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1. INTRODUCTION AND PRELIMINARIES

In [7], Kannan and Bharucha-Reid have defined an operator-valued
stochastic integral using the notion of tensor-product of elements of a
Hilbert space. In this paper we continue the same with a small difference

in the definition of a Brownian motion. In [7], the covariance function
is defined through the inner-product ( . , . ) and here we define it through
the tensor-product g @ h. Since our integral is operator valued, we obtain
four more integrals associated with this integral. The purpose of this

paper is to define these integrals and give Itô’s formula corresponding
to these integrals. In this introductory section we give the basic defini-
tions and notions we use throughout this paper. In section 2, we define
the Brownian motion and give a sample-path property. An operator-
valued stochastic integral and the stochastic integrals associated with
this operator-valued integral are defined in section 3. Section 4 gives
the Ito’s formula for these integrals. For the standard technique and the
results in the scalar case we refer to the book A. V. Skorokhod [l3], (see
also Doob [2], Itô [6] and Kunita [9]). We use the standard technique
to prove Itô’s formula for the operator-valued stochastic integral and the
same method goes for other integrals.

(*) The research for this paper was supported by the National Science Foundation
under grant no. GP-27209.

(**) Present address : Department of Mathematics, The University of Georgia, Athens,
Georgia 30601.
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Let (Q, ~, be a complete probability space and all the sub-u-algebras
of d, that we consider in this paper be complete relative to the proba-
bility measure Let H be a real separable Hilbert space with inner-
product ( . , . ) and norm [ [ . [ [ . By B(H) we denote the Banach algebra
of endomorphisms of H, with ( ~ [ . standing for the operator norm.
A mapping x : SZ --~ H is called a random element in H, if for each h E H,

the scalar function ( h ) is a real random variable. A mapp-
ing T : SZ -~ B(H) is called a random operator on H, if for each h E H,
T(co)[h] is a random element in H.
For a random element x in H, clearly II x ~ ~ [ is a real random variable

(H is separable). The random element x(eu) is said to be integrable if

II is integrable. The integrability of a random operator is similarly
defined. The expectation of a random element in H is an element
Ex E H such that  Ex, h~ = E ( x, h~, for h e H. For a given sub-

u-algebra 31 c /, the conditional expectation E { x of x relative
to B is defined as follows: E {x|B} is a random element in H such that

 ~ E { x ~ } ) is ~-measurable and ( h, E { x ~ } > = E {( h, 
holds for each h E H. A random element x(cv) in H (respectively a random
operator T(co) in B(H)) is said to be of second order if E { ( ~  o0

(respectively E { ( ( T(cc~) ~ ~ 2 ~  oo ). The collection of equivalence class
of second order random elements is the Hilbert space H).
Two random elements x and y in H are said to be independent if, for

g, h E H, the real random variables  and ( y(cv), h ~ are inde-
pendent. If the random elements T 1 h 1 and T 2 h2, hi, h2 E H, are inde-
pendent, then we say that the random operators T 1 and T2 are independent.
For the following notion of tensor product of elements of a Hilbert

space we refer to Schatten [11,12 ]. Let x.yeH. The symbol x (8) Y
defines an endomorphism of H through

for all h E H. If x and y are two random elements in H, then, (x @ y)
is a random operator on H. For, if g, he H,

An operator TeB(H) is said to be a Hilbert-Schmidt-class operator if,
for a complete orthonormal i > 1, for H,
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The collection of Schmidt-class operators is a Hilbert space with inner-
product _

- 

00

TeB(H) is said to be a trace-class operator if I | Te;, e; )n ! [  oo-

For the sake of reference we list the following result.

LEMMA 1.1 (R. Schatten [77, 72]). - Let g, h e H. Then, the operator
g 0 ~ e B(H) satisfies the following

(a) g (g) ~ is linear in g and also in h;
(b) (~i 0 ~i) (g2 0 h2) = ~ h1 )n g 0 h2 ;
(c) ~0~=~0~);
(d) for any T e B(H), (Tg 0 h) = T(g 0 h) and (g (g) Th) = (g 0 h)T* ;
(~) !!Ti! 1 i

( f) for g i, ~,, ~~ e H, 1 ~ f  n, 1  ~  ~

(g) g [~c], the trace class;

The following lemmas are the extensions of the corresponding results
in the scalar variables case.

