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Calcul des Probabilités et Statistique.

ABSTRACT. - The analytic potential theory for energy forms ~f~fd
given by positive probability Radon measures ,u on separable rigged
Hilbert spaces is studied, adapting methods of Fukushima. The forms
define self-adjoint operators in which generate, after elimination
of polar sets, Hunt processes with continuous sample paths.

RESUME. On etudie la théorie analytique du potentiel pour des formes

d’énergie ~f~fd  données par des mesures de probabilité de Radon sur
des espaces d’Hilbert separables, en adaptant des méthodes de Fukushima.
Ces formes définissent des opérateurs auto-adjoints dans l’espace 
qui engendrent, après elimination d’ensembles polaires, des processus de
Hunt aux trajectoires continues.

(*) Work supported in part by the Norwegian Research Council for Science and the
Humanities.
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270 S. ALBEVERIO

1. INTRODUCTION

In this paper we study the analytic potential theory given by energy
forms generated by positive, probability Radon measures associated with
rigged Hilbert spaces. We already considered such energy forms in previous
papers [1]-[3], particularly from the point of view of their relations with
quantum fields. In the present paper (1 ) we understand analytic potential
theory in very much the same spirit as in the recent work of M. Fuku-
shima [S] - [9] and M. Silverstein [10]-[11], which continues and extends
the classical work of H. Cartan [12] and A. Beurling - J. Deny [l3] - [~4] (2).
The processes considered are symmetric Hunt processes i. e. a regular
case of Dynkin’s standard processes, constructed by eliminating first sets
of capacity zero. For general background we refer, besides the already
quoted references, to [20]-[24] (3).

Let us now shortly summarize the containt of our paper.
In Section 2 we introduce the rigged Hilbert space Q c K c Q’, where K

is a real separable Hilbert space and Q is a real complete Hausdorff locally
convex vector space, with topological dual Q’. The rigging is, as usual,
a natural structure for the localization of the support of the measures we

are considering. We consider positive probability Radon measures J1 on Q’,
understood in the sense of L. Schwartz [36] and required to be quasi inva-
riant with respect to translations by elements in Q. We give conditions

on p such that p defines an energy form ~f~gd  which is closable in
L2(d,), where V is the gradient, naturally defined on Cb cylinder functions
as a map from into the Hilbert tensor product K @ L2(dll,). For any
closable energy form we consider the self-adjoint positive operator
H = V* V in the « energy operator » uniquely associated with the
closure of the energy form. (Here V* and V denote respectively the adjoint
and the closure of V). We find that a sufficient condition for H to be defined

(i. e. for the energy form to be closable) is that the limit in of

t _ 1 d,u( . + )1/2 - 1] as t ~ 0 exists, for all q E Q. Call ( 2i ) -1 03B23q)(.)

(1) The main results of this paper have been summarized in the report [4].
(~) Some other references in this line are e. g. (15]-(19].
(~) For other approaches to diffusion processes, potential theory and related questions

on Hilbert spaces see e. g. [25]-(36].
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271ANALYTIC POTENTIAL THEORY ON RIGGED HILBERT SPACES

this limit. Let f be a C; cylinder function with base spanned by the ortho-
normal vectors ... , en in Q c K, and write

where is the derivative in the direction e;. Then we have
n

H f = - A f - (03B2.~)f, where 0 f is naturally defined as (ei . ~)2f. So
is H exhibited as a diffusion operator on C; cylinder functions. Conditions
for j1 in order that also all polynomials be in the domain of H are also
given.

In Section 3 we show that any closable energy form has a closure which

is a Dirichlet form in the sense of Fukushima [8], thus the associated energy
operator H is the infinitesimal generator of a strongly continuous positivity
preserving semigroup on conservative in the sense that e - tH 1 = 1,
t > 0. We study the problem of when the Dirichlet form is regular in the
sense of Fukushima and Silverstein, so that there exists a Hunt process
properly associated to it [8], [10] (i. e. such that the state space is a locally
compact separable Hausdorff space modulo a polar set and the transition
semigroup associated with the process is a quasi continuous modification
of the semigroup generated by the energy operator, when restricted to act
on continuous We show that for the Dirichlet form to

be regular it is sufficient that the following conditions be satisfied : 1) there
exists a strictly positive compact operator A on K such that

converges in where ai are the normalized eigenvectors of A and 03BBi
the correspondent eigenvalues ; 2) the closure of K in the [ IA-norm is
compactly contained in a separable Banach space continuously injected
in Q’; 3) the support X of  is bounded in the ] IA-norm. In such a case X
is, in the topology induced from the one of the Banach space, a compact
separable Hausdorff space and  is a Radon everywhere dense measure.
The regular Dirichlet form which then is given by  has a locality property
which yields, by the results of Fukushima and Silverstein, continuity in
the above Banach norm of the sample paths of the strong Markov process
properly associated with the form, so that this process is indeed a diffusion

Vol. XIII, n° 3 - 1977.



