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On Rudolph’s representation
of aperiodic flows

Ulrich KRENGEL (*)

Institut fur Mathematische Statistik,
Lotzestr. 13 D-3400 Gottingen, W. Germany

Ann. Inst. Henri Poincaré,

Vol. XII, n° 4, 1976, p. 319-338.

Section B :

Calcul des Probabilités et Statistique.

RESUME. 2014 Récemment Daniel Rudolph a amélioré le théorème classique
d’Ambrose sur la representation des flots ergodiques préservant la mesure
par des flots sous une fonction en prouvant que pour des flots apériodiques
la fonction plafond f peut être choisie pour ne prendre que des valeurs p, q
données, p/q devant être irrationnel. Il a montré aussi que la mesure de

{ f = p ~ peut être choisie à l’avance à 8 près. Nous montrons ici que la
construction de Rudolph peut être affinée de manière à donner à la mesure
de { f = p ~ une valeur exacte donnée à l’avance. Ceci implique que tous
les flots apériodiques peuvent être représentés sur le meme espace et ne
different que par « 1’automorphisme de base » nécessaire à cette repré-
sentation.

A titre d’application, nous obtenons une version continue d’un théorème
de Dye, dans une forme très precise. Nous traitons aussi le cas de flots
non singuliers.

ABSTRACT. - Recently Daniel Rudolph sharpened the classical theorem
of Ambrose on the representation of ergodic measure preserving flows

(*) This research has been carried out during the visit of the author at the Laboratoire
de Calcul des Probabilités, Univ., Paris VI.

Annales de l’lnstitut Henri Poincaré - Section B - Vol. XII, n° 4 - 1976.

319



320 U. KRENGEL

by flows under a function f by proving that for aperiodic flows the ceiling
function f can be chosen to take only the values p, q > 0, which can be
preassigned with p/q irrational. He also proved that the measure of { f = p ~
can be preassigned up to an 8 > 0. Here we show that Rudolph’s construc-
tion admits a refinement which allows to preassign the measure of { f = p ~
exactly. This implies that all aperiodic flows can be represented on the same
space and differ only by the « basis-automorphism » needed in this repre-
sentation. As an application we get a continuous time version of Dye’s
theorem, of a very sharp form. We also treat the case of nonsingular flows.

1. INTRODUCTION

We begin by recalling the basic theorem of Ambrose [1] which establishes
a link between the investigation of flows and that of measure preserving
transformations.

By a measurable measure preserving flow on a space L with measure p
we mean a of p-preserving transformations Tt such
that = Tt  TS (t, s E R) and such that the map (a, t) ~ Tt6 is measu-
rable E x with respect to the completion of the product x À
in E x R, where À denotes Lebesgue measure.
A flow built under a function is given by a quadrupel (B, T, m, f ) where

B is a space carrying a finite measure m, T is an invertible nr-preserving
transformation of B onto B, T and T -1 are measurable, f is an m-measu-

rable map from B to {fe > 0 } with = f(T- ib) = o0
~=o

for all b E B, and fdm = 1. On

a measure m is given by the restriction of the completion of m x ~ to Q,
and a measurable m-preserving flow { St, t E f~ ~ , called the flow under f,
is given by
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321ON RUDOLPH’S REPRESENTATION OF APERIODIC FLOWS

where i is the unique integer with

Ambrose has shown that each ergodic measure preserving measurable
on a non-atomic complete probability space is isomorphic

mod nullsets to a flow under a function f which can be assumed bounded
below by some c > 0.

Recently, in a break-through paper, Rudolph has shown that one
can, in fact, find a representation with an f taking only two values. If

~ Tt ~ is ergodic and aperiodic the values p, q > 0 can be preassigned in
advance subject to the condition that p/q be irrational. For G > 0 given,
Rudolph constructs a representation with 1m { f = p ~ - m ~ f = g ~ ~  E,
Rudolph does everything in Lebesgue-spaces since they are the spaces of
interest in ergodic theory, but if one replaces the pointwise definition of
aperiodicity by the more technical « setwise » definition given below, his
proof goes through in general abstract probability spaces.
The condition of ergodicity is not important : Ambrose and Kakutani [2]

have called {Tt} proper if there is no A with ,u(A) > 0 such that for all
measurable A’ c A and all t the symmetric difference A’ A TtA’ has
,u-measure zero. They have proved that proper flows still have a represen-
tation by a flow under a function (not bounded below), if one admits m
a-finite. Rudolph mentions that his result remains valid for aperiodic
nonergodic {Tt}.

