for some properties of their ch. f. we
refer the reader to [19 ].
A sequence of probability measures { n} on B(E) is said to converge

weakly to the probability measure p on B(E) if for every

bounded continuous real valued function defined on E. If J1n converges
weakly to J1, we write J1n ~ J1. For other concepts related to the weak
convergence of measures we use the terminology as in [4 ].
A Banach space E is said to be embeddable in a linear metric space Y,

if there exists a linear topological isomorphism of E into Y.
We denote by J1) the equivalence classes of real valued measurable

functions where functions equal ,u a. e., are identified. (Throughout this
work we consider /l) with p a probability measure and the topology
Vol. XVII, n° 1-1981.



4 U. NAIK-NIMBALKAR

to be that of convergence in probability.) For 1  p  oc, LP(Q, is the

Banach space (with norm II consisting of all f E J1) such that

We denote this space by LP if Q = [o, 1 ] and  is the Lebesgue measure
and by lp if Q = Z+ (the natural numbers) and J1 is the counting measure.

Let T denote the embedding of E into P) (with (Q, P) a probability

space). Then = defines a continuous complex-valued

positive definite function on E and hence a cylinder measure Pp on E’
( [3 ], Expose 1. 2). It has been a folklore that the embeddability of E in

P) is equivalent to the accessibility of norm of E with respect to a
positive definite function, as introduced by Kuelbs in [13 ], (i. e. there exists
a real continuous positive definite function on E, with ~(0) = 1, such
that for any g > 0 we have 1 - ~(x) > where

> 0). For the sake of completeness we include the proof of this equi-
valence here.

Suppose norm of E is accessible by the continuous, real-valued positive
definite function ~, with 0(0) = 1. It is known that C is a ch. f. of a proba-
bility measure ,u on cylinder sets of the algebraic dual Ea of E. Define
T : E - J1) as

Then ~’ is an embedding.
Conversely suppose ~’ is an embedding of E into P). Without

loss of generality we can assume that for each x E E, is a symmetric
random variable and is of the form where ~I’ embeds E into a subset

of symmetric random variables of some P’), and V is a uniform r. v.
on [ - 1, 1 ] independent of { T(x), x E E ~ , Then the norm of E is accessible

with respect to the real-valued positive definite function Rp(x) = 

Suppose not, then for some go > 0 and for each positive integer n, there
exists an Xn E E such go but 1 - 0. Now

Annales de l’Institut Henri Poincaré-Section B



5BOCHNER PROPERTY IN BANACH SPACES

We note that ~’(xn) being symmetric, its ch. f. = is real

valued. Thus from (1.2) we get that "

This implies that there exists a subsequence {fnk} such that fnk(t) - 1

a. e. (lebesgue) in [ - 1, 1]. By ( [17 ], p. 197) we get that - 1 for all

real t, which in turn implies that ~ 0. Thus --~ 0 in proba-
bility, therefore, xnk - 0 in E since ~’ is an embedding. This contradicts
that !! go for all n, and thus we get the result.

2. BOCHNER PROPERTY I

Throughout this section we will assume that E is embeddable in P)
and has bounded approximation property. E is separable and has bounded
approximation property means that there exists a sequence of finite dimen-
sional operators {03C0n, n E Z+ } such that II 0 for each x E E.
We will denote by 03C0’n the transpose of nn-

Let ~’ be the embedding of E into P), such that norm of E is acces-

sible with respect to P’I’(x) = Then with the above notation
we get, ~

2.1. LEMMA (Levy Inequality). - Any probability measure p on E
satisfies the following inequality, given ~ > 0 there exists an h(g) > 0
such that

Using norm accessibility by P~ and Chebychev’s inequality

where denotes the probability measure on E’ with the finite
dimensional support (nm - 

Vol. XVII, n° 1-1981.