LEMMA 1.2. Let and be two integrable independent random
elements in H. Then

Proof - Let g, h E H. Then

LEMMA 1. 3. Let ~‘ be a sub-a-algebra of Let x and y be two inte-
grable random elements in H. Then, if x is ~‘-measurable, we have
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Proof As in Lemma 1.2 it is enough if we show that

for g, h E H. Now,

Hence the lemma.

2. A BROWNIAN MOTION PROCESS IN HILBERT SPACE

In this section we define a Hilbert space valued Brownian motion.
A simple observation gives the analogue of the classical result that almost
every sample path of a Brownian motion has infinite variation on every
finite interval.

Let I be an interval, say [a, b], on the real line be
an H-valued process. By E we denote the Hilbert space of all equivalence
classes of second order H-valued stochastic processes; and the norm
in E is given by

Let ç E E and define the operator covariance by

(Without loss of generality we assume that all the random functions are
centered). If ç E E,

Thus the covariance function exists for second order processes.

DEFINITION 2.1. - A process (3(t, w) E ~ is called a Brownian motion
in H, if

(2) as a function of t, f3(t) is continuous, almost surely;
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(3) has independent increments, that is, if ti 1  t2  t3  t4, the
increments P(t4) - P(t3) and P(t2) - are independent; and

where S is a positive definite operator in [ic], the trace class. (For details
of Schmidt-class and trace-class operators we refer to Dunford and
Schwartz [3], and Schatten [11, 12].) In [7], the above condition (4) of
Definition 2.1 was given ’ by E ~ ~ /~(s) ~ ~ = t - .

But, using Lemma 1.1 (h), condition (2.3) gives

PROPOSITION 2. l. - Let Hand K be two separable real Hilbert spaces
and let T E B(H, K), the Banach space of bounded linear operators from H
to K. If is a Brownian motion in H, then B(t) = (T/3)(t) is a Brownian
motion in K.

The proof is a simple verification of definition 2.1. Conditions (1)
and (2) are clear. That B(t) has independent increments follows from the
definition of independent random elements upon noting

Condition (4) follows from

and that TST* is a positive definite operator in 
From the definition of measurability, (also from proposition 2.1),

it follows that ( h, /3(t) ~H is a scalar Brownian motion for each h E H.
Hence, from the classical result about the sample path behavior of scalar
Brownian motion, it follows that every Brownian motion in H has the
property that almost every sample path of has infinite variation in
weak sense. A function f : [a, b] -~ H is of bounded variation if

for every choice of a finite number of non-overlapping intervals (a;, b~)
in [a, b]. (For notions and properties of functions of weak bounded varia-
tion, bounded variation and strong bounded variation we refer to Hille
and Phillips [5]). It is known that f : [a, b] --> H is of bounded variation
if and only if it is of weak bounded variation. Thus we have the following
observation.
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PROPOSITION 2.2. - If is a Brownian motion in H, then almost every
sample path of (3(t) has infinite variation on every finite interval.

3. STOCHASTIC INTEGRALS

In this section we first define an operator valued stochastic integral
and obtain few more stochastic integrals with suitable operations on the
operator integral. The operator integral is defined the same way as in [7].
The difference here is only in the condition (2.3) in the definition of
Brownian motion in H. Here we also assume, without loss of generality,
that H has a complete orthonormal basis consisting of the eigen-
vectors of S that appears in condition (2. 3). Let ( ~.~ ~ be the correspond-
ing sequence of eigenvalues. (We remark here that the inner product
~ ’ ’ ’ ~6 in is independent of the choice of basis for H). Let { dr, tE I }
be an increasing family of sub-6-algebras of such that (a) for every t, ~(t),

~0396 are At-measurable and (b) for any t E I, the random elements
- /3(t), ..., - are independent of for si, ..., sk E [t, b] ;

such a family clearly exists.
A process ç(t) e E is said to be non-anticipatory of the Brownian motion

if, for r, s, t E T, r  s  t, and (3(t) - (3(s) are independent. By ~~
we denote the closure of the linear manifold of all processes ~(t) e E that
are non-anticipatory of 13. Let Eg denote all the simple processes non-
anticipatory of ~3. E~ is dense in Ep.

