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Section B :

Calcul des Probabilités et Statistique.

RÉSUMÉ. - Une nouvelle démonstration des théorèmes de renouvelle-

ment de Orey-Feller-Blackwell est donnée; elle utilise les propriétés des
fonctions harmoniques d’un processus markovien ad hoc.

We will explore a remark by Feller [1], a remark unfortunately not
initially remarked by the author, concerning a Markov process associated
with the renewal process. From considerations of the asymptotic properties
of this Markov process we obtain the Orey-Feller-Blackwell renewal theo-
rems in a unified « simple » way.

Consider a sequence ofiid random variables T1, T2, ... with distribution
functions F concentrated on (0, oo), that is F(0) = 0. Following Feller [2]
we may have a non-negative variable So with a proper distribution G and
we put

The renewal process Sn is called pure if So = 0 and delayed otherwise
(for brevity a delayed process with starting distribution G will be called
a G-process as opposed to a pure process). Also for any t > 0 there is

a unique subscript Nt [3] such that SNt  t  SNt+ 1 (note this definition
for the stopping time Nt+ 1 differs slightly from Feller’s). We define the
excess (waiting) time at t as SNt+ 1 - t and we define

Yt(x) - the probability the excess time at t for the pure process  x,
= the probability the excess time at t for the G-process  x,

u(t) = expected number of renewals for the pure process by t,
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188 D. MCDONALD

and

V G(l) = expected number of renewals for the G-process by t.

We now consider R+ = [0, oo] as the state space of a Markov process
where the transition probabilities are defined as follows. For A E ~(~+),
the B orel sets > 0 and x~R+

Pt(x, A) = Pr (the excess time at t for a 03B4x-process E A) if x  t

(The renewal x-process gives So distribution ~x where bx means the dis-
tribution where all the probability is concentrated at x). In more pictu-
resque language we say Pt(x, A) is the probability of starting at x and with
variable steps of length T finally jumping right over t and into the set t + A.
Of course if x >_ t we are already passed t and we only ask if we are already
in t + A. Also we note that Pt(x, A) = Pr (the excess time for the pure
process at time t - A) since these probabilities are invariant under trans-
lation.

It is quickly seen that for all x E ~+, t >_ 0, A -~ Pt(x, A) is a probability
on Also for all A E Pt(x, A) is measurable. Thus we
need only establish the Chapmann-Kolmogorov relation to show that

is a semi-group of transition probabilities.

LEMMA 1.

Proof. For x  t 1.

A) = Pr (the excess time for the bx-process at tl + t2 E A).
Conditioning on the excess time at t 1 we have
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189RENEWAL THEOREM AND MARKOV CHAINS

Finally we notice that if Iy = [0, y] then Iy) = x  t. Thus

for x  t

For fi _ x  t 1 + t2.

Pti + r2(x, A) = Pr (the excess time for 03B4x-t1-process at t2 E A)

Now for x >- tl, ti) = 1 by definition and we see that for

il  x  il + t2

Lastly for tl + t2  x.

Now ds) = which gives

Since x - ti ~ t2, we have

This is precisely Pti + t2(x, A). Thus for x >_ tl + t2

and we have the result for all x.

Given the initial distribution on the state space (or delay distribution
if you like) we may now construct a Markov process defined on a

probability space (Q, ~, Pa), where G is the delay distribution, such that

We note in passing that

We are interested in the limits of these distributions as t goes to infinity.
We approach this problem by looking at the properties of the harmonic
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190 D. MCDONALD

functions on the related space-time process. We pick an arbitrary sequence
1 = f tn ~~° 0 0 = to  ti  t2 ...  --~ 00. The random variables Xtn
are by construction all measurable with respect to the measure space

(Q, F, Pa) and we define Fn to be the cr-ûeld generated by f ~ n},

and let = ~ Fn. A random variable Y is (following [4]) a tail random
n=o

variable if there exists a sequence ( fn) of ff-measurable functions on Q such
that Y = Xtn + 1, ... ). If f can be ch osen independently of n so that

then Y is called invariant. If Y = xA where Y is a tail random variable

(respectively an invariant random variable) then A is called a tail event
(respectively an invariant event). The class of all tail events (invariant
events) form au-field called the tail u-field (the invariant o-field). We will
call the pair (Xtn, o, the space-time chain associated with (Xtn) and we
see that we can construct a Markov chain on f!/i + x 1 with transition pro-
babilities

A real valued measurable function g on * x I is called space-time harmonic
if

We should note that the restriction of our space-time process to the times t is
not obligatory and is only done to avoid certain measurability questions
and to apply more easily the theorems in [4].
We now examine the space-time harmonic functions which are bounded.