6 U. NAIK-NIMBALKAR

Since the measures involved above are probability measures and the
function is jointly measurable by Fubini’s theorem we get

Note that Rp being real valued all integrals above are real. This completes
the proof.
Given a set F of functions on E’, we denote by TF the smallest topology

with respect to which exactly all functions in F are continuous. In particular
for the next lemma we take F = Fo = ~ ;u ~ J1 belongs to a subclass of
symmetric probability measures on E, which is closed under convolution }.
Then for the corresponding topology a subbasis of neighborhoods
at zero is given by the E > 0 ~ , where

2 . 2. LEMMA. - If E has bounded approximation property and is embed-
dable in P) with embedding ’, then the continuity in Tpo of a positive
definite function C, with 0(0) = 1, implies

Proof Since ~ is continuous in given g > 0, there exists a (5 > 0
and a symmetric probability measure v with v E Fo, such that

Using the fact that Re (1 - ~( y)) ~ 2 for all y E E’ we get,

Thus

Annales de l’Institut Henri Poincaré-Section B



7BOCHNER PROPERTY IN BANACH SPACES

x I I -~ 0 for all x e E and P,~ is continuous, thus

giving

but g is arbitrary and thus we get the result.
We observe that if a function on E’ is continuous in then it is sequen-

tially weak-star continuous. This and the above lemmas lead us to Theo-
rem 2.4, for the proof of which we need the following concept related to
the concept of tightness.

2. 3. DEFINITION ( [1 ], p. 279). - A family { 03B1 : 03B1~I} of probability
measures on (E, B(E)) is flatly concentrated if for every G > 0 and 03B4 > 0
there exists a finite dimensional subspace M of E such that

2.4. THEOREM. - If E is embeddable in P) for a probability
space (Q, P), and has bounded approximation property, then every positive
definite function C, with ~)(0) = 1 and continuous in is a ch. f. of a

probability measure on E.

Proof - We use the notations as defined above. We have noted that ~
is sequentially weak-star continuous. Hence its restriction to every finite
dimensional subspace of E’ is continuous. Thus there exists a cylinder
measure po associated with C. Let J1n = ,uo~n 1, then for each n, is a Borel

probability measure on E having finite dimensional support nn(E) and
P-n(Y) = ~(~n( Y))~ Using (2 .1 ) we get the Levy inequality, given ~ > 0,
there exists h(~) > 0 such that

By Lemma (2.2) we have

Therefore

Vol. XVII, n° 1-1981.



8 U. NAIK-NIMBALKAR

Thus for g > 0, g’ > 0 there exists a finite-dimensional subspace nno(E)
of E such that sup n { x III (I -  E’ giving { n}n~Z+ is

flatly concentrated.
Now as C is sequentially weak-star continuous and  ~cn y, x ~ -~ ~ y, x >

for each xeE, we get that (;un( Y) _ )~(~n Y) converges pointwise to ~( y).
It also follows that restriction of c~ to each one-dimensional subspace
of E’ is continuous.

Thus by ( [1 ], Theorem 2 . 4, p. 280) we get the existence of a probability
measure /1, such that p(y) == ~( y).
The above theorem includes a simpler proof of a result of Mustari

([22], Theorem 1 c)), which we restate in Corollary 2 . 5.

2 . 5. COROLLARY. - If E has bounded approximation property and
imbeds in P), then E has Bochner Property I.

Proof In Theorem 2.4 we take the set Fo to consist of ch. f. of all

symmetric probability measures on E.
The continuity in iFo of a ch. f. of any probability measure p follows

from the inequality I I - 2  2(1 - Re ;u( y)) and the fact that Re ;u( y)
is the ch. f. of the symmetric probability measure v given by

We next show that for embeddable spaces with bounded approximation
property and of Rademacher or of stable type p, we can get topologies
of the form TF where F can be described explicitly.

2 . 6. COROLLARY. - Let E be of Rademacher type p embeddable in

P) and have the bounded approximation property. Let G be a
symmetric measure on E satisfying,

i) G is 6-finite on E with G { 0 ~ =. 0 and finite outside every neighbor-
hood of zero,

satisfying i) and ii) } .
Then if a positive definite function ~, with ~(o) = 1 is continuous in 

it is a ch. f. of a probability measure on E.

