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Case postale 6128, Montréal 3, Canada

RESUME. — Une nouvelle démonstration des théorémes de renouvelle-
ment de Orey-Feller-Blackwell est donnée; elle utilise les propriétés des
fonctions harmoniques d’un processus markovien ad hoc.

We will explore a remark by Feller [/], a remark unfortunately not
initially remarked by the author, concerning a Markov process associated
with the renewal process. From considerations of the asymptotic properties
of this Markov process we obtain the Orey-Feller-Blackwell renewal theo-
rems in a unified « simple » way.

Consider a sequence of iid random variables T;, T,, ... with distribution
functions F concentrated on (0, <), that is F(0) = 0. Following Feller [2]
we may have a non-negative variable S, with a proper distribution G and
we put

S, =S+ T+ ... + T,
The renewal process S, is called pure if S, = 0 and delayed otherwise
(for brevity a delayed process with starting distribution G will be called
a G-process as opposed to a pure process). Also for any ¢ > 0 there is
a unique subscript N, [3] such that Sy, < ¢ < Sy,+; (note this definition
for the stopping time N,+1 differs slightly from Feller’s). We define the
excess (waiting) time at ¢ as Sy,,, — ¢t and we define

Y!(x) = the probability the excess time at ¢ for the pure process < x,
5(x) = the probability the excess time at ¢ for the G-process < x,
u(t) = expected number of renewals for the pure process by ¢,

Annales de I’Institut Henri Poincaré - Section B - Vol. XI, n° 2 - 1975.



188 D. MCDONALD
and
Vg(t) = expected number of renewals for the G-process by t.

We now consider R, = [0, o] as the state space of a Markov process
where the transition probabilities are defined as follows. For A € #(4.),
the Borel sets on Z,,¢ > 0 and xe %,

P(x, A) = Pr (the excess time at ¢ for a d,-processe A) if x < ¢
P(x,A) =1 if xet+ A if x>t
P(x,A) =0 if x¢r+ A if x>t
Py(x,A) =1 if xeA
Po(x, A) =0 if x¢A.

(The renewal J,-process gives S, distribution d, where J, means the dis-
tribution where all the probability is concentrated at x). In more pictu-
resque language we say P,(x, A) is the probability of starting at x and with
variable steps of length T finally jumping right over ¢ and into the set ¢+ A.
Of course if x > ¢ we are already passed ¢ and we only ask if we are already
in ¢t + A. Also we note that P,(x, A) = Pr (the excess time for the pure
process at time ¢ — A) since these probabilities are invariant under trans-
lation.

It is quickly seen that for all xe Z,, t > 0, A — P,(x, A) is a probability
on B(#.). Also for all Ae B(#,), x - P,(x, A) is measurable. Thus we
need only establish the Chapmann-Kolmogorov relation to show that
(P),»0 is a semi-group of transition probabilities.

LEMMA 1.

Pysr(x, A) = f "B, (x, ds)P, (s, A).
0

Proof. — For x < t,.

P, +1,(x, A) = Pr (the excess time for the J,-process at ¢; + t, € A).
Conditioning on the excess time at ¢; we have

0
P, (%, A) = f Pr (excess time for 8,-process at ¢, + £, € A | excess time
0 for 8,-process at ¢, = s)dY "~ *(s)

t
= f “Pr (excess time for d-process at 7, € A)dY" *(s)
0

n f * Liscers mdY"5(s) by definition of P (s, A).
t2
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RENEWAL THEOREM AND MARKOV CHAINS 189

Finally we notice that if I, = [0, y] then P(x, L)) = Y*"*(»). x < t. Thus
for x <t

P, (%, A) = f :P,z(s, A)P,,(x, ds).
For t; <x <t; + t,.
P,, +,(x, A) = Pr (the excess time for J,_, -process at ¢, € A)
=P, (x — 1, A)
- foméx_,l(ds)P,z(s, A).
Now for x > t;, P,,(x, x — t;) = 1 by definition and we see that for
LE<x<ti+1,
P,y o(x A) = f:P,,(s, AP, (x, ds).
Lastly for t; +t, < x.
P..,A) =1 if x—t —teA
=0 if x-—1t —t¢A
Now P,,(x, ds) = é,_,,(ds), which gives

f "Po(s, AP, (x, ds) = P, (x — 11, A).
0

Since x — t; = t,, we have
P,z(x - tl’ A) = 1 if (x - tl) - tzeA
=0 if (x—1t)—t,¢A.
This is precisely P,, +,,(x, A). Thus for x > ¢, + ¢,

Py, A) = f P, (s, A)P(x, ds),

and we have the result for all x.