In this paper we describe a refinement of the construction of Rudolph
which permits to eliminate the above G > 0. For 0  p  oo given, we
find a representation with m ~ f = p ~ - pm ~ f = q ~ . A direct conse-
quence of this is the result that all aperiodic measurable measure preserving
flows on Lebesgue spaces of total measure 1 admit modulo nullsets a
representation on the same Q and differ only by the automorphism T needed
in this representation.
Another application is concerned with the theorem of Dye [4], which

says that any two ergodic measure preserving invertible transforma-
tions T, T’ of nonatomic Lebesgue spaces Q, Q’ of total measure 1 are

weakly equivalent; i. e. there exists an invertible measure preserving
~p : SZ -~ Q’ so that for a. e. cc~ E Q the sequence ~p ~ Tnw, n E 7~ ~ is a permu-
tation of { E ~ ~ . In the case of continuous time T and T’ are
replaced by aperiodic Hows { and ( and ~p is again a transformation
mapping orbits {Tt03C9, t E R} onto orbits ~ R}. In fact, 03C6 not
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322 U. KRENGEL

only preserves the length of orbit sections (which is automatic for discrete T,
since a permutation preserves the counting measure), but it is again a
« permutation » as follows: each orbit {Tt03C9, t ~ R} and {T’s03C9’, s ~ R} is
cut into intervals {Tt03C9, ti ~ t  ti+1} of length p or q, resp.

 1 ~, (i, k E Z). The image under cp of the intervals of

length p (resp. q) of the orbit of cc~ is a permutation of the intervals of length p
(resp. q) of the orbit of cp(w).
The fact that cp preserves the length of orbit sections is of importance

since without this requirement the existence of a finite equivalent invariant
measure would not be an invariant of weak equivalence.
Some years ago, I. Kubo [13] and the author [10] proved independently

and at the same time a theorem giving a representation of nonsingular
flows by flows under a function. In this theorem, too, the ceiling function
can be constructed so as to assume only the values p, q, using the ideas
of Rudolph together with some new estimates. The problem of preassigning
the measures seems more difficult in this case, but it does not seem of

particular interest since in the study of nonsingular measures one can
usually replace the original measure by an equivalent measure.

I would like to thank F. Blanchard for stimulating conversations on the
subject of this paper. 

’

2. THE REPRESENTATION THEOREM

Following [l0, 1] we call a flow {Tt} in (E, ) aperiodic if there is no
0  a1  x2 and Eo with > 0 such that for all p-measurable A cr ~o
A is contained up to nullsets in u { TtA : a1  t  a2, t rational ) . If (~, ,u) is
a Lebesgue space this is equivalent to the obvious pointwise definition
of aperiodicity. By lemma 2.4 in [10, I] a under a function is

aperiodic in this sense if and only if the basis automorphism T is aperiodic,
i. e. there is no Bo c B with m(Bo) > 0 such that for some n >_ 1 and all
measurable E c Bo TnE) = 0.
The principal result of this paper is

THEOREM 2 .1. E f~ 1 ~ be a measurable measure preserving
aperiodic flow on a complete probability space (E, ,u) and let p, q > 0

with p/q irrational and 0  p  oo be given. Then there exists a quadrupel
(B’, T’, m’, f’) as above such that f’ takes only the values p and q,

m’( f ’ - p) = pm’( f ’ - q), and such is mod nullsets

isomorphic to the flow {S;, t E f~ ~ under f’ defined on Q’ == Q(B’, f’).
Annales de l’Institut Henri Poincaré - Section B



323ON RUDOLPH’S REPRESENTATION OF APERIODIC FLOWS

Proof - Before beginning the formal proof we give a description of
the argument, which leaves out some technical points and the determination
of various constants.

It is clear that any aperiodic flow is proper. By the theorem of Ambrose-
Kakutani we may therefore assume that {Tt} is a flow under a function

given by a quadrupel (B", T", f") with the ceiling function f" not
bounded below and the measure on B" possibly a-finite. The transforma-
tion T" is aperiodic and this permits to pass to a representation (B, T, m, f )
for which f is bounded below and hence m finite. Simply observe that the
proof of Ambrose and Kakutani shows that B" is an at most countable
union of T"-invariant sets Bi’ such that f" is bounded below on each B;’
separately, and apply Rohlin’s lemma to T" on these sets Bi’ with suffi-
ciently fast increasing nis ; see [10, I]. Here we need Rohlin’s lemma in the
following form : if T is measure preserving and aperiodic in a space L with
finite measure p then there exists for every E > 0 and n E a measurable

set F such that F, T -1 F, ... , T-(n-1)F are disjoint,  c

and ~T-iF = E. We note for later use that we even may assume
;= o

2n- 1

~ = as the proof of the lemma shows.
i=0

Clearly we may also assume f to be bounded above, say 0  c ~ f’ _ K,
since a representation with an f unbounded from above is easy to change
into one with a bounded f Actually, the passage from B" to B is all that
is needed to make Rudolph’s proof of his theorem work in the nonergodic
aperiodic case.

Rudolph’s proof consists of an inductive construction, where at each
stage he changes the « names » of points in two different ways. We shall
also need these changes but introduce at each step an additional change
of names in order to correct the frequencies of orbit sections of length p
and q. We shall therefore suppose that the reader is familiar with part II
of the paper of Rudolph, which brings out the ideas quite lucidly. In parti-
cular we do not discuss some subtle questions of measurability because
it is clear from Rudolph’s proof how they can be treated.