LEMMA 2. - If h is a bounded space-time harmonic function then

Proof. - A space-time harmonic function satisfies

We may extend this equality right along the diagonal.
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We need now only consider h(x, 0) to establish results on all space-time.

LEMMA 3. - (a) If F is periodic with period p h(x, 0) is constant on the
periods of F. That is h(x, 0) = h(x + p, 0.

(b) If F is aperiodic h(x, 0) is almost surely constant with respect to
Lebesgue measure.

(c) If F isaperiodic and there exists some convolution F*" of F which
is not singular with respect to Lebesgue measure then h(x, 0) is constant.

Proof.

From the equality along the diagonals we have

Letting q(x) = h(x, 0) we have

where q(tn) is measurable and bounded. Since the t" were choosen arbi-
trarily we have in general that

roc

(a) Now if F has period p we may set t = p to get q(x) = J o q(x + s)dF(s)
and by Choquet-Deny [S] we have q(x) is constant on the periods of F.

(b) If F is aperiodic we remark that by regularization of (Eq. 1) we have
functions which are bounded, uniformly continuous solutions of

(Eq. 1 ) and which tend almost surely to q(x) (w. r. t. Lebesgue measure)
yoo

as E --~ 0. Also letting t -~ 0 in = + t + s) we have

q~(x) = + s)d F(s) and again by [S] is constant. Thus q(x) is

constant almost surely.

(c) We note that if F*" is not singular w. r. t. Lebesgue measure we can
pick a t sufficiently big so that > 0 is the absolutely conti-
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192 D. MCDONALD

nuous part of F*n). Hence Pi(0, ds) is not singular and we may employ the
method in Note 1 to prove that q(x) is constant.

We remark that the aperiodic distribution F giving mass 1 2 to 1 and f 2
and the function

generate a counter example to an extension of Lemma 3 (b).
It is now useful to distinguish between the cases when F is arithmetic

(without loss of generality having period 1 ) and when F is non-arithmetic.
Henceforth if F is arithmetic the tn and x’s will be restricted to the positive
integers. Moreover for the arithmetic case we will define the measure m to be
the counting measure on the positive integers while in the non-arithmetic
case m will be Lebesgue measure. With this in mind we note that the dis-
tribution,

called the equilibrium distribution, gives a stationary delayed renewal
process [6]. Hence YÉ(r) = E(r)dt >- 0, and seewe Xt is stationary w. r. t. PE.
The utility of the space-time chain is seen in ihe following.

PROPOSITION 1. - The following conditions are equivalent.
(a) For all probability measures Il and v on 

lim Il 03BDPtn Il ~ 0. Where p,P(A) = P(x, A)p,(dx) for A E R,

and ~ 03BD Il is the total variation of v.

(b) The only bounded space-time harmonic functions are constants.

Proof The proof is an adaptation of the proof for Proposition 4.3
in [4].

THEOREM 1. - If (a) F is arithmetic and a is any probability measure on
the positive integers or if (b) F"* is not singular w. r. t. Lebesgue measure
for some n and a is a probability measure on [0, oo) then lim e Il = 0

(in the arithmetic case t is an integer), where e is the equilibrium measure
having distribution E(r).
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Proof. - In the arithmetic case we restrict attention to the positive
integers. Hence by Lemmas 3 (a) and 3 (c) respectively we see the bounded

space-time harmonic functions are constant. Hence by Proposition 1,
we have for probability measures a and e

However

and we have the result.

COROLLARY 1 (Feller). - If F is arithmetic with period 1 and F(0) = 0
then

Proof.

Thus

If F is aperiodic but not absolutely continuous w. r. t. Lebesgue measure
we must be a little more subtle.