3-A. An operator-valued stochastic integral.

As is customary we first define the integral for ç E Eg and then extend
it to all ~ E Ep. Let a = to  t 1  ...  1  tn = b, and

Define I[03BE; wi b 
b 

it, w>dflt, w> by

Clearly I[~ ; is a random operator in [yc]. Thus our integral is a Schmidt-
class random operator. When H = RI, the tensor product of elements
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is just the usual product in Ri and so (3.1) is a natural extension to Hilbert
space case. Basic properties of (3.1) are given in [7].
From Lemma 1.1 (a), I is linear on Eg. Clearly E { I[~ ; cc~] ~ = 0.

An important relation is

For,

where ~(~~) _ ~(t~ + 1 ) - i = 0, ..., n - 1. For i  j, we have

using dtj-measurability of ~(t~), and ç(t) and Lemma 1.3. Thus,
from Lemma 1.1, independence and (2.4),

Hence the relation (3 . 2). Next, if T, U E B(H), then

LEMMA 3-A .1. Let ~ ~,~(t) ~ be a Cauchy sequence of simple processes
in Then the corresponding sequence ( [ = I[~n] ~ form a Cauchy
sequence in [~c]).

Proof From (3.2),

as n, m, - 00.

ANN. INST. POINCARE, B-VIH-1
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Now, for an arbitrary ç E Eg, there exists a sequence {03BEn} of simple
processes in E~ converging to ç in E. By Lemma 3-A .1, the sequence
{ In} is a Cauchy and hence a convergent sequence in [rc]). Let I

be the L2 - limit of In. Then define

Since a constant multiple of a operator is again a [ic] operator, we
shall assume that tr (S) = 1. Now (3 . 2) defines an isometry from 0396003B2
into [QC]). Since 0396003B2 is dense in Eg, the mapping 03BEI ba03BE(t)d03B2(t)
extends by continuity to an isomentry from Eg into [yc]). Thus

we have the following

THEOREM 3-A.l. 2014 There is a unique isometric o perator from "~ into
[7c]), denoted by

such that, for t E [a, b]

For martingale properties of I[~ ; t] and the covariance operators of I[ ç]
see [7]. Hereafter we do not assume that tr (S) = 1.

3-B. Trace stochastic integral.

From (3.1) and Lemma 1.1 (g) we note that the integral (3.1) is not
just a Schmidt-class random operator; it is also a trace-class random

operator. Thus from Lemma 1.1 (h) we have

Also

For 03BE~0396003B2, we define the trace stochastic integral
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as the Bochner integral

Clearly

Now

Hence we obtain the relation

If we denote (3. 5) by  I), (3. 7) reads as

For arbitrary ~ E Eg, let { ~n ~ E ~~ such that ~" -~ ~ in Then from

as n, m - oo. Thus for ~ E ~,~, we define

We call the integral (3.9), the trace stochastic integral associated with theoperator stochastic integral or simply the trace integral. 
3-C. Evaluation stochastic integral.

The operator integral is a mapping from ~~ to 

Let h E H. Then j - defines an operator Ih, by
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Now we shall look at the form of the evaluation operator Ih. (Ih goes
from ~,~ into the collection of random elements in H). Let h be a fixed

vector in H and 03BE E 0396003B2. From 3-A,

Operating I[~] on h, we get

For 03BE E 0396003B2, we define the evaluation stochastic integral,

by

Clearly,

Let us consider

where the double sum vanishes for the same reasons as given for the

i~j
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operator integral. From Ati-measurability of [ and the indepen-
dence of ~ti and  h, )H, we get

Now

Using this in (3.14)

For an arbitrary ~ e E, there exists a sequence { ~" ~ e ~~ such that

b
aE~03BEn - 03BEm~2Hdt - 0 as n, m ~ oo. By (3 .15), the corresponding

sequence 03BEn(t)d  h, ~H}, n >_ 1, is a Cauchy sequence in H)

and hence is a convergent sequence. Thus for an arbitrary 03BE ~039603B2, we
define the evaluation stochastic integral associated with the operator integral
by

3-D. Adjoint evaluation integral.