Roughly speaking our argument shall run as follows: we may assume
that {Tt} is the fbw { SJ in Q(B, f). Pick a set F 1 c B such that for a

2n 1 - 1

very large ni the sets Fi, TF1, ..., Tn! - 1 Flare disjoint and 
;= o

Let = inf { k >__ 1 : Tkb E (b E F 1) be the first return time under T

Vol. XII, n° 4 - 1976. 22



324 U. KRENGEL

Ti(&#x26;)-l 1

to F 1 and = ) We may regard { SJ as a flow in Q(Fi, f1)

with basis automorphism Tl - induced transformation on F l, i. e.

T1b = (b E F 1).
For each fixed b E F 1 let l = f 1 (b) and divide the interval [0, ![ [ into

subintervals Iv = [xv, x,~~ with 0 = x 1  x2  ...  xN + 1  XN+ 2 = !.
The intervals I,, (v = 1, ..., N) shall have length p or q and the « rest »
IN+ 1 shall have length ~ q. We may assume p  q. We call intervals of

length p p-intervals and intervals of length q q-intervals. H~ 1 = 2n1 K is
an upper bound for fl and n1 c is a large lower bound for fl. There-
fore we can choose the number Np of p-intervals and the number Nq of
q-intervals in such a way that N p(N p + Nq) -1 1 is close to p = p(l + p) -1 1

(this means that Np is of the order pNq).
It is convenient to mark the beginnings of the intervals I~,. Let

and let Jv== [x," x~ ~ oc] c I, (1  i~  N). Do
this for every b E F 1 and let be the set of all (b, x) with 0 ~ x  f 1 (b)
for which x belongs to some Jv constructed with l = fl(b).

Let ~ be the collection of all measurable A in Q(B, f ) with the property
that for each measurable h : B - R the set ~ b E B : (b, h(b)) E A} is a
measurable subset of B. Just like Rudolph we have to do all the construc-
tions within this sub-03C3-algebra of the family of m-measurable sets, see in
particular his lemma 2. It is easy to pick the I;,s for different b’s so that f!41
belongs to ~ .
The set -~z is of course a first approximation for the desired set which

shall correspond to {(b’, x’) : 0 ~ x’ _ a ~ in Q(B’, f’). The proof now
consists of an inductive improvement of this approximation.

After the i-th step Fi, with Hi _ f _ Hi, and have been deter-
mined. Bi comes from a partition of the intervals [0, 1 [ with = h(b) (b E Fi)
into Np p-intervals, Nq q-intervals and a rest of length _ q (Of course,
1, Np, etc. depend on i and b, but we do not want to carry too many indices).
The approximation is already so good that N p(N p + Nq) -1 - p i

for some small 11 > 0.
In step i + 1 we find a large ni + 1 and an F;+i 1 c Fi so that

Fi+ 1, 1, 1, ..., Tni+ 1 are disjoint and

Put

Annales de /’ Institut Henri Poincaré - Section B



325ON RUDOLPH’S REPRESENTATION OF APERIODIC FLOWS

1

T; + i b = and f + 1 (b) = 03A3 f (T vb). We may regard {St} as
v=o

the flow under f + 1 in S2(Fi + 1, f + 1 ) with basis automorphism Ti+ 1.
Now consider [0, l with 1 = f + 1 (b) for some b E F;+ 1. The letter I serves

as a general symbol for the endpoint of the intervals which we want to
subdivide even though it really depends on b and the step of the construction.
The interval [0, l [ carries already p-intervals and q-intervals from the
previous i-th step of the construction.

These « old » intervals now lie in the subintervals [0, f (b) [,
[ f (b), f (b) + f (Tib) [, ... of the new interval [0, l [. If we call the strings
of p-intervals and q-intervals in these subintervals « blocks », there exist
between the blocks intervals which correspond to the rest left over in the
f-th step. Such a « rest » can be empty but in general it has positive length.

To remove these gaps we use Rudolph’s trick. Let Ei = 2 - ‘. Since p/q is
irrational, the function

