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An operator-valued
stochastic integral, III

D. KANNAN

Department of Mathematics, University of Georgia.
Athens, Georgia 30601, U. S. A.

SOMMAIRE. - Plusieurs auteurs ont caractérisé la distribution gaussienne
moyennant des formes linéaires indépendamment distribuées ou des

statistiques linéaires distribuées de façon identique. Ceci a mene Laha
et Lukacs à obtenir des caractérisations du processus de Wiener moyennant
des intégrales stochastiques distribuées de façon identique. Dans ce tra-
vail nous définissons une intégrale stochastique a valeurs « opérateurs »
par rapport a un processus stochastique à valeurs dans un espace hilbertien
avec increments indépendants, moyennant quoi nous caractérisons un
processus de mouvement brownien à valeurs dans un espace hilbertien.

1. INTRODUCTION

Gaussian distribution has been characterized, among others, by Darmois,
Linnik, Marcinkiewicz and Skitovich through independently distributed
linear forms or identically distributed linear statistics. Motivated by the
results of these authors Laha and Lukacs [8] obtained characterizations
of the Wiener process through identically distributed stochastic integrals.
Several of these characterization theorems are known in the scalar case.
In this note we obtain a similar characterization of an Hilbert space valued
Brownian motion (Wiener) process using an operator-valued stochastic
integral.
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An operator-valued stochastic integral with respect to an Hilbert space
valued Wiener process has been defined by Kannan and Bharucha-Reid [6]
and Kannan [7]. In [7] the author derives four more stochastic integrals
from the operator-valued integral. In this article, following [6] and [7],
we define an operator valued integral with respect to an Hilbert space
valued stochastic process with independent increments. Using this operator
valued integral we characterize an Hilbert valued Wiener process.

2. STOCHASTIC INTEGRALS

We use the following notations. (Q, ~, 11) is a complete probability
space; t ~ I = [0, 1]} is an increasing family of sub-a-algebras of d
such that each dt is complete with respect to the probability measure J1.
3i is a real separable Hilbert space with inner-product (.,.)&#x3E; and
norm ~’!!. . ~(~’) is the Banach algebra of endomorphisms of 3i with
operator For x0y denotes the tensor product
of x and y. x @ y is an endomorphism of 3i defined by

(2.1)

for h E 3i. (For the properties of the tensor product of vectors of a Hilbert
space we refer to Schatten [11]). [7c] denotes the Hilbert space of Schmidt-
class operators on K with inner-product

00

 T, U~6 = T  Te., Ue, &#x3E;
i=1 1

where { ei, i &#x3E; 1 } is a complete orthonormal system in Jf. is the collec-

tion of trace-class operators on MT
00

[re] = ( T e £3(MT) ) :  oo .

For details of Schmidt-class and trace-class operators we refer to Dunford
and Schwartz [2] and Schatten [11]. The following lemma is given in

Kannan [7].

LEMMA 2.1. - Let x and y be two integrable random elements in K

and f be a sub-a-algebra of ~. If x is f-measurable, then,

~0y)!~} (2.2)
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By H we denote the Hilbert space of all (equivalence class of) second
order stochastic with norm

~03BE~H = [10E~03BE(t)~2dt]1/2 .

All the processes that we consider are centered. A process {~(f), 
is called a process with independent increments if, for all to  tl 1  ...  tk
in [0, 1], the random elements ..., are

independent; that is, for any ho, hi, ..., the scalar random varia-

bles  ho,  hm ...,  hk, fJ(tk) - 1» are inde-

pendent. Let be an increasing family of sub-a-algebras of ~/
such that (a) the processes that we consider are adapted to this family
and (b) for any f e I, the random elements

~(t2) - ... , 

are independent of dt, where tl, ... , tk E [t, 1], (such a family clearly exists).

LEMMA 2 . 2. - Let process with independent increments.
Then, there is a self-adjoint positive trace-class operator S such that, for
s  t,

0 (P(t) - = (t - s)S. (2. 3)

The lemma obtains from the following

tS = { ~(’~o)) a (~(t) - 
(2 . 4) )- ~[(/~(t) - 0 (P(t) - To &#x3E; t.

Remark: For the purpose of defining the operator-valued stochastic
integral we can even consider the above lemma in the following form:

If f3(t) E H is a process with independent increments, then, there is an

increasing family ( of trace-class operators such that, for s  t,

g[(J1(t) - @ (~(t) - = S(t) - S(s).