272 S. ALBEVERIO

process. A reflecting barrier process corresponding to it is obtained by
restricting J1 to any ] |A-open subset of positive measure and considering
the corresponding closable energy form. If Q is separable then X can be
taken as the uniform closure of continuous cylinder functions. X differs
then from the closure in X of t J { ~ E Q’ I only by a polar
set. ~

2. THE ENERGY FORM

We say that Q c K c Q’ is a rigging of the real separable Hilbert space K
iff Q is a real complete Hausdorff locally convex vector space with dual Q’,
such that the dualization (q, ç), q E Q, ~ E Q’ between Q and Q’ coincides,
when restricted to Q x K, with the inner product in K, and moreover
the injections K and K q Q’ are both continuous with dense ranges.
We shall say that a measure ~c belongs to ~(Q’) if J1 is a positive proba-

bility Radon measure on Q’, in the sense of [36]. For the relation between
Radon measures and cylindrical measures see [36]. If ,u E ~(Q’) then there
is an increasing sequence of compact subsets of Q’ such that the p-measure
of their union X is equal to one. Hence X is a locally compact subset of Q’
such that J1(X) = 1. Thus we may identify LP(Q’, with LP(X, 

Let P be an orthogonal projection in K with finite dimensional range
contained in Q. It is easily seen that P is continuous in the topology of Q’,

n .

since Pk = 03A3(e;, k)e;, for any k E K and orthogonal base e1, ... , en in

the range of P. We shall denote its continuous extension to Q’ again by the
symbol P. In the following the symbol C~ (and Cb --_ C~) will stand for
k-times continuously differentiable functions with bounded i-th deriva-
tives, i = 0, 1, ..., k.

We say that a function f E C(Q’) is in FCn(Q’) if for some orthogonal
projection P with finite dimensional range in Q we have = 

for all ~ in Q’ and f (Pk), k E K, as a function on PK, is in Cb(PK). We
also say that such an f is based on PK. Since (q, ç) for q E Q separates
points in Q’ we have that it also separates points in K, so that FCn and also

are, by the Stone-Weierstrass theorem, dense in the space
n

of functions which are continuous and bounded on compact subsets of Q’.
Therefore FCn and FCOC are dense in LP(Q’, for all 1  p  oo, by
the properties of Radon measures.
We now define the mapping V between the real Hilbert space 
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273ANALYTIC POTENTIAL THEORY ON RIGGED HILBERT SPACES

and K @ with domain FC1, given by where is the

gradient of f considered as a C ~ -function on the finite dimensional space PK
on which f ~FC1 1 is based (thus P is a finite dimensional orthogonal
projection with range in Q such that = 

Clearly a given function f in FC~ 1 can be looked upon as being based
on different spaces PK. However it is easily seen that the definition of ~f is
independent of the choice of a particular base for f We also see that if

we look at f as based on PK and e is an element of PK, then, denoting
by e . V the directional derivative in the direction e, we have

if n is the dimension of PK and ... , en is any orthonormal base in PK.
Note that Vf is also independent of the choice of the basis el, ..., en.
We shall say that a measure ,u E ~(Q’) is admissible if V is closable as

an operator from --_ L2(Q’, d,u) to K Q We define the

energy form given by  first on FC1 by

where V f. Vg is the scalar product in a finite dimensional space on which f
and g are based. Let ( f, f ) be the scalar product of f with itself in 
then we see that f ) + ( f, f ) defines the graph norm of V, so that V is
a closable quadratic form.
We say that p is quasi invariant if it is quasi invariant under the measu-

rable transformations of Q’ given by ~ -~ ~ + g for arbitrary q E Q. If ,u
is quasi invariant we define the unitary translations by

for any f e where is the Radon-Nikodym derivative of

the translated measure with respect to ~. is then obviously a unitary
representation of the abelian group Q in the Hilbert space which
is strongly continuous when restricted to finite dimensional subspaces
of Q. A mapping of Q’ into Q’ which is continuous when restricted to
finite dimensional subspaces of Q is said to be vaguely continuous. So that
V(q) is a vaguely continuous unitary representation of Q in the strong

Vol. XIII, n° 3-1977. }9



274 S. ALBEVERIO

topology. We denote the self-adjoint infinitesimal generator for
the one parameter unitary group V(tq), t E R, by ~c(q). It follows that n is a
linear mapping from Q into the space of self-adjoint operators in the sense
that + ~c(q2) c + q2). We say that ,u E ~l(Q’) if ,u is a quasi
invariant probability measure and 1 E D(n(q)) for all q E Q, where we
denote the domain of an operator A by D(A). We have the following

THEOREM 2.1. If ,u E i. e. if ,u is a quasi invariant probability
measure such that 1 E D(n( q)) for all q E Q, then p is admissible.

Proof Define j~(q)(~) == (2i~c(q) .1)(~). Then we have ~3(g)( . ) E 
Let A simple calculation then shows that for any q E Q we
have

where q. V is the directional derivative in the direction q i. e.

From (2 . 4) we have that the operator q. V has a densely defined adjoint,
hence it is closable. Consider now elements in K Q of the form

so that the mapping V from into K @ has a densely defined
adjoint mapping, from K 0 into which on elements of the
form u is given by

V is thus closable and the theorem is proven. jjj
Let  be an admissible Radon measure on Q’, and let V be the closure

of V on FC1. Since f ) == we have that f ) is closable
and the closure E of E is such that f ) _ ~ ~ V f ~2. Hence E has the
domain D(E) == D(V). The adjoint V* of V is densely defined, V being
closable. We have V** == V. Thus H --_ V*V is a self-adjoint operator
in such that D(H 1 ~2) = D(E) == D(V). We shall call H the energy
operator associated’ with the admissible Radon measure ,u.