1
is finite for all E > 0. If the ni in the last step was large enough we can be
sure that Hi is much larger than g(Ei + 1 ). Let [z 1, zi [ be the leftmost rest
in [0, 1[. Let r be the largest righthand endpoint of an interval (of length p
or q) with r1 ~ z i - g(£t + 1 ) (Clearly z’1 = f (b)). We shall have ~i+1 so

small that ~+1 1  p and g(Ei + 1 ) >_ q. Since z~ ~ Hi and Hi - q, we
can be sure that r1 ~ Hi - q - can be found. By the definition
ofg(e) there exist m, n with 0 ~ zi - np - mq - ri  Ei+ 1. Now redefine
the intervals in [rl, zi [ putting there m q-intervals and n p-intervals starting
at rl and leaving a gap of length gl at most between the last of these
intervals and z~.
Now consider the next block of connected p-intervals and q-intervals,

i. e. if [z~, z; [ is the second « rest » from the previous construction, we mean
the interval [z, z~[ [ forming a block of p-intervals and q-intervals. Note
that =] - zi - so that this block has length ~ Hi - q. Move the
block [z, z~[ by the length g 1 to the left so that the gap disappears and
there is now a longer connected string of p-intervals and q-intervals.
Let r2 be the largest righthand endpoint of an interval of this longer string
with r2  z; - g(Ei + 1 ). We can again redefine the intervals on [r2, z; [
putting there p-intervals and q-intervals and leaving a gap of lengthy ~~+ ~ 1
between the last of these intervals and z;. Now shift the next block so the
left by g2 and continue this way until the string is within a distance ~ 2-il
of I, but stop the procedure before it is within a distance ~ 2’’’~ of I.

Vol. XII, n° 4 - 1976.



326 U. KRENGEL

Most of the intervals stemming from the previous step of the construction
have only been shifted by less than ti+ 1 and only a small proportion has
been radically changed.

This may deteriorate our approximation of the desired frequencies, but
no too much. The last portion of length ,: 2’’"~ of [0, 1 [ is reserved to
improve the frequencies again. For this we must have many p-intervals and
many q-intervals in this last section so that by replacing some p-intervals
by q-intervals we could increase the frequencies of q-intervals if necessary
or the other way around. Now for large i this last section is relatively short
compared with [ so that we cannot improve much. Therefore, 11i in the
previous step must already be quite small. The way to make sure that there
are enough p-intervals and q-intervals of the previous step in the last section
is to pick the ni + 1 so large that 3Hi _ 2 - i -1 Hi + 1 so that at least one third
of the last section is composed of blocks. Moreover, n;+ must be so large
that changing one interval after another the frequencies change so slowly
that one can get within of p.
Now assume that the new partition of [0, I [ into p-intervals, q-intervals 

r

and a rest  q has been found for every 1 and l = f + 1 (b). For
simplicity we write again 0 = x~ 1  x~  ...  xN + 1  = ~ l for

this partition. Then let

~~ 1 = { (b, x) : b E Fi+ 1 and x~, _ + a for some 1 ~ v ~ N ~ .

Formally this set is of course defined on f + 1 ) which is different
from Q(F;, ft) but there is an obvious isomorphism between these spaces
so that one can regard all sets as subsets of Q(B, f ). Since the change of
the old partition into the new partition as carried out above consists only
in small shifts except on a small part of [0, I [ the sets f?4i shall converge and
the limit ~ shall be such that a. e. orbit has the following property : it always
stays in ~ during (not necessarily closed) intervals of length a and then
stays in during a time interval of length p - a or q - a before re-enter-
ing b. Since in the limit the p-intervals have exactly the right frequency
one can define

B’ - ~ (b, x) E Q(B, f ) : Slb, x) E f?4 for all rational t with 0  t  a ~ .
B’ is a cross-section with the property that the time between two visits

to B’ always equals p or q.
We do not want to go into. details about the question of measurability

of the sets ~~. The main argument goes like this. Using lemma 2 of

Rudolph [17] it follows from the construction of f?41 that When

we know E ~ we can partition B;+ 1 into measurable subsets E such

Annales de l’Institut Henri Poincaré - Section B



327ON RUDOLPH’S REPRESENTATION OF APERIODIC FLOWS

that the intervals [0, /[ [ and [0, /’[ [ with I = f + 1 (b), l’ = f + 1 (b’) for any
two elements b’, bEE have nearly the same length and for band b’ the old
partition is characterized by the same sequence ( p, p, q, q, q, p, r, p, q, ... ),
saying that the first interval of the old partition has length p, the second has
length p, the third length q, etc., r indicating a rest. Also the lengths of the
sequence of rests shall be nearly the same for b, b’ belonging to the same E.
Then the new partition of [0, I [ can be chosen identical for all bEE, except
for the length of the rest. This then implies ~1 + 1 E W, compare [17]. Hence

oc oc

B = ~~Bi E F and as in [17] the lemma 1 of [17], due to Ambrose,

yields the theorem.
The main work now is that of making all precise estimates fit together.

We start with some simple lemmas; recall that we had assumed p  q.