The operator I[~] defined by (3.1) is a random operator on the Hilbert
space H. In this section (3-D) we consider the adjoint of I. From

Lemma 1.1,

We want to look at the evaluation operator If of the adjoint I*. Fix

an h in H. Operating I*[~] on h, where ~ E ~~, we get
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For 03BE E 0396003B2 and h E H, we define the adjoint evaluation stochastic integral
b

’a  h~ ~~t) bY

As in the case of evaluation integral, the adjoint evaluation integral is

a Bochner integral taking values in the collection of random elements
b

in H. By non-anticipatory condition E a h, = 0.

Thus we have ba  h, it> e H> and

Using (3 .18) one extends the definition to an arbitrary 03BE~039603B2 as in the
b

previous cases. We call the integral Ja ~ h, e E, heH, the

adjoint evaluation stochastic integral associated with the operator integral,
or, simply, the adjoint evaluation integral.
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3-E. Inner-product stochastic integral.

Let g and h be any two fixed elements in H. As already seen, the eva-
luation integral is a second order random element in H. The purpose
of this section is to consider the resulting form of the integral when we
take the inner-product of the evaluation integral with g E H. So, let g,
h E H Then,

Thus, for 03BE E 0396003B2 and g, h E H, we define the inner-product stochastic integral,
b

j  g~ ~Hd  h~ ~H~ bY
a

Clearly E bag, 03BE(t) ~Hd H, 03B2(t) >n = 0. Moreover,
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Using (3.20) one extends the definition of the integral to an arbitrary
as the limit. We call the integral

the inner-product stochastic integral associated with the operator integral.
We note that, if

then

We need the following proposition in the next section.

PROPOSITION 3 . 1. Let ~n(t) E and for some ~ E ~~, ~n(t) ~ a. s.

for almost all t E [a, b] (relative to Lebesgue measure). If there is an

ri(t) E L2([a, b]) such that I IIH ~ ~ [ a. s., then,

Proof. - (A), (B), (C), (D) and (E) follow respectively from (3.2), (3.8),
(3.15), (3.18) and (3.20) upon applying dominated convergence theorem.

4. ITO’S FORMULA

Let be a second order Schmidt-class random operator on H, non-

anticiparoty of and E 039603B2. A process (t): [a, b] ~ L2(S2, [QC])
is said to have a stochastic differential
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if for all t E [a, b], (t) satisfies the relation

almost surely, where the first integral is the operator integral and the
second integral is Bochner integral.
A mapping 0: [a, b] x ~ -> R is said to be twice differentiable if there

exist partial derivatives ~r : [a, b] x ~ -~ ~X ~ [a, b] x ~ -> ~ and
~Xx : [a, b] x ~ -~ L(~) such that

where oi(Ot) means that [ -~ o, as [ -~ o and means

that 0394x~2 ~ o as ~ 0394x I I ~ 0; h is a real Hilbert space.
In this section we extend Itô’s formula corresponding to the stochastic

integrals defined in the last section. Proof is essentially the same as that
of one dimensional case. For the sake of completeness we give the proof
for operator integral case; we omit many details. The Hilbert space §
appearing in (4 . 3) can be any of [ac], Hand R1; for example, § = [~c]
for the operator integral case.

