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1. INTRODUCTION

Let (Q, j~, ~c) be a probability measure space, and let (~, denote a

measurable space where X is a Banach space and R is the 6-algebra of
Borel subsets of ~’. Let x(w) denote a ~-valued random variable; that
is, x is a ~’-valued measurable function defined on (Q, j~, ,u). As a ~’-valued

function, x(co) can be defined as (i) a Borel measurable function (i. e.,

x(cv) E B } for all Be rJl,) (ii) a weakly measurable function, or
(iii) a strongly measurable function. If ~’ is separable, these three concepts
of measurability are equivalent.

In the development of probability theory in Banach spaces and its various
applications, a central role is played by the study of probability measures
on Banach spaces. The probability measure 11 and a ~-valued random
variable x induce a probability measure (or distribution) on ~, namely
vx = ~ ~ x -1; hence we obtain the induced probability measure space
(~, vx). In applications, especially in the theory of random equations,
it is necessary to construct and study probability measures on concrete
Banach spaces. At the present time there is an extensive literature devoted
to probability measures on concrete Banach spaces. We refer to the
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following books and papers, and references contained therein : Bharucha-
Reid [2, chap. 1], Grenander [5, chap. 6], Jajte [8], Kampe de Fériet [9, 10],
Kuelbs [I1 ], Kuelbs and Mandrekar [12] and Sato [17].

In this paper we consider probability measures on Hp spaces, that is
the Hardy spaces of analytic functions. In 1960, Kampe de Fériet [9]
introduced a method for the construction of probability measures on
Banach spaces with Schauder bases. In Section 2 we extend Kampe
de Fériet’s method to complex Banach spaces; and in Section 3 we use
these results to construct probability measures on Hp spaces, 1  p  oo.

2. PROBABILITY MEASURES
ON COMPLEX BANACH SPACES

WITH SCHAUDER BASES

As is well-known, most of the observable properties of a physical system
are given by linear functionals on the state or phase space associated with
the system. Thus in many applications it is reasonable to assume that
the linear functionals are measurable with respect to a probability measure
on an appropriate function space. Such measures, called L-measures,
were first introduced and studied by Fréchet and Mourier (cf. [14]). In this
section we consider the construction of L-measures on complex Banach
spaces with Schauder bases.
We first introduce some definitions which will be used in this section.

DEFINITION 2 .1. - Let X be a linear topological space. A sequence { en ~
of elements of X is called a topological basis for X if for each x E X there
corresponds a unique sequence { ~n ~ of scalars such that the series

converges to x in X.

If { is a topological basis for X, then there is a corresponding sequence
{ of linear functionals, called coefficient functionals, such that

for all x E X. The sequences { and { are biorthogonal in the sense
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that (Kronecker delta). The coefficient functionals e:
belong to the algebraic dual of X; however they may not belong to the

topological dual of X.

DEFINITION 2.2. - A topological basis for X is called a Schauder basis
for X if all the associated coefficient functionals are continuous on X.

DEFINITION 2. 3. - A basis ~ ei ~ for a Banach space ~’ is said to be
boundedly complete if for each sequence ( ai ~ of scalars such that the sequence

is bounded, there is an such that ai = for all i; and so

We refer to the books of Day [3], Marti [13], and Singer [7~] for general
discussions of Banach spaces with Schauder bases.

We now consider the construction of L-measures on complex Banach
spaces with Schauder bases.