Annales de l’lnstitut Henri Poincaré-Section B



9BOCHNER PROPERTY IN BANACH SPACES

Proof - We note that Fp is the set of ch. f. ’s of symmetric non-Gaussian
infinitely divisible measures on E from ( [19 ], Theorem 4. 6), and also
closed under convolution. The result now follows from Theorem 2.4.
Next we consider topologies associated with symmetric stable measures.

We will denote by Tp (for pe [1, 2 ]) the topology iF obtained by taking

as v varies through the set

of measures for which  oo . Let Tp be the topology LF
obtained by taking F to be the set of ch. f. of all symmetric stable measures
of index p on E. Then in general Tp is weaker than Tp [30 ], and coincides
with Tp if E is of stable type p by ( [19 ], Theorem 4. 7. Also [2 ]). From the
same theorem it follows that if E has Bochner property I with respect
to Tp, then E is of stable type p. We also note that under Tp, E’ is a topological
vector space.

2.7. COROLLARY. - If E is of stable type p, embeddable in L~(Q, P)
and has bounded approximation property, then E has Bochner property I
with respect to Tp, 1  p  2.

We note that the convolution of two symmetric stable measures
is again a symmetric stable measure. Thus by the above comments and
Theorem 2 . 4 it only remains it show that every ch. f. is continuous in i p.

Suppose fl is the ch. f. of a probability measure p on E. i. e.

Then

Since ,u is a probability measure on E, given ~ > 0, there exists a compact

set K c E such that K > 1 - ~ . Therefore
2

Let v be the measure on E such that for all A E B(E), v(A) = J1(K n A).

Vol. XVII, n° 1-1981.



10 U. NAIK-NIMBALKAR

Thus

and

Hence is continuous in Tp.
It is well known that fl is positive definite and ;u(o) = 1.

2. 8. REMARK . - The fact that Tp gives a necessary topology is true
without any assumptions on E.

2 . 9. COROLLARY. If E is of Rademacher type p, 1  p  2, and has
bounded approximation property and is embeddable in P), then E
has Bochner Property I with respect to TF .

Proof By Corollary 2 . 6 it is enough to show that ch. f. of any proba-
bility measure /1, is continuous in TFp’
From ( [21 ], p. 79) E is of Rademacher type p implies it is of stable type q

for all q  p. Therefore by Corollary 2.7 E has Bochner Property I with
respect to iq. Thus given ~ > 0, there exists a symmetric stable measure v
of index q and a ~ > 0, such that Re (1 - fl( y))  ~ whenever 1 - v( y)  6.
We will show that v belongs to Fp. It is known [30] ] that

where 03BB is a finite measure on the boundary T of the unit ball of E. Since

(cos ts - | q for a constant Cq (0  Cq  oo) ) ([15],

p. 205), we get

Identify E = T x [0, (0) and defines measure on B(E) as in ( [19 ], p. 323)
by

and

Anriales de l’lnstitut Henri Poincaré-Section B



11BOCHNER PROPERTY IN BANACH SPACES

Let G = 1 (Gi + then G is symmetric, finite outside every neighbor-2
hood of zero, and

which is finite since q  p.

Finally since G is symmetric we get

giving veFp. Thus fl is continuous in iFp.

3. BOCHNER PROPERTY I WITH RESPECT TO 03C4p
AND T~

In this section we prove the converse of Corollaries 2 . 7 and 2 . 9 (without
bounded approximation property), thereby obtaining a relation between
the structure of Banach spaces and explicit topological solution to

Problem I.

3.1. LEMMA. - If a real separable Banach space E is not embeddable
in LP then there exist sequences ( Ui} and {Vi} in E such that

Proof - A separable (closed) subspace of a LP(Q, /l) for an arbitrary
measure p is embeddable in LP, since by ( [6 ], Lemma 5, p. 168 and [11 ],
Theorem C, p. 173) it embeds in LP @ lP, which embeds in LP by ( [16 ],
p. 133). Thus E not embeddable in LP implies it can not be embeddable
in LP(Q, Then by a result of Lindenstrauss and Pelezynski ( [15 ], Theo-

Vol. XVII, n° 1-1981.