THEOREM 4-A. Let H be a real separable Hilbert space, be the
(Hilbert-) Schmidt-class operators on Hand be a Brownian motion
in H. Let x) be a twice differentiable map of [a, b] x into R1
such that x), ~t(t, x), ~X(t, x) and x) are continuous on [a, b] x 
Also let ~(t) be a process with stochastic differential (4.1) where
we further assume that ( ~(t) I (2 is a second order process. Suppose that ~X
is symmetric as an operator on H and is symmetric as an operator on the
Hilbert space [~c]. Then the process z(t) = ~(t)) satisfies the relation
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1  k  ~, is the orthonormal sequence of eigenvectors
corresponding to the eigenvalues {03BBk} of the trace operator S of defini-
tion 2 .1.

Proof It is enough if we show (4.4) for the case of constant and

ri(t). Then, by additivity, (4.4) holds for simple processes. Finally the
theorem follows, by standard limiting argument, from the definition of
the integral. So, let us assume that and ri(t) are constants, that is,
independent of t.

Let 03C0 be a partition of the interval [a, t] c [a, b], that is, let
to, t 1, ..., tn E [a, t] such that a = to  t 1  ...  1  tn = t  b.

By we denote the mesh of the partition. Now,

From the differentiability of x), we obtain

where
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and

n-1 i

It is easily seen that I ( I + I ) ~ 0, a. s., as -~ 0. Using the
i=0

integral relation (4. 2) in (4 . 5), we obtain z(t) - z(a) as the sum of the follow-
ing sums plus a negligible error;

where _ ~(ta + ~ ) - 
From the continuity assuptions on ~X(t, x) and ~(t) it follows that,

as - 0. Similarly, as -~ 0,
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First we rewrite L3 suitably:

Define

Then

the finiteness follows from the continuity assuptions. ’(t) is bounded a. s.
Thus 03A6’x(t, 03B6(t))03BE is dt-measurable and is a second order process in H.

Hence r ( 03A6’x(t, 03B6(t))03BE, d03B2(t) ~H is defined. Let { 1tn, n >_ 1} be a sequence
of partitions such that ~c" + 1 is a refinement of 1[n and the mesh of the parti-
tions [1[n] -~ 0, as n -> oo. Define

Clearly
Moreover, for some constant N, N from the continuity of

~x(t, x). Now Proposition 3.1 implies that
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Thus

From boundedness of ~(t) and x), it easily follows that

w

Let = be the Fourier series of and define

k= 1

Then

and zero otherwise; here A = t - s, Now

This yields that,

Thus
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Define

Then

Next, since [ [ . Ila is a cross-norm, we have

and

Using (4.14) and (4.15),
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(the double sum will vanish),
ij

From (4.16), by choosing M sufficiently large, it follows that

in probability. Hence the theorem.

THEOREM 4-B (Formula for trace-integral). e be a second

order scalar process non-anticipatory of 03B2 and E~03BE(t)~4dt  ~. Let

03B6(t) be a scalar process with 

If x) is defined and continuous and has continuous derivatives ~I(t, x),
x) and x) on [a, b] x R1, then the process z(t) = ~(t)) has

the stochastic differential

THEOREM 4-C (Evaluation integral). - Let ç(t), E and

be an H-valued process with stochastic differential

Let x) be a twice differentiable map of [a, b] x H --~ R 1 suchthat
~1(t, x), ~x(t, x), x), x) are continuous on [a, b] x H and x)
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is symmetric on H. Then the process z(t) = ~(t)) satisfies the relation

We simply remark that the analogues of E3 and E6 can be written as

and

THEOREM 4-D (Adjoint evaluation integral). - Let the conditions of
Theorem 4-C, for ~, ri and x) hold, ~need not be symmetric in this

case~. Let ~(t) be an H-valued process with stochastic differential

Then the process z(t) = 0(t, ((t)) satisfies the relation
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First we note that E6 can be written as

As in the case of Theorem 4-A, we can show that

THEOREM 4-E (Inner-product integral). - Let ri(t) be a second order
scalar process non-anticipatory of 03B2 and 03BE E 039603B2 with

Let ~(t) be a numerical process satisfying the relation

If x) is defined and continuous and has continuous derivatives ~i(t, x),
x) and x) on [a, b] x R1, then the process z(t) = ~(t)) satisfies

the relation
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