Here H is the Hilbert space of second order processes with norm

where the integral is the Bochner integral. We use this only in the form
we stated in the Lemma 2.2.
We shall now define the operator-valued stochastic integral with respect

to a process with independent increments. Let S be the trace class
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operator associated with We first define the integral for processes
in Ho c H where Ho is the collection of simple processes in H. Let

0==tofi...  tn = 1,
and

~~~i 1
~~~~ ~ 0 otherwise

Define J~) = Jo ~(~ by

n- 1

j = 0 [03B2(ti+1)-03B2(ti)]. (2.5)

LEMMA 2.3. 2014 (1) linear operator from Ho into [03C4c] ci [6c] ;

(2) ~(J~}=0;
(3) ’~ ( ( ( ~§ ( (i ) ~ ( ( l ( (1 ~~ ~ (2 . 6)

where tr S denotes the trace of S.

(4) If l Cauchy sequence of simple piocesses in H, then, the
corresponding sequence = J03BEn} is a Cauchy sequence in [6c]).
For e H, there is a sequence l ~(f)} of simple processes converging

strongly to ~). By the above lemma there is a J e L~(Q, such that

J~ 2 J. Now we define the integral of by

J = 

Above definition can be summarized as follows.

THEOREM 2.1. 2014 There is a unique isometric operator (upto a constant

factor tr S) from H into L~(Q, [rc]), denoted by

~ ~ 

such that, for t e I,

Next we shall find out the covariance operator of J03BE. Let X be a separable
real Hilbert space with inner-product (. ! .) and * be the 6-algebra of
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Borel subsets of X. Let be a second order random element in X. x(cv)
induces a probability measure vx on (X, v~ = ~ ~ x-1. The covariance
operator Sx x (or v) is defined by

using a result of Kannan and Bharucha-Reid [5] we give the following
theorem.

THEOREM 2 . 2. - The covariance operator Sj of the stochastic integral J~
is given by -

 Sj T, U). = ) Jn tr 0 0 

(2 . 7)
= Jo 

where T, U 6 [7C].

3. CHARACTERIZATION OF WIENER PROCESS

Let be a ~-valued process with independent increments and 
be the probability measure on Jf induced by + r) - In general t,03C4
and the characteristic functional ,ut,= of depend on the parameters t
and T. The process is said to be homogeneous if (hence ~~) depends
only on r (and is independent of t).
Throughout this section will denote a centered second order

homogeneous process with independent increments. Also in the operator-
valued stochastic integral

we consider as a function of t alone (i. e. free from 

Divide any interval [t, t + r] c [0, 1] into n sub-intervals

L n n J
of length Then, for h e Jf,

Also, Since is a process with independent increments,



222

so is ( h, for each h E MT. Hence the process  h, is infinitely-
divisible. (For the details of canonical representations of infinitely-divi-
sible characteristic functionals we refer to Gnedenko and Kolmogorov [3],
Parthasarathy [10] and Varadhan [12]). We recall the following (cf. [10]).

THEOREM 3.1. A function v(h) is the characteristic functional of an
infinitely-divisible probability measure v on ~ if and only if it can be uni-

quely represented as follows

( ) = exp[i ’ &#x3E; ’ &#x3E; &#x3E; + 

where m E K , Sv is an S-operator, M is a 03C3-finite measure with finite mass
outside every neighborhood of the origin, with

f 

and

K( , e 
1 + II f II

In our case is a centered second-order process. For second order

measures one needs Kolmogorov’s representation theorem. An extension
of Kolmogorov’s theorem in the Hilbert space case is

THEOREM 3.2. - A second-order probability measure À.

II I f 112dÀ(f)  

is infinitely divisible if and only if its characteristic functional car

uniquely be written in the form

~,(g) = exp i ~ m, g ~ + g)dM( f ) (3 .1)

where m E K , 0 -  ~, M({03B8}) = 1,

K ~ ( g) - - 1 2 (3. 2)

So is an S-operator, and

g) = 1 - i  J: g ~ II I .f’ I I 2 (3. 3)

for f ~ 8 and f, g E ~.
The proof using standard arguments is omitted. In our case we take

m = 0.
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DEFINITION 3.1. A centered second order homogeneous process f3(t)
with independent increments is said to be a Wiener process or a Brownian
motion process if the characteristic functional of is given by

~, h = ex - ~ ~ h, h ~ ( 3 . 4)~( ) p 2 

where S03BB is an S-operator.
VVe need the following results to prove the characterization theorem.