Annales de l’Institut Henri Poincaré - Section B



275ANALYTIC POTENTIAL THEORY ON RIGGED HILBERT SPACES

If we assume in addition that J1 is in then ~3(q)( . ) E and
we have easily as in (2.5) that V maps FC2 into the domain of V*, in such
a way that for u == V f we still have V*u == 2014 (div + f3)u. This gives us
the following proposition.

PROPOSITION 2. 2. - If ,u E ~1(Q’) then FC2 c D(H), where H is the
energy operator associated with ,u, ’and for f E FC2 we have

where A and V are so defined that if P is an orthogonal projection with
finite dimensional range in Q such that == and ..., en ~
is an orthonormal base in the range of P, then (e;. ~)2f and

(03B2.~)f = 03A303B2(ei)(ei.~)f. [] 
i= 1

Remark that both A and 03B2. V are obviously independent of the projec-
tions P and the orthonormal base {e1, ..., en}, the functions in FC2
having continuous bounded second derivatives.
We also remark that the following sharper version of Theorem 2.1

holds.

THEOREM 2 . 3. - Let ,u E and assume that is, for

any q E Q, a continuous linear functional on L2(Q’, defined for all

f E FC1. Then ,u is admissible. Moreover V maps FC2 into D(V*) so that
in particular FC~ c D(H) and for any f E FC2 we have H f 

where E L2(Q’, d,u) is given by (g . = - 

for any f E FC1. ~ 
Proof - Since is continuous in L~(Q’, we have that

q (x) 1 is in D(V*). Set ~3(g) _ - V*(q @ 1). Let g E FC1, then, using
(Vf)g + fVg on FC1, we have

which then gives us that q (x) g E D(V*) for arbitrary q E Q. By taking
the linear span we get that D(V*) is dense in K @ L2(Q’, hence V is
closable thus p is admissible. By the definition of V we have that Vf for

Vol. XIII, n° 3 - 1977.



276 S. ALBEVERIO

n
f E FC2 is of the form 03A3ei Q (ei . hence V maps FCZ into D(V*).

We have, for any q E Q and g E FC1 :

o*(q o g) _ - q . vg - ~(q)g .
By the definition H ~ V*V we then have that FC2 c D(H) and for any
f E FC2 we have H f == - A f - f3. V f, which proves the theorem. ~
We shall say that J1 E ~(Q’) has moments of p-th order if the linear func-

tions (q, ç) are in LP(Q’, for all q E Q. The following theorem is a converse
of the proceding one.

THEOREM 2 . 4. Assume ~ is admissible and has second order moments.
If the linear functions (q, ç) belong to D(H) for all q E Q then .V maps FC2
into the domain of V*, so that FC2 c D(H). Moreover q (x) 1 E D(V*)
for any q E Q and, for any f E FC2,

where {3(q) = - V*(q @ 1).
Proof - Using the assumption (q, ~) E L2(Q’, we have that, for any

real (e i«tq, ~~ - 1 ) is in D(V) and converges as oc -~ 0, strongly in

L2(Q’, towards i 03BE), while ~1(ei03B1(q,03BE) - 1 = ~ iq~1 as
a

a ~ 0. Hence (q, and V(q, ç) = q @ 1. By the definition H = V* V
and the assumption (q, ç) E D(H) we have q @ 1 E D(V*). In particular,

for any f ~ FC1, we have that (x) 1) = is continuous as

a linear functional on L2(Q’, The rest of the theorem follows then from
the preceding ones. II

Let be the space of probability measures p quasi invariant under
translations by elements in Q and such that D(n(q)n) 3 1 for any q E Q.
We have the following
LEMMA 2 . 5. E ~2(Q’) and ~(q) .1 is in D(V) then

= 2i~( q) .1 E L4(Q’~ 
Proof. - By the assumption we have E D(V), hence

(q. E L2(Q’~ 
Since P we have FC 1 c D(n(q)) and, for f E FC1,

Annales de l’Institut Henri Poincaré - Section B



277ANALYTIC POTENTIAL THEORY ON RIGGED HILBERT SPACES

recalling the definition of ~(q). From this it follows that if D(n(q)) n D(q. V)
then E L2(Q’, d,u). From the assumptions we have

and having already proven that f3(q) E D(q. V) we then have the conclusion
of the Lemma. tt
By a polynomial on Q’ we shall understand any element in the algebra

generated by the constants and the linear functions (q, ç) with q E Q. By
linear functions we mean elements of the form (q, ~), q E Q. We remark
that if ,u E ~(Q’) has moments of all orders then the polynomials on Q’
are in L2(Q’, and are dense in L2(Q’, The polynomials on Q’
are in LP(Q’, for arbitrary has moments of all orders.

THEOREM 2 . 6. E ~(Q’) has moments of all orders and is admissible
such that (q, ç) E D(H) and E Lr(Q’, dp) for some r > 2 and any q E Q,
then all polynomials on Q’ are in the domain of H and one has

for any polynomial p on Q’.
In particular if J1 E has moments of all orders and ~(q) .1 E D(V)

for all q E Q, then all polynomials p on Q’ are in the domain of H and
one has

Proof By Theorem 2 . 4 we have H f = - V f for any f E FC2.
The assumption that J1 has moments of all orders we may approximate
any polynomial p by functions fa in FC2 in such a way that Ap
strongly in and q. Vp strongly in with

i , + 1 = i, by taking f«(~) = ~ 1). Let now P be an orthogonal
r r 2 a

projection with finite dimensional range in Q such that p(ç) = p(P~).
..., en} be an orthogonal base in PK. Then for any f ~ FC1

n

such that = we have so that the strong

i= i

convergence q. q. Vp in implies strong L2(Q’, dJ1)-con-
vergence of This gives us that 0 fa - converges

strongly to - Ap - Vp. Hence, H being closed, we have p E D(H) and
Hp = - Ap - f3. Vp, which proves the first part of the Theorem.