Given the initial distribution on the state space (or delay distribution
if you like) we may now construct a Markov process (X,);»o defined on a
probability space (Q, &, Pg), where G is the delay distribution, such that

PG(theA/X,o = xo, ceey th = xk, Io <, s ey tk < t") = P,n_,k(x,k, A).
We note in passing that

Po(X,€[0, y)) = Yg(»).

We are interested in the limits of these distributions as ¢ goes to infinity.
We approach this problem by looking at the properties of the harmonic
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190 D. MCDONALD

functions on the related space-time process. We pick an arbitrary sequence
I={t,}00=t<t;<t,<...<t,...t,— . The random variables X,
are by construction all measurable with respect to the measure space
(Q, #, Ps) and we define F" to be the g-field generated by { X, ,m > n },

e

and let #® = m Z". A random variable Y is (following [4]) a tail random
n=0
variable if there exists a sequence (f,) of #-measurable functions on Q such
that Y = f,(X,,, X,.,» - -.)- If fcan be chosen independently of n so that
Y =/fXp, Xppii5 -+ )

then Y is called invariant. If Y = y, where Y is a tail random variable
(respectively an invariant random variable) then A is called a tail event
(respectively an invariant event). The class of all tail events (invariant
events) form a o-field called the tail o-field (the invariant o-field). We will
call the pair (X,,, t,),=0, the space-time chain associated with (X,,) and we
see that we can construct a Markov chain on £, x I with transition pro-
babilities
P((%, 1), (A, tysr ) = Po o0 (6, A), XE€R 4, 1y, tyr €L, ACB(R.).
A real valued measurable function g on £ x 1 is called space-time harmonic
if
g(xa tn) = J.Pt,.,xl—t,.(x’ dS)g(S, tn+ l)xe'%+5 tm tn+1 € I

We should note that the restriction of our space-time process to the times ¢ is
not obligatory and is only done to avoid certain measurability questions

and to apply more easily the theorems in [4].
We now examine the space-time harmonic functions which are bounded.

LemMA 2. — If h is a bounded space-time harmonic function then

h(x9 tn) = h(x - (tn+1 - tn)a tn+1)’ x = Liv1 — Uy

Proof. — A space-time harmonic function satisfies
o o] ~
h(xa tn = f h(S, tn+1)P((x, tn), dS X tn+1)
0

- f HGS, by WPy - s ).
0

Now for t,4; — 1, < x, P, (X, ds) = 6,_(.,,-1n(d5). Therefore
h(x’ tn) = h(x - (tn+1 - tn): tn+1) fOl' tn+1 - tn <x
We may extend this equality right along the diagonal.
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RENEWAL THEOREM AND MARKOV CHAINS 191

We need now only consider /(x, 0) to establish results on all space-time.

LeEMMA 3. — () If F is periodic with period p A(x, 0) is constant on the
periods of F. That is A(x, 0) = A(x + p, 0)Vx = 0.

(b) If F is aperiodic A(x, 0) is almost surely constant with respect to
Lebesgue measure.

(¢) If F isaperiodic and there exists some convolution F*" of F which
is not singular with respect to Lebesgue measure then A(x, 0) is constant.

Proof.
hO, 1,) = f "B L0, 1), d5 X fsy } IS, yr )
0

= f:P,n“_,"(O, dsYh(s, tor ).
From the equality along the diagonals we have
h(t,, 0) = f:P,m_,"(o, ds)h(s + 1,15, 0).
Letting g(x) = h(x, 0) we have
40) = [P0, a0 + 10)

where ¢(t,) is measurable and bounded. Since the #, were choosen arbi-
trarily we have in general that

q(x) = fowp,(o, ds)g(x + t+5) Vi, x>0. )

(a) Now if F has period p we may set ¢t = p to get q(x)=f Ooq(x+s)dF(s)
0
and by Choquet-Deny [5] we have ¢(x) is constant on the periods of F.

(b) If F is aperiodic we remark that by regularization of (Eq. 1) we have
functions ¢°(x) which are bounded, uniformly continuous solutions of
(Eq. 1) and which tend almost surely to g(x) (w. r. t. Lebesgue measure)

as ¢ = 0. Also letting # — 0 in ¢°(x) = f OoP,(O, ds)g*(x + t + s) we have
(V]

(x) = J.wq‘(x + 5)dF(s) and again by [5] ¢°(x) is constant. Thus g(x) is
]
constant almost surely.

(c) We note that if F*" is not singular w. r. t. Lebesgue measure we can
pick a 7 sufficiently big so that F**(#) > 0 (F*" is the absolutely conti-
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192 D. MCDONALD

nuous part of F*"). Hence P3(0, ds) is not singular and we may employ the
method in Note 1 to prove that g(x) is constant.

We remark that the aperiodic distribution F giving mass %to 1 and x/ 2

and the function

h(x,0)=1 if x=p+ q\/ 2 D.q positive integers
=0 if x¢p+q\/2 for any p.q.

generate a counter example to an extension of Lemma 3 ().