LEMMA 2 . 2. - Assume an interval of length l ~ 2( p + q) is subdivided
in two different ways into Np (resp. N~) p-intervals and Nq (resp. Nq) q-inter-
vals + some rest of length _ q in both subdivisions. Then we have

Proof -

Now apply + Nq) >_ pN~ + 1/2 to get (2.1). ~
~ An important special case is obtained when the second subdivision is
obtained from the first either by replacing one q-interval by so many
p-intervals that the rest is again _ q or by giving up one p-interval and
replacing it by zero or one q-intervals with rest ~ q. If w is the integer for
which (w -  wp this particular change results in a change of
the frequencies with

LEMMA 2.3. - Let 0  y, 0  p  1, and 0  (5  1 be given. Assume
[0, 1 [ with I ~ 2( p + q) is divided into Np p-intervals, N~ q-intervals and
a rest ~ q. Assume further that the interval [l - ~l, ~[ [ contains at least
[y~l] + 1 p-intervals and also [y~l] + 1 q-intervals. If r~o = 2-1p(1 - p)
and
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328 U. KRENGEL

then one can pass to a new subdivision with Np, resp. N’q intervals and a
rest _ q which differs from the original subdivision only in [l - ~l, l[
and for which

Proof By (2 . 2) one change of an interval changes the relative frequency
by at most 4wql. Now assume the p-intervals are too frequent and that
[y~l] + 1 p-intervals in the last section [t - ~l,l[ are changed into the corres-
ponding number of q-intervals. Then the new frequencies, say N;, N:
satisfy Np ~ N;, N: and

since Np(Np + Nq)-1 >_- p - ~0 and [03B303B4l] + 1 intervals are changed.
We can continue

since (Np + L Because of (2 . 3) we can, therefore, gradually change
the intervals until we get within a distance ~ 4wql-1 of p. If there are too
many q-intervals a symmetric argument works. j~

LEMMA 2 . 4. If [0, Z [ is subdivided in two ways as in lemma 2 . 2 and the
two subdivisions differ only on a set of Lebesgue measure ~ lo (except
possibly for translations allowed on the complement of this set), then

Proof - Apply lemma 2.2 and use that 
Hence

Now we can determine the parameters of the construction inductively.
Recall that we started with p  q, 

(w - l)p  q  wp, ~0 = 2 -1 p( 1 - p). We chose 0  ~  1 so small

that E  p and g(E) > q and pose

To define ni first pick a rational number r = + u2)-1 f~)
with r - p  2 - 3 r~ 1. We say that an interval [0, ~,o is subdivided nearly
r-periodically if the subdivision starts with ui p-intervals, continues with u2

Annales de l’lnstitut Henri Poincaré - Section B



329ON RUDOLPH’S REPRESENTATION OF APERIODIC FLOWS

q-intervals, then with U1 p-intervals, then again with u2 q-intervals, etc.

until the right endpoint of the so defined string is ~ Ào - ui p - u2q.
The interval right of this endpoint may be subdivided in an arbitrary
way with rest ~ q. If J is sufficiently large any interval I = [0, ~o[ [ with
~,o >__ J. (Ul P + has the property :
(2.7) For all nearly r-periodical subdivisions the numbers Np, Nq of
p-intervals resp. q-intervals satisfy Np(Np + pi  r~ l .

Fix such a J ~ 2 and let ni 1 be so large that H~ 1 = n 1 c satisfies :

Now H1 = 2n1K is an upper bound for fi. When ni has been determined
we know that 2inln2 ... niK = Hi is an upper bound for f and

Hi = n1 . n2 ... nic is a lower bound. Let ni + 1 be so large that

and

and

Together with (2.6) this determines all constants needed for the construc-
tion. Of course in the first step the intervals [0, l[ with I = fl(b) >__ Hi
are subdivided nearly r-periodically. Therefore, (2.7) holds for this sub-
division.

We have to check inductively that the subdivision of [0, [ into
Np p-intervals and Nq q-intervals and a rest can be constructed with

in step i. Since this has already been established for i = 1 we now assume

it proved for i and consider [0, ~+i(&#x26;)[ [ for some b E Bi + 1. First regard the
changes that come from the radical modifications of the old subdivision
which were necessary to remove the rests. A sequence of such radical

changes was carried out but each involved an interval of length  g(Ei + 1 ) + q
and enabled us to move on a piece of length ~ Hi. Thus if lo is the total
length of the part of [0, 1 [ where we have had to perform these changes,
then l0/l _ (g(EI+ 1) + R)/Hi. By lemma 2.4 the new relative frequency

+ Nq)-1 differs by 0  4wl0/l from the old. By (2.9)

Vol. XII, n° 4 - 1976.
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~  + Together with (2.11) this implies
I + Nq~ 1 - P I  2~1~ = Min ~ ~?o~ 2-~~+ 

2’~~ and assume for a moment that lemma 2 . 3 is applicable.
Then we can pass to a new subdivision with N;, resp. Nq’ intervals which
differs from the subdivision just obtained only on [~ - ~~[ [ and for
which by (2.4) the relative frequency can be estimated:

The last inequality follows from (2.9) again. This means that we have
then verified (2 .11 ) for step i + 1.