Part two of the Theorem follows from the first part and Lemma 2.5,

provided we prove (q, D(H) for all q E Q. But we have, for f E FC1:

Vol. XIII, n° 3 - 1977.
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from which it follows that if f E D(n(q)) and f E D(q. V) then f E D((q . V)*).
By assumption we have 1 E D(n(q)) and, since 1 E D(V), we then have
1 E D((q : V)*), 1. e. q Q 1 E D(V*). Since (q, ~) E L2(Q’, d,u) it follows as in
the beginning of the proof of Theorem 2.4 that (q, and
V( q, ç) = q O 1, hence, by H = V* V, we have (q, This then
completes the proof. jjj~

Remark. 2014 We see that if ,u E ~(Q’) is admissible then q. V and (q. V)*
have FC1 in their domains, for any q E Q. We may therefore consider the

densely defined symmetric (q.~)*). In the case where p
is quasi-invariant and J1 E we have FC1 c D(n(q)), since 1 E D(n(q))
and on FC1 we have 03C0(q) = 1 2i(q.~ - (q.~))*). In the general case

(q.~)*) may not have any self-adjoint extension at all.
Consider now a fixed element e in Q, with (e, e) = 1. Then one sees

easily that 2i (e. V - (e . ~) ) * and (e, ~) satisfy the canonical commutation
relations and (e, ç) is essentially self-adjoint on FC2, if J1 has second order
moments. The question of when symmetric operators satisfying the cano-
nical commutation relations are given by translations and multiplications
is a classical problem and even in the case (e. V)*) is

essentially self-adjoint p need not necessarily be quasi invariant.

3. THE MARKO V PROPERTY,
ANALYTIC POTENTIAL THEORY
AND THE HUNT PROCESS

Let ,u be a positive measure on a measure space X. A positive definite
quadratic form 8(f, f) defined on a dense subset of the real is said
to be Markov if for any 6 > 0 there exists a non-decreasing function 
t E R with = t for 0  t  1,  ~ t ~ ( and - ~   1 + a
for all t such that for any function f E D(8), the domain of 8, we have that

E D(E) and E(~a( f ), ~a( f ))  E( f f ). We say that a bounded ope-
rator A on is Markov iff 0  A f  1 for any 0  f  1.

THEOREM 3.1 (Fukushima). - If ~ is Markov and closable, then the
self adjoint operator H£ associated with the closed form is the infinitesimal
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279ANALYTIC POTENTIAL THEORY ON RIGGED HILBERT SPACES

generator for a Markov semigroup e-tHE, i. e. e-tHE is Markov for each t >_ 0.
Moreover if a strongly continuous semigroup is Markov then the closed
form defined by its generator is Markov.
For the proof of this theorem see [8]. tt
If J1 is a positive Radon measure on a locally compact separable space X,

such that  is everywhere dense i. e. that for any open A c X we have

that > 0, then we say that f) is a regular Dirichlet form if it is

closed, Markov and Co(X) n D(s) is dense in Co(X) as well as in D(e),
respectively in the uniform norm and in the norm given by f ) + (I, f),
where Co(X) are the continuous functions on X which vanish at infinity.
For a closed Markov form ~ on L2(X, one defines the capacity of

an open set of A as Cap (A) = u) + (u, u) ; u E D(E) such that
u > 1 on A ~ . For an arbitrary subset B c X the capacity is defined by

Cap (B) = inf { Cap (A) ; B c A and A is open }. (3.1)

One says that N c X is polar if N E ~(X), where ~(X) is the (7-algebra
of Borel measurable sets in X, and Cap (N) = 0.

THEOREM 3.2 (Fukushima). - To any regular Dirichlet form ~ on

L2(X, where ,u is a Radon measure on a locally compact space X such

that J1 is everywhere dense, there exists a Y E ~(X) such that Cap (X - Y) = 0
and a Hunt process with state space (Y, ~(Y)), properly associated
with 8. In particular the Markov semigroup e-tHE is given by the transition

probabilities of ~t.

Remark. For the definition of a Hunt process see [24], Chap. XIV

and for the definition of properly associated with 8 see [8] [9]. For the proof
of the Theorem see [8], § 5. ~
A regular Dirichlet form g) on L2(X, is said to be local if for

any f and g in D(s) n Co(X) we have that g) = 0 whenever f and g
has disjoint support. For the proof of the following theorem see [10],
p. 124, [9].