It is now useful to distinguish between the cases when F is arithmetic
(without loss of generality having period 1) and when F is non-arithmetic.
Henceforth if F is arithmetic the 7, and x’s will be restricted to the positive
integers. Moreover for the arithmetic case we will define the measure m to be
the counting measure on the positive integers while in the non-arithmetic
case m will be Lebesgue measure. With this in mind we note that the dis-
tribution,

] r
E)= 4 fo(l — F(y)m(dy)
= mean of F

called the equilibrium distribution, gives a stationary delayed renewal
process [6]. Hence Y3(r) = E(r)Vt >0, and seewe X'is stationary w. r. t. P.
The utility of the space-time chain is seen in the following.

PROPOSITION 1. — The following conditions are equivalent.
(@) For all probability measures p and v on #(%.)

lim | P, — VP, | >0. Where uP(A)= fP(x, Au(dx) for Ae4B,
and | v | is the total variation of v.

(b) The only bounded space-time harmonic functions are constants.

Proof. — The proof is an adaptation of the proof for Proposition 4.3
in [4].

THEOREM 1. — If (@) F is arithmetic and « is any probability measure on
the positive integers or if (b) F"* is not singular w. r. t. Lebesgue measure
for some n and o is a probability measure on [0, ) thenlim | «P, — e || = 0

o t— 0 .
(in the arithmetic case ¢ is an integer), where e is the equilibrium measure
having distribution E(r).
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RENEWAL THEOREM AND MARKOV CHAINS 193

Proof. — In the arithmetic case we restrict attention to the positive
integers. Hence by Lemmas 3 (a) and 3 (c) respectively we see the bounded
space-time harmonic functions are constant. Hence by Proposition 1,
we have for probability measures « and e

lim | «P, — eP, | = 0.

t— o0

However
eP(A) = f “P,(x, A)IE(x)
0

= e(A)
and we have the result. Q.E.D.

COROLLARY 1 (Feller). — If F is arithmetic with period 1 and F(0) = 0
then
lim Pr { renewal at n} = 1/u(u is mean of F)

n— oo
Proof.

Pr {renewal at n} = P,(0, 0).
Thus

lim {renewal at n} = ;lle {0} = 1/u, from Theorem 1.

n— oo

If F is aperiodic but not absolutely continuous w. r. t. Lebesgue measure
we must be a little more subtle.

ProposiTiON 2. — If F is aperiodic and if G is a probability measure
which is absolutely continuous with respect to Lebesgue measure (G « m)
then the tail field of { X,, } is trivial w. r. t. Pg.

Proof. — Let A be a tail event of { X, }. Then by Proposition 4.1 of [4]
A is an invariant event of { X, , ¢, }. Consider the function defined on space-
time by

ha(Z) = Ef(A)  (Z of the form Z = (x, 1,).

By Proposition 4.2 of [4] h,(Z) is bounded and space-time harmonic.
Also

ha Ko 1) = Epx, al Al = E[0°A | #,] = E,[A | #,]
(where again # is the initial distribution given by
n{ Axty } = G(A).
Thus h,(X,, t,) converges a. s. wW. I. t. 13,, to A. Moreover by Lemma 3 (b)
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we know #hs(Z) = C (constant) a. s. w. r. t. Lebesgue measure.
LetB = {(x,t)| h(x,t) # C}.

Since G « m we have IN’,, {X,, t,)eB} =0. Thus a. s.-I;,, ha(X,, t,)
converges to C and hence A is trivial w. r. t. P,. Thus A is trivial w. r. t. Pg.

THEOREM 2. — If F is aperiodic and if « is a probability measure which
is absolutely continuous w. r.t. Lebesgue measure then

lim | «P, —e| = 0.

th—* 0

Proof. — By Proposition 2, the tail field of { X, } is trivial w. r.t. P,
(since the equilibrium distribution e « m). Hence as in Theorem 4.1 of [4].

lim sup |P,ANB)—-P,AP,MB)| =0 forevery BeZF. (2)

th— 0 A€eF"
Let A= {X, eF}; B={X,eG}
Thus we have

lim sup

tp,—2© F

f P, (x, F)e(dx) — e(F)e(G) l = 0.
G |

Now a « m. Also m « e on {x|F(x) <1} by the construction of e.
Moreover by truncation there exists a probability measure a « m concen-
trated on [0, T] such that |« — a | < & for any & Hence

| aP, — aP,, | < e
Also by the construction of our chain we see aEPT is concentrated on
{ x | F(x) < 1}, and hence for 1, sufficiently large aP, « e. We may there-
fore consider the case o « e. Let #(x) = %Z(x) and hence fﬁ" de = 1.
Let #,(x) be step functions such that #, 1 &. Thus by Eq. 2 we have

lim sup
th—o F

JP,"(x, F)Z (x)e(dx) — fﬁ’ (x)e(dx)- e(F) ‘ = 0.
However we remark that

} f P, (x, F)#y(x)e(dx) ~ f P, (x, F)(x)e(dx)