12 U. NAIK-NIMBALKAR

rem 7 . 3 (2)) we get that for each k, there exist finite sequences { Uik ~Nk 1
1 in E such that for all Y E E’

but

Without loss of generality we can assume that

We note that

Thus we can find two sequences {Ui}~i=1 i such that (3 . 2)
holds.

3.3. THEOREM. If E has Bochner Property I with respect to Tp, then E
is embeddable in LP.

Proof - Let 1  p  2. Suppose E has Bochner Property I with respect
to Tp, but is not embeddable in LP. Then by the above lemma there exist
sequences ~ Ui ~ and ~ Vi ~ in E satisfying (3.2).
We have already noted that since E has Bochner Property I with respect

to Tp it is of stable type p. Thus by definition of stable Ui ~ ~p is
finite implies converges a. e., for { 1]i i. i. d. symmetric stable random
variables of index p. Thus there exists a probability measure  on E such

that = e i -1 iy,Ui>lP for each yeE’. Moreover J1 is- symmetric p-stable
measure on E. Using this and the second inequality in (3.2) we can show

- L 
that the positive definite function ~( y) = e 

I -1 1 is continuous in ~p.
Also ~(0) = 1. Now by the hypothesis, there exists a probability measure v
on E, such that

By a result of Ito-Nisvo ( [12], Theorem 3 .1 and 4.1) we get that i

converges a. e. for { ~1 ~ i. i. d. symmetric p-stable random variables, but
this implies L II ( ’Vi ~ ~p  oc, contradicting (3 . 2). This gives the result.

(2) I thank Professor Weron for bringing this result to my attention in this context.

Annales de l’Institut Henri Poincaré-Section B



13BOCHNER PROPERTY IN BANACH SPACES

For p = 2 : T2 is generated by symmetric Bilinear forms, hence E is

isomorphic to a Hilbert space ( [23 ]), thus E imbeds in L2.

3.4. REMARK. - It is known that LP for 1  p ~ 2 is embeddable in

P) for some probability space (Q, P) [29 ].
We thus obtain the following result.

3 . 5. THEOREM. -- Let E have bounded approximation property. Then E
is of stable type p and embeddable in P) iff E has Bochner Property I
will respect to Tp.

3.6. REMARK. - We note that if E is of stable type p and has Bochner

Property I with respect to some topology r, then Tp = Tp is weaker than r.
This together with Remark 2.8 implies that E has Bochner Property I

with respect to Tp.
It follows from ( [19 ], Theorem 4 . 6) that if E has Bochner Property I

with respect to TFp’ then E is of Rademacher type p, therefore of stable

type q for q  p. Using this and the above Remark we get the converse
of Corollary 2.9. Thus we get,

3 . 7. THEOREM. - Let E have the bounded approximation property.
Then E is of Rademacher type p and embeddable in P) iff E has
Bochner Property I with respect to iFp.

3 . 8. REMARK. - Combining a result of Maurey ([20], Theorem 9.8)
with the above result we get that for real separable Banach spaces with
bounded approximation property the following are equivalent.

(1) E has Bochner Property I with respect to Tp.
(2) E is strongly embeddable in LP(Q, ~) for some probability space (Q, ,u).

4. AN EXTENSION OF A RESULT OF SAZANOV

In [25 ] [28], it is shown that a sufficient condition for the tightness
of a family of probability measures on a real separable Hilbert space is the
equicontinuity in the S-topology of the corresponding ch. f’s (i. e. in the

topology generated by ch. f’s of all symmetric Gaussian probability
measures). In this section we show that the largest class for which the
above result is valid is the class of cotype 2 spaces, which includes the class
of Hilbert spaces [14 and lp spaces (0  p  2) (See e. g. [21 ]).
We first make a few definitions.