THEOREM 3 . 3 (Fukushima and Silverstein). Let the assumptions be
as in theorem 3.2, then if s is local the Hunt process may be taken to
have continuous paths. jjjj

Let us now again consider a rigged Hilbert space Q Q’ as in
section 2 with a measure p E :~(Q’), such that J1 is admissible. It is an easy
exercise to prove that the corresponding energy form E is Markov. Hence
we have by theorem 3 .1 the following :

THEOREM 3 . 4. E ~(Q’) is admissible then the energy form E is
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Markov so that e-tH, where H is the energy operator is a strongly continuous
Markov semigroup. jjjj

If the Hilbert space K is finite dimensional, then of course Q = K = Q’,
and in this case one has the following theorem

THEOREM 3 . 5. If K is finite dimensional and  E such that J1 is
absolutely continuous with respect to the Lebesgue measure on K, every-
where dense and admissible, then the closure E of E is a local regular
Dirichlet form, in particular there is a continuous Hunt process properly
associated with E.

For the proof of this result see [37]. jjjj
If however K is not finite dimensional we can not in general expect E

to be a regular Dirichlet form on L2(Q’, the reason for this being that
in general one cannot hope to find a locally compact subset X on which
the measure is concentrated and such that the elements in Co(X) are non
trivial in L2(Q’, >

We shall therefore continue as follows. Let us first assume that J1 has
compact separable support X in Q’. Since any open set A such that J1(A) = 0
is in the complement of X, by the definition of the support of ,u, we have
that ,u is everywhere dense in X. We may obviously now identify L2(Q’, d,u)
with L2(X, dJ1) and we thus get the energy form E defined on L2(X, d,u)
where J1 is a everywhere dense Radon measure on the compact separable
Hausdorff space X. Moreover since the linear functions (q, ç) separate
points in Q’ they separate points in X and therefore FC1(Q’) is an algebra
of continuous functions containing 1 which separates points in X. Thus
by the Stone-Weierstrass theorem FC1 is dense in C(X), the space of all
continuous functions on X. We therefore have the following lemma

LEMME 3.6. Let Q eKe Q’ be a rigging and J1 E ~(Q’) with compact
separable support X such that ,u is admissible, then the closure of the

energy form f ) defines a regular Dirichlet form on L2(X, jjj~
If E( f, f ) is a positive quadratic form on L2(X, then we say, following

Fukushima, that every unit contraction operates on s if, for any f E D(e),
g = (0 V f ) A 1 E D(E) and 8(g, E( f, f ). We say that every normal
contraction operates on E if f E D(E), g E L2, ( and

I g(x) - g( y) ~ _ ~ f (x) - f( y) ( for almost all x and y in X implies that
g E D(B) and g)  E( f, f ). For the proof of the following theorem
see [8], § 3.

THEOREM 3.7 (Fukushima). - Let e be a closed symmetric form on an
L2(X, Then the following three conditions are equivalent

Annales de l’lnstitut Henri Poincaré - Section B



281ANALYTIC POTENTIAL THEORY ON RIGGED HILBERT SPACES

a) 8 is Markov,
b)~ every unit contraction operates on 8,
c) every normal contraction operates on ~. []
Let now Q c K c Q’ be a rigging and let A be a strictly positive compact

operator on K with normalized eigenvectors ai and eigenvalues 03BBi > 0
such that (ai, for each i = 1, 2, .... We say that A defines an

(~, A~) if (~, A~) _ ç)2 converges in Since A is

i
compact it follows by dominated convergence that if A defines an LP(d,u)-
form so does Ar for any r > 1. Let hE then

n

where (03BE, A03BE)n = 03BE)2. So that it A defines an Lp-form then

h((03BE, A03BE)n) ~ h((03BE, A03BE)) strongly in Lp. Moreover h((03BE, A03BE)n) E FC1(Q’)
and

Now 03BBiai O (a;, ç) == 03A303BB2i(ai, ç)2, which converges to zero
i=n+ 1 

~ 
i=n+ 1

n

in So that ~), considered as a function from Q’ into K,

oc 
~~ 1

converges ç) in K). Let now h E Cfl(R), then we
i=1 i

know that h’((~, Aç)n) converges to h’((~, Aç)) in LP. Hence we get from (3 . 2),
if p = 4, that Aç)n) converges in L2(Q’, d,u ; K) ~ K @ Hence

h((~, E D( V) and

Let now f E FC1(Q’) and h E C;(R), then A~)n) --~ A~))
in moreover A~)n) _ A~)n) + A~)n), which
by the results above converge in so that E D(O) and
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Since = (~, A2~)  ~ ~ (~, A~) we see that

if h E i. e. if h is in the space of differentiable functions of compact
support in R, so that ~ 2A03BEh’((03BE, A03BE))f ~2  2 ~ A ~1/2~xh’(x)~~~ f ~2. We
therefore have by (3 . 4) that the mapping f --~ is continuous
in the D(V) norm hence, since V is closed, it follows that h((~, Aç))f E D(V)
for any and that (3 . 4) extends by continuity to a continuous
mapping of D(V) into itself.

Let now be such that (~,  oo, then from (~, A~) p  (r~, Aç)
we have (r~, if A defines an We may thus, for

consider h( I ~ - ~ 11)f for f EFC1, where ~ ~ - = ((~ - r~), A(~ - ~)).
We then find as above that h( ~ ~ - ~ IA) maps FC1 into D(V), and

Using now (r~, A2r~)  II ~ A ~ ~ (~, Aq) we get in the same way as above
that the mapping f (~) ~ . h( ( ~ - ~ extends to a mapping from D(V)
into D(V), continuous in the strong topology. Hence we have the following
theorem.