It remains to check the hypothesis of lemma 2.3. By (2.8) at least a
third of the interval [1 1 - 2 - ti + 1 ~I, [ [ is composed of complete intervals

k k+1 i

of the i. e. intervals which were subdivided

v=o v=o

with good frequencies in the previous step. Therefore, if Mp is the number
of p-intervals in the union of these « complete » subintervals, and Mq the
number of q-intervals, we have

since the frequencies in step i were good.
As the total length of these « complete » subintervals is >_ 3-~’~~ l

and the rest in each of them occupies less than half of it, the estimate

must hold. Together with (2.10) and (2.12) this yields

A symmetric argument proves [y~l] ~ 1. Thus, the application of
lemma 2.3 was legitimate and the inductive proof of (2.11) is complete.

Next we want to check that the sets converge. Let
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331ON RUDOLPH’S REPRESENTATION OF APERIODIC FLOWS

If (x, b) tt Di = then all of the translates St(x, b) ( ~ I t  q) belong
to a part of Q(Bi+ 1, .~ + 1) where the new subdivision differs from the old
only by a translation of magnitude  Ei + 1.

Considering each fiber {(~ x) E f + 1 ) ~ 0 ~ x  f + 1 ~b) ~ for
fixed b separately and applying the Fubini theorem we find

By (2 . 8) 2ic and by (2 . 9) + q)/Hi  As 
00 00 i = 1

we have shown m(D;)  00. Similarly m(D;’)  oo follows from

i=1 i i=1 i 
,

m(Di’)  2qm(B i + 1 ) + 2qH-1i+1 + As also  oo, the con-

i= 1

vergence of the sets f!Ji to a set ~ with the property that each orbit stays
in ~ always for a duration a and then stays outside for a duration p - a
or q - a is now straightforward. As Bi produces the desired relative fre-
quency of p-intervals up to ~i and ~i converges to zero. B produces exactly
the desired relative frequency. ~jj
The next theorem is an immediate consequence of theorem 2.1:

THEOREM 2 . 5. - There exists a measure space (B, m) and a (two-valued)
function f : B -~ (~ + such that for every aperiodic measurable measure
preserving flow {Tt, t E ~ ~ on a Lebesgue-space (X, fl) with = 1
there exists an invertible w-preserving transformation T : B - B for
which the E on Q(B, f’) constructed with the basis-auto-
morphism T is isomorphic mod 0 ~ R}.
Proof - We may preassign p, q > 0 with p/q irrational and take

B = [0, 2( p + q) -1 ], yn = Lebesgue-measure on B, f(b) = p on [0, ( p + [
and = q on [( p + q) - l, 2( p + q) -1]. If (~, ,u) is a Lebesgue-space 
is represented on Q(B’, f’) then (B’, is a Lebesgue space (with not
necessarily normalized measure). This was already pointed out by Roh-
lin [16] . By theorem 2.1 we can represent {Tt} on Q(B’, f’) where

and

yn’ ~ f ’’ - q ~ - j~i ~ , f = q ~ and nonatomic Lebesgue spaces with the
same total measure are isomorphic mod 0 there also exists a representa-
tion on Q(B, f ). The measure m’ is nonatomic since {Tt} is aperiodic. jjt

Remarks. a) The proof of theorem 2 . i also establishes the following.
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Let P = ~ b E B’ : f ’(b) = p ~ . The representation can be constructed in
n- 1

such a way that lim = a. e. on B’. This is equiva-

lent to m’ { f ’ = p} = m’{ f ’ = q} in the ergodic case but in the non-
ergodic aperiodic case it is stronger.

b) The second part of Rudolph’s paper is devoted to a coding argument
which shows that one can find a representation such that {{/’==?},
{ f ’ - q ~ ~ is a generator for T’ provided the entropy of the flow h(T1)
is so small that 2 -1 h(Tl ) ( p + q)  1. This argument needs no change.
Thus it is possible to find a representation with m’ ~ f ’ - p ~ = m’ ~ f ’ = q f
for which { f’ = p} generates in B’ under the same entropy condition.

c) If there is a way to define (B’, f’, T’, m’) in such a way that the points
of B’ visit { f’ = p ~ very regularly, then the representation under 2-valued
functions might open up a new approach to the theorem of Jacobs, Denker
and Eberlein [7] [3] on the prevalence of uniquely ergodic flows.

d) There has been great interest in the last couple of years in « filtered
flows » studied by P. A. Meyer, Sam Lazaro and others for their proba-
bilistic interest [14] [15]. Some years earlier the author [11] had already
given a representation theorem for filtered flows with some different

probabilistic applications. Unfortunately, the fact that the representation
of « filtered flows » had already been started they were originally called
flows with increasing 03C3-algebras2014was overlooked.