4 .1. DEFINITION. 2014 We will say that a Banach space E has Bochner

Property II, if there exists a topology r on E’, such that given a family

Vol. XVII, n° 1-1981.



14 U. NAIK-NIMBALKAR

{ a E I ~ of probability measures on E, the equi-continuity in r of their
ch. f. is a sufficient condition for tightness.

4 . 2. DEFINITION ( [24 ], p. 154). An S-operator on a Hilbert space H
is a linear, symmetric, non-negative, compact operator having finite trace.

Given an E-valued Gaussian random variable X defined on some proba-
bility space (Q, P). Let p = 1. Then by Fernique’s Theorem, [8 ], we

know that JE is finite. Define an operator A from E’ into E by

where the integral is in sense of Bochner. Then A is called the covariance

operator of X and the ch. f. of J1 is ex p - ~ 2~ ). Thus i coincides
with the topology for which a basis of neighborhoods of zero is given by
the system of sets {y E E’ ~ ~ Ay, y >  1 ~ , where A runs through the set
of Gaussian covariance operators. We note that if E is a separable Hilbert

space then i2 is the same as the S-topology and A is an S-operator [24 ].

4. 3. THEOREM. - E has Bochner Property II with respect to the i2
topology iff E is of cotype 2.

Proof - Suppose E is of cotype 2, and { 03B1}03B1~I a family of probability
measures such that their ch. f. are equicontinuous at 0 in i2. Then

given ~ > 0, there exists a Gaussian covariance operator Ag, such that

Then as in [27 ] we can choose a single covariance operator A of a symmetric
Gaussian E-valued r. v. X, such that for every ~ > 0, there exists a ~ > 0

satisfying

Let 03BB be the Gaussian measure corresponding to X (i. e. the distribution

of X). Now since E is of cotype 2, there exists a Hilbert space H, a continuous
linear operator U from H into E and a Gaussian measure ~~ 1 on H such
that = 1 ( [9 ], Theorem 4). Without loss of generality we can
(and we do !) assume that U is one-one. Let T be a covariance operator

Annales de l’Institut Henri Poincaré-Section B



15BOCHNER PROPERTY IN BANACH SPACES

_ 

of then T is an S-operator and i~ 1 (h) - e 
2 

. Therefore

_ 

= e 
2 

, where U* denotes the adjoint. By uniqueness of

ch. f. we get A = UTU*. Define Va on U*(E’) by If

U*yi = U*y2 then UTU*yi = UTU*y2 i. e., Ayi = Ay2. Hence by (4.5)
and positive-definiteness of 03B1 we get = 03B1(y2). Hence va is well

defined on the range of U* and

But the range of U* is dense in H and vx is uniformly continuous on the
range of U* giving

In other words, { a E I} is equicontinuous in S-topology in the sense
of ( [24 ], p. 155). By [28] ] is tight. Since U is continuous,
{ 03BD03B1 o U -1, a E I} is tight on E’ ( [4 ], p. 30). But Va 0 U-1 = completing
the sufficiency part.
The proof of the necessity part is along the lines of the proof of ( [19 ],

Theorem 2. 3). Suppose that E has Bochner Property II with respect to03C42
but is not of cotype 2. Then there exists a sequence { xk }~= 1 such that for Yk
independent standard Gaussian random variables, converges a. e.,

Define E-valued independent symmetric random variables ( Yk 1 by

and

Since by Borel-Cantelli Lemma

we get that Yk + 0 a. e. And hence LYk diverges a. e.

Vol. XVII, n° 1-1981.