THEOREM 3 . 8. Let Q ~ K ~ Q’ be a rigging and let  E P(Q’) be an
admissible measure on Q’. Let A be a strictly positive compact operator
on K such that A defines an L2-form (~, A~). Then for any h E and
any ~ E Q’ with ( ~ |A  oo we have that the mapping f(03BE) ~ h( ( 03BE - ~
defines a continuous mapping from D(V) into D(V) with its strong topology
and one has

Let A be as in theorem 3.8 and let us also assume that the injection
K 4 Q’ is continuous in in which case we shall say that it is A-conti-
nuous. Then we have that the subset of Q’ where ~ ~ ~A  oo is a Hilbert

space KA with the ( and the injections K c~ KA 4 Q’ are
both continuous. Since ~ ~ ~A is in L2(Q’, we have that all open sets
in KA are p-measurable and = 1. Hence we may restrict the measure
to KA and since KA c.~ Q’ is continuous we have that the open sets in KA
with the ( IA topology generate the a-algebra of p-measurable sets, and
we may thus identify LP(Q’, dJl) with LP(KA, For f E we define

suppA f c KA as the smallest ( |A-closed set in KA such that = 0
for a. suppA f.
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We say that a closed mapping T from into with dense

domain D(T) is A-local if for any f E D(T) we have

THEOREM 3 . 9. Let the assumptions be as in theorem 3 . 8. If in addition
the injection Q’ is A-continuous then V is A-local.

Proof Let C = suppA f and f E D(V). Let ~ ~ C and let d = dist (~, C).
Then d > 0 since C is closed in KA. Let such that supp h c ( - oo, d2).
Then h( = h’( I ~ - r~ IA) f (~) = e. Hence by theorem 3.8
we have that h( I ~ - ~ ~A)(Of )(~) = 0 j1-a. e. Since h was arbitrary in

Co( - oo, d2) we find that the ball d) = { ç E KA ; ~ ~ - r~ IA  d ~ is in
the complement of C. Hence we have proved that for any ~ ~ C there is
an open ball d) such that d) is in the complement of C. This proves
the theorem, II

Let us now assume we have two compact operators Ai 1 and A2 such
that is bounded on K. Then there is a constant C such

that (~, A2~)  C2(ç, hence ~ ~ ~A2 - C ~ ~ and if the injection
Q’ is A;-continuous for i = 1 and i = 2 then we have the situation

that K c~ A~ C). Q’ where all the injections are continuous and
j1(KA2). Moreover for any f E we have that suppA2 f is

the [ I A2-closure of SUPPAI f so that we always have

Let us now assume that A1 1/2A2A1 1/2 is compact on K, in which case the
injection KA1 c~ KA2 is compact. Hence the ball b~ _ ~ r~ E ~A1  ~, ~
is a compact subset of KA2. Moreover, since KA2 is separable, b~ is separable
and compact. Let us now assume that there is a ~, such that = 1.

Consider in the ] IA2 topology, and let X be the smallest [ ~A2 closed
subset of bi such that = 1. Then X is a separable and compact metric
space with a Radon measure p which is everywhere dense. Since the linear
functions (q, ç) for q E Q separate points in Q’ they obviously separate
points of X c Q’. Hence FC 1 (Q’) restricted to X is an algebra of continuous
functions on the compact X which separates points. Hence, by Stone-
Weierstrass’ theorem, FC~ 1 is uniformly dense in C(X), the space of all
continuous functions on X.

Let now in addition ,u E ~(Q’) be admissible. Then E is a closed Markov
form on L2(X, = L2(Q’, such that FC~ 1 is dense in D(E) as well
as in C(X). Hence we have that E considered as a form on L2(X, is a

regular Dirichlet form.
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Let now f and g be in D(E) n C(X) such that f and g have disjoint
supports, which means that suppA2 f and suppA2 g are disjoint. By
theorem 3.9 however we have that suppA2 ~f c suppA2 f and

suppA2 ~g ~ suppA2 g. Since by definition we have E( f, g) = Vg)
and since V f and V g have disjoint supports we have (VI, V g) = 0. Thus
we see that the closure E of the energy form is a local regular Dirichlet
form. Hence by theorem 3. 2 there is a regular Hunt process with conti-
nuous paths in X properly associated with E. Here continuity means
continuity in the ] ~A2 metric. The process has state space (Y, 
where Y is a Borel subset of X such that Cap (X - Y) = 0 and ~(Y) are
the Borel sets in Y generated by the norm ] ~2’

THEOREM 3.10. - Let Q c K c Q’ be a rigging and ,u E be

admissible. Let A and A2 be compact strictly positive definite operators
on K such that the injection Q’ is continuous in the norms

I = (~l, A~~?)1~2, i = 1 and i = 2, and such that Ai defines an 
form -(~, and Ai 1~2 is compact. If ,u has support X which is
bounded in the A1-norm ] |A1 then X in the topology given by the A2
norm is a compact separable space with J1 as an everywhere dense Radon
measure, and the closure of the energy form E on L2(X, is a local regular
Dirichlet form. In particular there is a Hunt process properly associated
with E with state space (Y, ~(Y)), where Y is a A2-Borel subset of X such
that Cap (X - Y) = 0 and is the 6-algebra of the A2-Borel subsets
of Y, i. e. the Borel sets generated by the norm [ IA2 on Y. Moreover 03BEt
is continuous in the metric given by the A2-norm. []
We see that in the proof of theorem 3 .10 we did not make any use of the

fact that ] ~A, was given by a quadratic form (~, A2~). In fact the only
thing we made use of was that the mapping KA2 was compact,
and that the balls in KA1 were separable in the A2-norm. Hence we have
the following corollary