As a consequence of Theorem 2.2 we obtain the following

LEMMA 3. l. Let S be the operator associated with /3(t) (Lemma 2.2).
The couariance operator SJ o, f ’ the stochastic integral

J = 

is given by 

~ SJT, T ~~ _ ~o ~ ~(t) ~ dt. (3 . S)

Proof : Let 0 = to  t 1  ...  tn = 1 be a partition of [o, 1 ]. Using
elementary properties of and the fact that has independent incre-
ments we obtain
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THEOREM 3.3. - The stochastic integral J = is infinitely
I

diuisible. If ~p(g) denotes the characteristic functional of cv) and
= log i‘p(g), then the characteristic functionat of J is given by

(3 . b)

for T E [6c].

Proof : Corresponding to 03BE(t), there is a sequence { 03BEn(t)} of simple
functions such that ~ 03BEn - 03BE~H ~ o as n ~ oo and

J" _ -~ = J

in L2(S2, [~c]). If ~,n and ~, denote the characteristic functionals of Jn and J,
then J" -~ J in implies that ~,n ~ ~,.

Let 0 = to  tl  ...  tn = 1 be a partition of [o, 1] and
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where a j = tj+ 1 - tj, = 1 ) - /3(t j) and cpt is the characteristic

functional of Hence

An(T) = log 
n- 1

log 
j=0
n- 1

= 

j=0

= 

- = A(T)

Hence the theorem.

Finally we give the characterization theorem.

THEOREM 3 . 4. Let { f3(t), be a ~’ -valued centered second-order

homogeneous process with independent increments and S be the positive
definite trace-class operator on ~’ associated Let and ri(t)
be two bounded functions in Hand

and 

Then, the Hitbert-Schmidt-ctass random operators J~ and J,~ are identically
distributed if; and only if

(I) is a Wiener process, and

(2)  ~(t) ~ dt =  TST*ri(t), r~(t) ~ dt

Proof : The if part is clear. To see the only if part let Jç and J" be identi-
cally distributed.

If

A(T) = log and v(g) = log 
then, by the hypothesis

= (3 . 7)

for T E [o-c]. From Theorem 3.3, both sides of (3. 7) are the logarithms
of the characteristic functionals of the infinitely divisible Jç and J". From
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the extension of Kolmogorov’s representation theorem (Theorem 3.2),

where S is the positive definite trace-class operator associated with 

- elV

Consider a sequence of partitions of I = [0, 1] :

0 = t0 )   ...  = 1, n &#x3E; 1,

such that the mesh of the partition goes to zero as n - 00. Let

k,t - 1

In(T) = (~~+ ~ - t;n)) f n ¿ J J J~B8
- 1 - i  g, 03BE(t(n)j) ~ ] I l g 2( II g l l 2 l l ’I’ lg 1 g)

- - 2 1  TST* 03BE(t(n)j ), 03BE(t(n)j) ~ (t(n)j+1 - t(n)j) (3. 9)
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We note that the right side of (3.9) converges to the right side of (3.8).
Also the first sum in (3.9) is

where for any Borel set B in 

Mn(B) _ (t(n)j+1 - t(n)j) B g ~2 ~ T-1 g ~-2 dM(T-1g)

= (t(n)j+1 - t(n)j) 
&#x3E; B 

-+ Jo 
- (3.11)

In(T) is the logarithm of an infinitely divisible characteristic functional
and In(T) - A~(T). Hence, for any Borel set B of 

M~(B) -. M(B) as n - oo.

Thus we have

M(B) = (3.12)

Now

Aç(T) = K(g,  TST*ç(t), 03BE(t) ~ dt

A,(T) = j j o f Kg,  ~(t) ~ dt.

Since these representations are unique and Aç(T) = ~(T) we have

M~ = M = M~. From (3.12) we note that

for any Borel set B in and T E [7c]. This implies that

 I T  II T 114M(:tíB0)  ...  I T 112nM(:tíB0) ~ ...

Since T is an arbitrary operator from [ac], we see that = 0. This
fact together with (3.8) and Lemma 3.1, completes the proof.

ANN. INST. POINCARÉ, B-VIII-3 t5
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In conclusion we remark that one can give the caracterization theorem
in terms of the trace-integral, evaluation-integrals and inner-product-
integral associated with the operator-valued integral (cf. [7]). Suitable
modifications of the proof are obvious.
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