We call a in (Y, /l) filtered if the (7-algebra ~ on
which p is defined contains a sub-o-’algebra ~o which is increasing (i. e.

t ~ 0 => Tt- ~o). This can for example correspond to the « future »
or « past » of a process, depending on the direction, of the shift. Usually
the case where ~o is exhaustive, i. e. the 6-algebra ~~ generated by all

0) is ~~, is of interest. It was shown by the author in [1 1] that measure
preserving measurable flows that are proper on ~~ admit a representation
as flows under a function adapted to ~o. By this we mean the following.
There is a ~o such that ~o =3 ~o ~ Tto some to > 0 and under

the isomorphism not only % but also ~o is a product a-algebra. If ~ is

the 6-algebra on which m on B is defined there is a with ‘~o
such that ~o is the product of ~o with the Lebesgue-measurable sets. What
is more important, the ceiling function f can be chosen 0-measurable,
see [11, Theorem 2]. It would now be very interesting to know if even in
this refined representation theorem f can be chosen 2-valued. This question
seems very hard to me and the answer may well be negative (Of course
~ Tt ~ on ~ has to be aperiodic).
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3. NONSINGULAR FLOWS

We now discuss the representation of nonsingular flows {Tt, t E R} by
flows under a two-valued function.

A nonsingular transformation in a finite measure space (E, ~, f1) is a

bijective transformation T : ~ -~ ~ for which T and T-1 are measurable
and the measure defined by = A) is equivalent to ~c, i. e.

T f1(A) = 0 iff f1(A) = 0. A group {Tt, t E L~ ~ of nonsingular transforma-
tions is called a nonsingular flow.

By a theorem of Kubo and the author [13], [10, II] proper measurable

nonsingular flows on a complete probability space can be represented as

flows {St, under a function as follows. T in the finite measure

space (B, m) is now nonsingular. The measure m on Q(B, f ) is no longer
a product-measure. If m ~ 03BB is the completed product of m and the Lebesgue
measure ~ then m is equivalent to 11) (x) À restricted to Q(B, f ) and given
by a strictly positive density h(b, x) on Q(B, f ) with regard to m (x) ~~.

(Actually, I did not formulate the representation in this simple way in [10]
since I discussed the more general case of semiflows {Tt, t ~ 0 ~ (the Tr
are then not invertible). But the above formulation is easy to deduce from
theorem 4.1 and 4.2 in [10, II], see p. 19 there).

is aperiodic one may again assume 0  c  f _ K  oo . This
can be shown as in the measure preserving case [10, I, p. 187] since Rohlin’s
lemma remains true for nonsingular transformations [8, p. 282]. But more
is true; we shall see that the argument of Rudolph goes through with only
little extra work and thus we get:

THEOREM 3 .1. If {Tt, t E f~ ~ is an aperiodic measurable nonsingular
flow on a complete probability space (L, ~, f1) and p, q > 0 with p/q irra-
tional are given, there exists a finite measure space (B’, m’), a measurable
f’ : B’ -~ ~ p, q ~ , a nonsingular transformation T’ in B’ and a strictly
positive density h’(b, x) in Q(B’, f’) such that {Tt, t E f~ } is isomorphic
mod 0 to the flow { E ~ ~ under f ’, and the measure m’ in Q(B’, f ’)
is given by the density h’(b, x) with respect to m’ @ ~,.

Sketch of proof The main argument is the same as in the measure
preserving case. A new difficulty, however, comes in when the question
of convergence of the sets is studied. The reason is that we can no longer
be sure that a set with short orbit sections has small measure.
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We shall be able to handle the small translations of blocks by passing
to the measure ,~c defined by

before even starting the construction. The radical changes between the
good blocks also cause trouble since they happen on longer and longer
intervals. The measure of these sets will be made small by a more careful
choice of the sets Fi.
By the representation theorem of Kubo and the author we may start

with a representation on some Q(B, f ) with 
there is given m. Considering both J.1 and the equivalent measure ,u we get
on Q(B, f ) two densities h and ~z. We may assume c > 2p. For

2-1p __ x  f (b) h can be chosen in its equivalence class with

In h) we shall of course still use the restriction of m to F~ as the measure
on the basis, but the density will now depend on i, call it h~ and hi. Then (3 .1)
is replaced by

Consider an interval [0, 1 [ with 1 = fi + 1 (b), Let

be the left endpoints of all p-intervals and q-intervals from the subdivision
coming from step i, i. e. the entrance points into ~1 (The left endpoints of
the « rests » are not yet considered here).
For the present theorem one does not need the correction of the fre-

quencies in [2 - i l, l [. The removal of gaps and the small shifts of intervals
are therefore, as in Rudolph’s paper, continued through the entire

interval [0, 1 [ (except for a rest ~ q). Therefore, PÀi + 1 ~ ~~ can be written
as a union D; u D2 where Dt is due to a translation of size ~ 8i+ 1 of

blocks and D2 comes from the radical changes at the end of a block.
For (b, x) E Dl we have

(The first block with at least 2 intervals is not moved).
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The conditional measure on the fiber above b is governed by hi, resp. h;.
We may assume E  p so that 1  p2 - ~i + 1 >. Applying Fubini we can
estimate the conditional measure of Ui 1 as follows:

Hence

In the same way it follows that 1 x)dx.