COROLLARY. - Let Q c K c Q’ be a rigging and ,u E be admis-

sible. Let Ai be as in theorem 3.10 and let KA be the closure of K in the
A 1-norm and assume that ,u is supported by a set X c Q’, i. e. ,u(Q’ - X) = 0
and X is a bounded subset of KA1. Let B be a separable Banach space with
norm ( ( such that KA1 c B c Q’ with the injection B compact
and the injection Q’ continuous. Then the conclusion of theorem 3.10
holds with II ] ~0 replacing the A2-norm. []

Let us now consider the case where J1 does not have support in any of

the balls b~, but = 1 so that = KA1 is a locally compact’ 

~. > o o 
’
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subset of KA2 which supports the measure ~c. After throwing again away,

if necessary, a maximal open subset of with p-measure zero, we
/’.

are left with a closed locally compact subset X of which supports
i

the measure and on which  is everywhere dense. Remember that the

topology is the one given by [ (A2 and the same goes for X.

Choose now a fixed Ào, set Xn = X n and let fln be the restriction of p
to Xn, normalized so that fln(Xn) = 1. We shall see that if fl is admis-

sible so is fln. In fact let h E Co( - oo, (n~,o)2) and f then

h((~, in by theorem 3 . 8. Let us now assume that p
is admissible with second order moments, then by theorem 2.4 and
theorem 2 . 3 we have that, for any g E FC~ 

1 and any q E Q, q @ g E D(V*)
in L2(Q’, moreover

Since we have that g -~ is strongly continuous
from into Since [ we
have that V* is continuous in the natural strong topology on n D(V).
Since V* is closed we therefore get that L°°(d,u) n D( O) c D(V*) and
formula (3 . 8) extends by continuity to n D(V). Since h((~, 
is in D(V) and obviously also in we have therefore that it is in D(V*)
as well. Now since oo, (nÀo)2) we have, for g ~ FC1 and q E Q,
that

By the formula (3.8) together with theorem 3.8 we may now compute
the right hand side of (3.9), and we get

We see that the right hand side has support in X~, in fact it lies in

L 2(Xm From this it follows that the right hand side of (3.9) is conti-
nuous in g in the strong L 2(Xm d n)-topology.
We shall see below, in the proof of Theorem 3.11, that the functions of

the form h((03BE, A103BE))f(03BE) for h E Co( - (03BB0n)2) and f ~ FC1 are dense

in L 2(Xm thus we get that the linear span of the elements of the form
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q Q h((~, is dense in K Q L 2(Xn, Hence we have proven
that ~n , the adjoint of Vn in L 2(Xm is densely defined and therefore Vn
is closable, thus J1n admissible. This then gives us that, Xn being compact,
there exists a continuous Hunt process properly associated with En,
where En is the energy form given by J1n in L2(Xm We pause to give the
following theorem.

THEOREM 3.11. Let Q c= K c= Q’ be a rigging and J1 E be admis-
sible and have second order moments. Let A be any compact strictly
positive definite operator on K such that A defines an (~, A~),
such that the injection Q’ is continuous in the norm | ~ IA = (~, A~)1/2.

is the restriction of J1 to an A-open subset Q c Q’ of positive measure,
i. e. Q is open in the [ IA norm and > 0, then is an admissible

measure in 

By theorem 3.10 and its corollary we have then that the energy form E~
in has a closure which is a regular local Dirichlet form in 
where X~ is the support in KA of with the topology induced by any
Banach norm I I such that the A-bounded sets are separable and
compact in ~ 110 and Q’ is continuous in II ( ~0. Moreover the
corresponding Hunt process ~~ is continuous in such a Banach norm () [ ~)o.

Proof - In the argument preceeding theorem 3.11 we proved that
for any ball b~ _ ~ ~ ; ~ q (A  ~, ~ the restriction of p to b,~ is admissible.
The proof for any A-open Q proceeds as follows. Take ~ E Q and let
d = E Q’ - S2 ~, then for h E Co( - oo, d2) we have for f
and g E FC~ 

1 and q E Q that

Again by theorem 3.8 and the formula (3.9) we compute the right hand
side of (3 .11) and find that in fact, as a function of g, it is strongly continuous
in L2(Q’, From this we have that

To see that D(VJ) is dense in K Q we proceed as follows. Consider
the function of the form h( I ~ - ~ IA), d2). The a-algebra
generated by these functions is obviously the a-algebra generated by the
A-open sets in Q. The assumption that K 4 Q’ is continuous when K

has the A-norm implies that Q c~ Q’ is continuous when Q has the topology
given by the A-open sets. Hence the A-open sets in Q generate the whole
a-algebra of 03A9-measurable sets. From this it follows that the characteristic
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functions for open A-balls in Q span a dense subspace of Any
such characteristic function may of course be approximated in 
by functions of the form h( I ~ - r~ ~A), so the functions h( I ~ - ~ (A) span a
dense linear subspace of and therefore the linear span of elements

of the form q @ h( I ~ - r~ IA) is dense in K (x) and is contained

in D(VJ). Hence ~~ has a densely defined adjoint O~ and is therefore closable
and thus ,~ is admissible. This proves the theorem. jjjj

Let Q c= K c Q’ be a Hilbert rigging and J1 E ~(Q’) be admissible and
let A be as in theorem 3 .11. Let Q be an A-open set. The process ~~ cons-
tructed in theorem 3 .11 may be considered as the reflecting barrier process
corresponding to the process of the unrestricted measure ,u. Of course
we have yet to construct the process corresponding to a measure ,u for
the case where J1 does not have bounded support with respect to some

square integrable form. and we shall return to this point later.
We now prove the following theorem.