< f P, (x, F) | Fo(x) — F() | e(d) < f | Fux) — F () | eld).
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RENEWAL THEOREM AND MARKOV CHAINS 195
This uniform bound implies

lim sup| f P, (x, F)F(x)e(dx) — f F(x)e(dx)-e(F) | = 0.

th—o F |
and  lim sup f P, (x, F)a(dx) — e(F) ‘ -0
th—~o F

and lim sup | P, (F) —e(F)| =0

th—o F

and hence
lim |aP,, —e| =0.

n—* oo

COROLLARY 2. — For F aperiodic Y*(x) converges weakly to E(x).

Proof. — For any interval [x, y] we pick 0 < ¢ < x and by considering
the possible trajectories of our process, as well as the translation invariance
of our transition probabilities we see

P.(s, [x + & yD) < PO, [x, y]) < P, (s, [x, » + € + P, (s, [0, €])

for 0 < s < &. Consider the uniform probability measure u, on [0, e&].
Integrating our inequality we have

uP,[x + ¢yl <P, (0, [x, y) < uP,[x, y + €] + uP,[0, €]
Hence by Theorem 2. We have for all ¢ < x
elx + & y] < lim P, (0, [x, y]) < Iim P, (0, [x, y]) < e[x, y + €] + [0, &].

Thus by the continuity of E(x) we have lim P, (0, [x, y]) = e[x, y] which
implies e
lim Y"(x) = E(x).

th = 0

CoroLLARY 3 (Blackwell). — If F is aperiodic then lim u(z+ 4) —u(t) = h/u.

t— o0

Proof. — u(t + h) — u(¢) is the expected number of renewals in [¢, t + A].
If we condition on the excess time at ¢ we have

u(t + h) — u(t) = f"_ {1+ u(h — 5)} dY'(s)
(4]

(if we step over ¢ and land at ¢t + s < ¢t + & then we restart the process
at t + s and we take on the average u(h — s) more steps before ¢t + h).
Next we remark that 1 + u(h — s) is a decreasing function of s and hence
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196 D. MCDONALD

has a countable number of discontinuities on [0, 4]. Moreover by Corollary 2,
Y* converges weakly to E and E « m. Hence the set of discontinuities of
1 4+ u(h — s) has measure 0 w. r.t. E and we have

lim u(t + k) — u(t) = ~[h(l + u(h — 5))dE(s)
0 .

t— o

(see Theorem 5.2 (iii) in [7] for example).
However since E is the equilibrium measure

f "(+ u(h — $)dE(s) = Ve(h) = hlu  (see [6]).
0

Remarks. — If F has infinite mean we have no equilibrium probability
measure. We still have however an invariant measure e with distribution

E(x) = f :(1 — F(s))m(ds).

We have for every y > 0 and every xe R,
P, (x, F)
e(F) +y

(See Theorem 7.3 in [4]). We have all the obvious extensions of Corolla-
ries 1, 2 and 3.

If our distribution F is not concentrated on the half line but has u > 0
we can still consider the excess time at ¢ € R, (since the walk drifts to the

right) and we can prove our theorems based on the strict ladder distribu-
tion [8].

+>0 uniformlyin Fe%R,) as t,+> .

NotE 1. — If 4 is measurable and bounded and satisfies

hx) = f:h(x + DE() @)

and if F*" is not singular (w. r. t. Lebesgue measure), then A(x) is constant.

Proof. — By Choquet and Deny’s lemma A(x) is almost surely constant
(say C). Subtracting C from both sides of (Eq. 3) we have

g(x) = ffg(x + D)F() @

where g(x) = h(x) — C is almost surely 0.
By convolution of (Eq. 4) we have

g(x) = [ :g(x + VAF*().
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Now F* = G = pG, + qG,; where G, generates a measure absolutely
continuous with respect to Lebesgue measure and G, generates a measure
singular with respect to Lebesgue measure [7Jandp > 0,9 > 0,p + ¢ = 1.
Now

g) =p f "gx + )GL) + g f "g0x + 1)dGL)

—q f “gx + Y)dG(y).
0

since g(x) = 0. a. e.
Again using

gx+y) = f:g(x ¥ + y)dG(yy)
we have
() = ¢ f g(x + y)dG2(y)

= q"fwg(x + y)dG}"(y) 4 0.
0

Thus g(x) = 0 everywhere and hence h(x) = C everywhere.
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