DEFINITION 2.4. be a Banach space. A probability measure v
is called an L-measure if all bounded linear functionals on ~’ are

v-measurable.
In the construction of the measure we use Kolmogorov’s consistency

theorem for separable standard Borel spaces. A Borel space ~),
where ~ is generated by a countable class in ~, is called standard if there
is a complete separable metric space y such that the 7-algebras R and 
are 03C3-isomorphic; that is, there is a one-one map of R into Ry preserving
countable set operations. We refer to Parthasarathy for a discussion
of separable standard Borel spaces and Kolmogorov’s consistency theorem.
Let X be a complex Banach space with = 1. Let Z

be the space of complex numbers; and let Zoo be the linear space of all
complex sequences, that is, Z°° - ~ ~ : ~ _ ~2, ... ), Since

~’ has a basis, there is a linear map A which is bijective and bicontinuous
between .~’ and a subset ~’ c Z*,
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~’ becomes a Banach space with norm given by

Let us put

Clearly the expansion x = converges strongly if and only if
n>_ 1

Thus the set ~’, associated with ~’, can be defined as follows

Because of the isomorphism A between X and  c Zoo, a measure v
on fi will induce a measure v on So, it is enough if we construct a
measure on ~, and we do this by using Kolmogorov’s consistency theorem.
Let Z 1 = Z, let Z" be the space of all n-tuples ..., çn) of complex
numbers, and Zoo the space of all complex sequences. We define maps 1tn
and (1  m  n) as follows

If ~n denotes the Borel 7-algebra in Zn, then the Borel space is
a separable standard Borel space for n >_ 1. Let v2, ... , be a sequence
of measures defined ~2, ..., respectively, satisfying the following
consistency conditions :

From Kolmogorov’s consistency theorem for standard separable Borel
spaces (cf. Parthasarathy [15]), we obtain a unique measure ? on (Z °°, ~ ~ )
such that
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First we note that the and are measurable and the and

are continuous. Thus is n+k-measurable.  is defined by the
functions under countable operations. Hence from the properties (2.13)
of v, we obtain

LEMMA 2.1. - The set ~’ ~c Z°° is v-measurable.

The isomorphism between ~’ and ~’ gives the following result :

THEOREM 2 .1. Let ~ be a sequence of measures defined on ~ ~" ~
satisfying conditions (2 12), and let v be the measure on Z°° obtained through
Kolmogorov’s theorem from ~ Then by the isomorphism (2. 3), v induces
a measure v on 

v is obtained in a natural way. Let ~‘ be the restriction of to ~’,
that is, ~ _ ~’ For all B c ~’ such that B = AB, BE ~, put

Thus we have the measure space ~, v):

LEMMA 2 . 2. - The measure v on the Banach space ~’ with Schauder basis

~ is an L-measure if and only if the coordinate functionals e,*’s are v-mea-
surable.

Proof If v is an L-measure, the measurability of eg E ~’* follows from
Definition 2.4 of an L-measure. Conversely, if en’s are measurable, then,
the measurability of x* E ~’* follows upon observing that

THEOREM 2 . 2. - The measure v defined by Theorem 2 .1 is an L-measure.

Proof 2014 If ~ = ~2, ... ) E Z°°, let Pn(~) _ ~n be the projection map
to the n-th coordinate. Clearly P~ is v-measurable. Now the result
follows by Lemma 2.2 when we note

It is clear that 0  v(~) =  1.

The next lemma gives a condition so that v(~) = = 1.

ANN. INST. POINCARE, B-VII-3 15
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LEMMA 2. 3. The measure space (~’, ~, v) is a probability measure space
if and only if, for any E > 0, the sequence ~ of measures satisfies the
following conditions :

(i) the consistency conditions (2.12); and
(ii) inf sup inf = 1 where

E> 0 

Next we consider the situation in terms of random elements with values
in a complex Banach space with basis { Let x : (Q, ~, 11) - ~)
be a random element in ~’. Then there exists a of com-

plex random variables such that

where the series converges almost surely. In a Banach space a weak
basis is also a strong basis; hence the Banach space ~’ ci Zoo obtained
by considering ( as a weak basis is the same as the space ~’ obtained
by considering { as a strong basis. Thus the almost sure convergence
of

is equivalent to the almost sure convergence of

We continue to assume [ = 1. Clearly the almost sure convergence of

gives the almost sure convergence of (2.15). Thus, using some

almost sure convergence criteria, we obtain the next few results which
we state without proof.