16 U. NAIK-NIMBALKAR

Let 03A6k denote the ch. f. of the Gaussian E-valued random variable
k 

,

and 03A6 the ch. f. of the Gaussian E-valued random variable 03A3~~n03B3n.
n- i 

n-1 I

Then c~( y) and ~( y) are continuous in. i2.
Moreover

which tends to « 0 » as ~ -~ 0. Thus can take ~ small such that 1 - ~( y)  ~
implies  y, xk ~ I  1 for all k, then

Note that

therefore

Thus if 1 - ~( y)  ~ for small ~ then using (4 . 8) we get

n

Let 03BDk denote the distribution of Yk, then from (4.9), 03A6k(y) ~ k(y)
for all k, therefore ~

Thus the family { vk ~k 1 is equicontinuous in ~2. Hence by hypothesis
the family { vk 1 is tight. { are symmetric, hence by ( [12 ], Theorem 3.1
and 4 .1 ) we get that LYk converges a. e., contradicting LYk diverges. Hence E
is of cotype 2 and this completes the proof.

Let Tp be the topology as before. It is easy to show that if a Banach
space has Bochner Property II with respect to T 2 then it is of type 2, thus

Annales de l’lnstitut Henri Poincaré-Section B



17BOCHNER PROPERTY IN BANACH SPACES

from ( [19 ], Theorem 3.6)T2 --- i2, and in view of the above Theorem it is

of cotype 2, therefore is isomorphic to a Hilbert space [14 ]. We next state
some results connected with Bochner Property II with respect to Tp, 1  p  2.

The proofs of these are similar to those of Theorem 3. 3 and Theorem 2.4

respectively.

4 .10. THEOREM . If E has Bochner Property II with respect to Tp
then E is of stable type p and embeddable in (In view of a comment
above this theorem is valid for p = 2.)

4.11. THEOREM . If E has the b. a. p., is of stable type p and embeddable

in P) then E has Bochner Property II with respect to Tp.

4.12. REMARK . - For a real separable Banach space E having b. a. p.
the following are equivalent.

i) E has Bochner Property I with respect to Tp.
ii) E has Bochner Property II with respect to Tp.
iii) E is strongly embeddable in LP(Q, /l) for a probability space (Q, ,u).

5. FINAL REMARKS

(1) Since spaces having accessible norm (ch. § 1) are embeddable in

P), they are of cotype 2 ( [22 ], Theorem 1 (A)). Thus Theorem 4 . 3
includes a result of Kuelbs ( [13 ], Theorem 6 . 3).

(2) Theorem 4.3 does not have the assumption of the b. a. p. In this
context, however, the support of measures involved does have the property.
This fact allows us to circumvent the problem.

(3) Is the support of a stable measure on a stable type p space, LP’,

(I - + 2014 = 1) ? Answering the above question will enable us to removep P /
the assumption of approximation property. For spaces having Bochner
Property I with respect to Tp it is known (3) that the support is Lp..

(4) If the Lindenstrauss-Pelczynski result ( [15 ], Proposition 7.1) can
be generalized to Lp (0  p  1) (4), it would lead to the answer of the ques-
tion whether embeddability in P) is also a necessary condition for
real separable Banach spaces to have Bochner Property I (at least for spaces
with b. a. p.).

e) Personal Communication by Professors V. Mandrekar and A. Weron.
(4) See addendum.
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(5) In ([22], Theorem 1 (A), (B)) Mustari has shown that,

a) spaces embeddable in P) are of cotype 2.
b) spaces having Bochner Property I are of cotype 2.

Using a result of Rosenthal we are able to find examples which show that
the converse of the above two statements is not true. These will appear
elsewhere.
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ADDENDUM

After this manuscript was typed the author learnt about Maurey’s [31 ]
generalization of the Lindenstrauss-Pelczynski result ( [15 ], Theorem 7. 3)
to LP(Q, /l) (with the usual topology) for 0  p  1. This together with
the fact that Lp, lp (0  p  1) are embeddable in P) from [29],
enable us to extend our Theorems 3 . 3 and 3 . 5 to include the case 0  p  1.

We also note that Corollary 2.7 and Remark 3.6 are valid for all p,
0  p  2. This and the fact that every Banach space is of stable type p
(0  p  1), gives.

THEOREM. - A real separable Banach space with b. a. p. is embeddable
in a P) if and only if it has Bochner Property I. Moreover the corres-
ponding topology is given by Lq for any q in (0, 1).

This gives a converse of a result of Mustari [22].
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