PROPOSITION 2. - If F is aperiodic and if G is a probability measure
which is absolutely continuous with respect to Lebesgue measure (G « m)
then the tail field of { Xtn } is trivial w. r. t. PG.

Proof - Let A be a tail event of { Xtn }. Then by Proposition 4.1 of [4]
A is an invariant event of { Xtn, tn }. Consider the function defined on space-
time by

By Proposition 4.2 of [4] hA(Z) is bounded and space-time harmonic.
Also

(where again r~ is the initial distribution given by

Thus hA(Xm tn) converges a. s. w. r. t. P" to A. Moreover by Lemma 3 (b)
Vol. XI, n~ 2 - 1975.
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we know C (constant) a. s. w. r. t. Lebesgue measure.

Since G « m we have P~{(Xn, tn) E B } = 0. Thus a. s.-P~ hA(Xn, tn)
converges to C and hence A is trivial w. r. t. Pn. Thus A is trivial w. r. t. Po.

THEOREM 2. - If F is aperiodic and if a is a probability measure which
is absolutely continuous w. r. t. Lebesgue measure then

Proof. - By Proposition 2, the tail field of { is trivial w. r. t. Pe
(since the equilibrium distribution e « Hence as in Theorem 4.1 of [4].

Thus we have

Now a « m. Also m « e on ~ x ~  1 } by the construction of e.

Moreover by truncation there exists a probability measure à « m concen-
trated on [0, T] such that Il; - a Il  e for any e. Hence

Also by the construction of our chain we see is concentrated on

{ x F(x)  1 }, and hence for tn sufficiently large Ptn « e. We may there-
fore consider the case a « e. Let F(x) = d03B1 de (x) and hence F de = 1.

Let be step functions such that ffk f ~ . Thus by Eq. 2 we have

However we remark that
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This uniform bound implies

and

and

and hence

COROLLARY 2. - For F aperiodic Yt(x) converges weakly to E(x).

Proof. - For any interval [x, y] we pick 0  8  x and by considering
the possible trajectories of our process, as well as the translation invariance
of our transition probabilities we see

for 0  s _ e. Consider the uniform probability measure Ut on [0, E].
Integrating our inequality we have

Hence by Theorem 2. We have for  x

Thus by the continuity of E(x) we have lim [x, y]) = y] which

implies

COROLLARY 3 (Blackwell). - If F is aperiodic then lim u(t + h) - u(t) = h/,u.

Proof - u(t + h) - u(t) is the expected number of renewals in [t, t + h].
If we condition on the excess time at t we have

(if we step over t and land at t + s  t + h then we restart the process
at t + s and we take on the average u(h - s) more steps before t + h).
Next we remark that 1 + u(h - s) is a decreasing function of s and hence
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has a countable number of discontinuities on [0, h]. Moreover by Corollary 2,
Y~ converges weakly to E and E « m. Hence the set of discontinuities of
1 + u(h - s) has measure 0 w. r. t. E and we have

(see Theorem 5.2 in [7] for example).
However since E is the equilibrium measure

Remarks. If F has infinite mean we have no equilibrium probability
measure. We still have however an invariant measure e with distribution

We have for every y > 0 and every x E R+

(See Theorem 7.3 in [4]). We have all the obvious extensions of Corolla-
ries 1, 2 and 3.

If our distribution F is not concentrated on the half line but has  > 0
we can still consider the excess time at t E R+ (since the walk drifts to the
right) and we can prove our theorems based on the strict ladder distribu-
tion [8].

NOTE 1. - If h is measurable and bounded and satisfies

and if F*n is not singular (w. r. t. Lebesgue measure), then h(x) is constant.

Proof - By Choquet and Deny’s lemma h(x) is almost surely constant

(say C). Subtracting C from both sides of (Eq. 3) we have

where g(x) = h(x) - C is almost surely 0.
By convolution of (Eq. 4) we have
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Now F*" = G = pGe + qGd where Ge generates a measure absolutely
continuous with respect to Lebesgue measure and Gd generates a measure
singular with respect to Lebesgue measure [7] and p > 0, q > 0, p + q = l.
Now

since g(x) = 0. a. e.

Again using

we have

Thus g(x) = 0 everywhere and hence h(x) = C everywhere.
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