THEOREM 2 . 3. A sequence ~ ~n(cc~) ~ of complex random variables defines
an L-measure on X if  ~. 

’

’
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The above result follows from the fact that the almost sure convergence

criterion that ~ ~  oo implies

THEOREM 2.4. A sequence of complex random variables ~ ~n ~ defines
an L-measure on X if a sequence {~n} of positive numbers, with either

THEOREM 2. 5. - A sequence {03BEn} of independent random variables
defines an L-measure on ~’ if and only if, for a fixed c > 0, all the following
series converge

and

The above result follows from Kolmogorov’s three series criterion.

THEOREM 2. 6. A sequence ~ ~n ~ of independent random variables deter-
mines an L-measure on ~’ if and only if

and ~p is continuous at the origin, where the are the Fourier transforms
of the 

This follows from a criterion, in terms of characteristic functions, for
almost sure convergence.
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We now consider Gaussian (or normal) random elements in a Banach
space with basis.

DEFINITION 2.5. - A random element x in a Banach space ~’ is said
to be Gaussian (or normal) if, for x* E X*, the scalar random variable 
is Gaussian.

We now state and prove the following result.

/i -

x(cv) is a Gaussian random element in ~’ if and only if is a Gaussian

random variable for each n >_ 1.

Proof - Let x(co) be a Gaussian random element in ~’. Applying
Definition 2 . 5 to the coefficient functional en E = en (x(cv)) is a
Gaussian random variable for each n. Conversely, let be a Gaussian

random variable for each n >_ 1. For each x* E the series

converges almost surely. Being the limit of Gaussian random variables,
x*(x(co)) is Gaussian for each x* E f[*. Hence the sufficiency.

COROLLARY 2.1. - An L-measure on ~’ is Gaussian if and only if the coef
ficient functionals are Gaussian.

3. L-MEASURES ON THE HARDY SPACES Hp

In this section we use the method given in the last subsection to construct
L-mesures on the Hardy spaces Hp.

DEFINITION 3.1. - The Hardy space H p ( 1 _ p  oo) is the space of

all functions fez) holomorphic in the unit disc I z  1, such that
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is bounded for r E [0, 1). The norm of an element in Hp is given by

We refer to the books of Duren [4], Hoffman [7] and Porcelli [l6] for detailed
discussions of Hp spaces, their properties, and their relationship to other
function spaces.

In order to apply the construction given in Section 2 we need a Schauder
basis in Hp. It is known that the trigonometric exponentials 1, eilJ, 
form a Schauder basis in Hp, 1  p  oo. Recently, Akutowicz [I] has

given a method of constructing a Schauder basis for Hp (1  p  oo ).
However, Singer [18, p. 201] has pointed out that Akutowicz’ result is

not correct; hence in this paper we will use the usual Schauder basis, and
restrict our attention to the spaces Hp, 1  p  oo .

All the necessary and sufficient conditions that a sequence { ~n ~ be asso-
ciated with a function f(z) E Hp is equivalent to the definition of the set

Hp oe Zoo which is isomorphic to Hp. As seen in the last section, we have
a family of pairs of isomorphic measure spaces (Hp, j~/p, vp) and (Hp, vp),
1  p  oo. Since Hq oe Hp, for p  q, we have Hq oe Hp oe Zoo. We

also note that Hp for 1  p  oo is reflexive. In this case we have the

following result :

THEOREM 3.1. sequence of complex numbers such that the

sequence n > 1 is norm bounded in Hp, then c Z°°,

for 1  p  oo.

The proof of this result follows from the fact that if a Banach space with
Schauder basis { ei ~ is reflexive, then the basis is boundedly complete
(cf. [3, p. 70], [13, p. 36]).

We also remark that the series converges to f(z) e Hp if and
only if 

= 1, and
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we obtain the following sufficient condition.