Now integrating the conditional measures over b we have proved that

(3.3) m(D~ ) c 4p- lEi+ 1 ~
Next we estimate m(Df). We may consider m defined on each h)
by the natural isomorphism between these spaces. We need Rohlin’s
lemma in the following form. For i >_ 2 we can find F’i c 1 such that

F’i, Ti-1F’i, ..., Tni-1i-1F’i are disjoint and 1 1 Fi . This is not
v=0

hard to derive from the usual formulation of Rohlin’s lemma.
We may choose the ni increasing so fast that 1 > g(~i + 1 ) + q and

2i. For 0 ~ v ~ n; consider

and

Let vo be the index which minimizes 8," then it is easy to check that

8vo _ 6ni 1. Let F; = By the choice of vo the set

has measure m(Wi) __ 8vo  6ni 1. As g(Ei + 1 ) + q  Hi -1 i the set D2
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where the radical changes are performed when passing from Bi to fÀi + 1
is contained in the image of Wi under the natural isomorphism

~~Ft + ~ ~ f + ~ )~ Hence

Together with (3.3) it follows that the sets ~1 converge since

The set B = ~~Bi has again the desired property that any orbit
n=1 i i=n

stays in ~ always for intervals of length a and then outside during intervals
of length p - a or q - a. The measurability considerations are the same as
before.
We can now forget /1 and m since the convergence of the sequence

in the metric d(A, B) = B) implies that in the corresponding metric
for the equivalent measure m.
Now it suffices to point out that lemma 3.1 in [10, II] can play exactly

the same role as lemma 1 in [l7] in order to get from the cross-section
to the representation (Actually, a simpler lemma would suffice since

lemma 3 .1 was designed even for semiflows).

4. DYE’S THEOREM FOR FLOWS

We now return to the study of measure preserving transformations and
flows. In this final section we shall obtain a continuous time version of

Dye’s theorem [4] on the weak equivalence of ergodic measure preserving
transformations as an application of theorem 2.1 with p = 1.
We refer to the paper of Hajian, Ito, and Kakutani [5] for a very elegant

proof and presentation of Dye’s theorem for discrete time. In the case of
discrete time the condition of aperiodicity, which we shall need, is not

explicitly stated in the formulation of the theorem since it follows from

ergodicity in (nonatomic) Lebesgue spaces.
The notion of weak equivalence for groups of transformations has been

introduced by W. Krieger [12] and it has turned out to be very effective
for the study of countable groups. However, for flows we feel that a stronger
notion is desirable for the reason indicated in the introduction.

THEOREM 4 .1. be measurable measure

preserving ergodic aperiodic flows of Lebesgue-spaces (E, ,u), resp. (X’, ,u’)
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of total measure 1. Then there exists a measure-preserving invertible

transformation ~p of E onto L’ (mod 0) such that for all co E E qJ maps the
orbit Orb (co) E (~ 1 ~ onto the orbit Orb (w’) _ ~ Tt co’, t E (~ ~ of

== in such a way that ~p on orbits preserves the Lebesgue measure.
In fact, given p, q > 0 with p/q irrational one can find qJ with the following
property. There exist measurable partitions { P, P‘ ~ of E, resp. { P’, P" ~
of L’, such that P’ = qJ(P) and the orbit of each qJ E ~ consists of intervals
of length p in P and intervals of length q in P~, that of E L’ of intervals
of length p in P’ and of length q in P’~.

Proof Pass to representations with (B, m, T, f ) and (B’, m’, T’, f’)
such that f and f’ assume only the values p and q and

We may assume that E = Q(B, f ), L’ = Q(B’, f ’) and that the given flows
are those under f, resp. f ’. Let To, To be the transformations on

B p = { f = p ~ , resp. B p = ~ f ’ - p ~ induced by T, resp. T’. They are
ergodic and ~ f = p ~ , ~ f’ - p } are nonatomic Lebesgue spaces with
the same total measure. By the theorem of Dye there exists a measure
preserving invertible transformation 03C8 : Bp ~ Bp which maps the orbit
of each b E Bp under To onto the orbit of under To. Of course the measure
on Bp, resp. B~ is the restriction of m, resp. m’. By lemma 2 in the quoted
paper of Hajian, Ito and Kakutani there exists a partition of Bp say
{ B 1, B2, B3, ... }, (some B; may be empty), such that

is a partition of { f = q ~ . An analogous partition exists for Bp. Let p be
the measure preserving invertible transformation { f = p ~ --~ ~ f = q ~
defined by p(b) = Tib (b E Bi). Let p’ denote the corresponding transforma-
tion { f ’ = p ~ -~ ~ f ’ == ~ } . We can now define ~ : Q(B, f ) -~ Q(B’, f ’)
as follows:

Checking the stated properties of ~p is straightforward. j~j
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