THEOREM 3.12. - Let Q Q’ be a rigged Hilbert space and
J1 E ~(Q’) be admissible. Let A be a strictly positive definite operator
on K such that A defines an and such that the injection

Q’ is continuous and compact with the = (~, A~)1~2
on K. Let KA c Q’ be the completion of K in the A-norm. Then ~c(Q’ - KA) = 0
and Cap (Q’ - KA) = 0.

Proof Since by assumption (~, A~) E we have that the subset

of Q’ on which (03BE, A03BE) = oo has measure zero. This set is in Q’ - KA. Let now

1) be such that with 03C6(x)dx=1. Set 
It follows by a slight modification of the argument preceeding theorem 3 . 8
that hn((~, E and is in D( ~), moreover

Obviously h,~((~, Aç)) differs from 1 only the set ((;, + 1, hence
it is  1 on the A-ball bn+1 1 = + 1 f . By the

assumption of the compactness of the injection Q’ relative to the
A-norm on K it follows that the injection Q’ is compact, hence the
sets bn+ 1 are compact in Q’ and therefore closed, so their complements
are open and obviously hn((ç, Aç)) is identical 1 on the complement of bn+ 1.
We have therefore by the definition of the capacity of an open set that
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By (3.12) we have that this is equal to

By the definition of the capacity of an arbitrary set and the fact that Q’ - KA
is contained in the open set Q’ - bn+ 1 we have that

so that

Now since (~, A~) E the right hand side above tends to zero as
n --~ 00. This proves the theorem. tt

Let now Q Q’ be a rigged Hilbert space such that Q is separable
then it follows immediately that FC, the uniform closure of the continuous
functions with finite dimensional base (4) in Q, is a countably generated
algebra of continuous functions on Q’ which separates points in Q’ and
contains the constants. By the Gelfand representation theorem we then
know that FC  C(X) where X is a compact separable Hausdorff space
and the points of X are the characters of FC. C(X) is the space of all conti-
nuous bounded functions on X. Since FC separates points in Q’ we may
identify ~ E Q’ with the character with kernel given by the maximal ideal
of functions vanishing at ~. This is then a continuous injection X

so we may regard X as a compactification of Q’. We have that fd
defines a continuous-linear positive functional on FC which is 1 on 1, and

by the Riesz representation theorem and the identification FC = C(X)
we get a measure on X which we also denote by , and it is easy to see

that p is Radon measure on X. Let Xo c X be the support of Jl in X i. e.
the minimal closed set such that Xo) = 0. If we consider p as a
measure on Xo it is obviously everywhere dense.

Since FC is dense in LP(Q’, we may again identify LP(Q’, with

Let us now also assume that p is admissible then since FC~ 1 is dense

in D(E) = D(V) and in we get that E defines a closed Markov

form on L2(Xo, such that D(E) n C(Xo) is dense in C(Xo) as well as
in D( E) in their respective topologies. Hence E defines a regular Dirichlet

(4) (of the form f(  el, ~ ~, ...,  e", ~ ~ ), { e~ e Q a fixed c. o. s. in K).
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form on L2(Xo, Since Xo is actually a compact separable Hausdorff
space we get the following theorem.
THEOREM 3.13. - Let Q c K c Q’ be a rigged Hilbert space, such

that Q is separable. Let J1 E ~(Q’) be admissible. Let X be the character
space of FC, the uniform closure of the continuous functions on Q’ with
finite base in Q, then X is a separable compact Hausdorff space and J1
extends to a unique Radon measure on X. Let Xo be the support of ,u in X,
there is then a natural identification of L2(Q’, with and this

identification takes the energy form E into a regular Dirichlet form on
In particular we have that there is a Hunt process properly

associated with E in jt)
Let now A be as in Theorem 3.12 i. e. A is a compact operator on K

00
with eigenvalues 03BBi and eigenvectors such that 

n i=o

Now obviously exp - 03BE)2 E FC, hence it extends to a function

exp - x)2 eC(X), so that exp - 03BBi(ai, x)2 > e-" are

closed sets in X.

The intersection of these sets is therefore also closed in X and we denote
it by (x, Ax)  a. It is easily seen that this set is actually the closure in X
of the subset of ~ in Q’ such that (~, A~)  a. The union over all a of the
sets (x, Ax)  a is therefore a Borel subset of X, which we denote by KA c X.
We have the following Theorem

THEOREM 3.14. - X - is a polar set.

P~~oof : We have already seen that X - I~A is a Borel set, I~A being
a Borel set. The computation of Cap (X - KA) is done as in Theorem 3 .12
by first estimating the capacity of the open set X - ~", where

C" _ ~ x E X (x, Ax) _ a ~ . We find then that

and since Cap (X - K:x)  Cap (X - Cj the theorem is proven.
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