LEMMA 3.1. 2014 Tje series> converges in H p to a function
~

It is well-known that the Hp norm, denoted by [ [ . is equivalent to
the Lp norm [ . ]p, of the boundary function

and

denotes the sequence of boundary functions of the sequence

{ en(z) }, then the series converges strongly in Hp to a function

f (z) E Hp if and only if 
..

Let Ap denote the isomorphism between Hp and Sp oe Zoo, then

where

We now give a necessary and sufficient condition that a probability
measure vp on Hp be an L-measure.

THEOREM 3 . 2. - A measure v p on (Hp, ~ p) is an L-measure if and only
if there corresponds a n >_ 0 ~ of complex random variables
given by the transformation (3.8) such that either
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or

This is an immediate consequence of relations (3.3) and (3 .7).
From (3.4) we obtain a sufficient condition.

COROLLARY 3.1. - A measure v p on (Hp, ~ p) is an L-measure if there
exists a sequence { ~", n >_ 0 ~ of complex random variables such that

From Theorem 3.1 we get the following sufficient condition for the
spaces Hp, 1  p  oo .

THEOREM 3 .2. A sequence of complex random variables ~ ~n(cc~), n >_ 0 ~
determines an L-measure vp on Ap), 1  p  ~, if there is a bounded
non-negative real random variable such that

We now state and prove a number of results on L-measures and L*-mea-
sures on Hp spaces. Let (Hp, v p), 1  p  oo, be a class of probability
spaces, where the probability measure vp is an L-measure.

THEOREM 3 . 3. - The L-measure v p on H p is also an L-measure on Hq
for 1 

Proof - Since Hq c Hp for 1  p  q, we have q ~ Hp oe Zoo. By
construction, Hp is v-measurable for each p > 1, where v is the measure
on Zoo obtained by the Kolmogorov extension theorem. Hq c Hp implies
that Hq oe and thus d q c ~p for q >_ p. The measure v on Zoo
induces the measures v~, 1  p  oo. Let then there
exists a B e ~q such that 6 = AqB and = 7( 6). Similarly 7( B) = vp(B).
Therefore vq(B) = vp(B), for each B E dq. Thus vp is an L-measure on Hq.
We have seen that vq is the restriction of vp on (Hq, dq). Hence we have
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THEOREM 3.4. Let vq be an L-measure on the Borel measurable space
(Hq, Then there exists an L-measure vp on (Hp, for 1  p _ q  ~,
such that vq is the restriction of vp on ~q c ~p.
Proof - By hypothesis vq is an L-measure on Hq. Because of the

isomorphism between Hq and Hq, there is a probability measure vq on
Hq c Z°°. We define a measure À on (Z°°, as follows :

Clearly À is a measure. Let Ip be the restriction of À on Hp. By the iso-
morphism between Hp and Hp we obtain a measure vp on Hp. If

BEd q oe ~p, then

Since vq is a probability measure on Hq, so is vp on Hp. The coefficient
functionals are continuous and hence measurable.

Let ~’* be the dual of a separable Banach space ~’. We now define
an L*-measure.

DEFINITION 3.2. - A measure v* on ~’* is called and L*-measure if
all the elements in the weak-dual of ~’* are v*-measurable.

Clearly L*-measures are less restrictive than L-measures on A
measure v on ~’* is an L-measure if each x** E fr** is v-measurable. If
the space is reflexive, then ~’** _ ~’, and the notions of L*-measure and
L-measure coincide. Because of the reflexivity of Hp for 1  p  o0

and the equivalence of the definitions of L* and L-measures on reflexive
spaces, we have the following result:

THEOREM 3 . 5. An L *-measure on H ^_’ H*. 1 1 =1 1 
is also an L-measure (Thus, constructing an L*-measure on Hp, 1  p  oo,
is equivalent to constructing an L-measure on Hp).
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