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Section B :

Calcul des Probabilités et Statistique.

RESUME. - Les intégrales stochastiques de la forme t0HudMu ont ete
longtemps etudiees sous diverses hypotheses sur H = (Hr, FJ et sur

M = (M t, F~) : par exemple H est prévisible et M est une martingale de
carre integrable etc. En 1966, P. A. Meyer [4] a donne une definition des

intégrales stochastiques par rapport à une martingale locale sous la suppo-
sition que la famille (Ft) est quasi-continue à gauche et H est prévisible.
La meme annee, W. Millar, dans sa these, a fait independamment une étude
des intégrales stochastiques par rapport à une martingale, qui n’est pas
de carre integrable, à partir de résultats de D. L. Burkholder. Ensuite,
en 1968, C. Doléans-Dade et P. A. Meyer ont écarté l’hypothèse de la

quasi-continuite à gauche [3].
Maintenant nous désignerons par l’ensemble des martingales

localement de carre integrable, nulles pour t = 0. Dans cet article,
nous allons faire des recherches sur quelques proprietes des intégrales
stochastiques par rapport à M E supposant que la famille (Ft) est
quasi-continue à gauche. D’abord, nous prouvons que tout M E Mioc
peut être déduit de quelque martingale de carre integrable par un change-
ment de temps. Ensuite, nous utiliserons les changements de temps avec
lesquels nous pouvons ramener les intégrales stochastiques par rapport
à M E aux intégrales stochastiques ordinaires par rapport à une

martingale de carre integrable.
Soit M = (Mr, Ft) E et soit HM l’ensemble de tous les processus

prévisibles H = (Ht, Ft) tel que pour tout

t > 0. 
/
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Maintenant, nous pouvons vérifier un resultat suivant : si une suite H~"~,
des éléments de HM, converge presque surement uniformément vers un pro-
cessus H, alors H appartient à et o M converge uniformément
en probabilité vers 1’integrale stochastique H o M de H par rapport à M.

INTRODUCTION

Stochastic integrals of the form t0 HudMu have long been studied under

various hypotheses on H = (Ht, FJ and M = (Mr, Ft) : for example,
H is predictable and M is a square integrable martingale, etc. In 1966,
P. A. Meyer [4] has given a definition of stochastic integrals for local
martingales under the assumption that the family (F t) is quasi-left continuous
and H is predictable, and W. Millar, in his thesis, has made an independent
study of stochastic integrals for non-square integrable martingales by
applying the idea of D. L. Burkholder. In 1968, C. Doleans-Dade and
P. A. Meyer have removed the hypothesis of quasi-left continuity [3].

In this paper we are going to investigate some properties of stochastic
integrals for locally square integrable martingales under the assumption
that the family (Ft) is quasi-left continuous. For this purpose we shall

use changes of time to reduce the stochastic integral for locally square
integrable martingales to ordinary stochastic integrals for square integrable
martingales.

1. BASIC DEFINITIONS TO RECALL.

We assume here that we are given on the basic P-complete probability
space (Q, F, P) a right continuous, increasing family (F t) of sub a-fields
of F. We may assume that each Fr contains all F-sets of P-measure zero.
In addition, suppose the family (Fr) is quasi-left continuous; that is, for
every stopping time T and every sequence of stopping times such that

00

i, the u-field F x is generated by the field A stochastic process
n= i

X = (Xt, F~) is said to be predictable if the function (t, a~) --~ Xt(co) is measu-
rable with respect to the a-field on [0, generated by all adapted
stochastic processes almost all sample functions of which are left continuous.
A right continuous martingale M = (M~, is said to be square integrable
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if for each t  oo. A right continuous stochastic process M = (Mt,
Ft) is said to be a locally square integrable (resp. local) martingale if there
exists an increasing sequence (i,~) of stopping times with respect to the family
(Ft) such that oo, in  oo) = 1 and for each n, F=) is an
L2-bounded (resp. L1-bounded) martingale : that is to say, sup o0

t

(resp. sup E [ ~ ~]  oo). We shall designate by M (resp. the
t

set of all square integrable (resp. all locally square integrable) martingales M
adapted to the family such that Mo = 0.

2. EXAMPLES.

In this section we shall give two examples which imply that a

local martingale is not always a locally square integrable martingale.
It is Mrs. C. Doleans-Dade, undoubtedly, who has given such an example
for the first time. The example 2 below is much the same as her [2].

Example 7. Let (Q, F, P) be the Wiener probability space with Q = [o, 1],
F the class of all linear Borel sets in Q and P the Lebesgue measure. We

put :

where Fo is the a-field generated by the sets of P-measure zero. Clearly
F1 _ : in other words, the family (Ft) is not quasi-left continuous.

If T is a positive F-measurable function, we have P(r  1) = 1 or 0. Conse-

quently any locally square integrable martingale is a square integrable
martingale. Indeed, if M = (Mt, Ft) is a locally square integrable martin-
gale, then there exists an increasing sequence of stopping times with
respect to the family (Ft) such that each Ft) is a square integrable
martingale. It follows from = oo) = 1 that we have 1) = 1

n

for n sufficiently large. Thus for each n, E[Mt ~ ~n ~ F1] = M 1 (t > 1)
and so Mi is square integrable. Since Mt = Mi for every t  1, it is

now clear that M is a square integrable martingale.
Now we put: 

1- a-

where X is any integrable, but not square integrable, random variable
such that E[X] = 0. Then the martingale (Mt, Ft) is a desired example.
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Example 2. Let S2 = [0, oo [, F° the class of all linear Borel sets in
Q and P a probability measure on Q. We designate by S the identity func-
tion of Q into [0, oo [ and let F° be the 6-field generated by S A t. It is

easy to see that the family (Ft) is increasing and right continuous. Let F t
be the P-completed o-field of Fi. Note that the family (Ft) is quasi-left
continuous when the measure P satisfies the condition : P(cv) = 0 for each
c~ E Q. The next lemma is very interesting. Since it is proved in [1] and
in fact the proof is not difficult, we shall omit the proof.

LEMMA 1. - A random variable r is a stopping time with respect to the
family (F t) if and only if it satisfies the following condition : there exists
some s E [0, oo] such that

Now we define the probability measure P on Q by P(A) = m(A n [0, 1]),
A E F where m is the Lebesgue measure on the real line. Then obviously
the family (Ft) is quasi-left continuous. We put :

where = S(cc~) - Clearly M = (M,, F,) is a martingale
which is uniformly integrable. Suppose now M E It follows from
the definition of a locally square integrable martingale that there exists
a stopping time r > 0 a.s such that the martingale Ft) is square
integrable. By Lemma 1 we can choose some constant s > 0 such that
the properties (i) and (ii) are satisfied. Since

we have

On the other hand we have  ~. This is a contra-
diction. Consequently M is not a locally square integrable martin-

gale.



13SOME PROPERTIES OF MARTINGALE INTEGRALS

3. SOME PROPERTIES OF A CHANGE OF TIME.

DEFINITION. - A family is said to be a change of time with
respect to the family (Fr) if the following conditions are satisfied :

(1) for each t, it is a finite stopping time with respect to the family (Ft),
(2) the function: t --~ it is continuous and strictly increasing,~ (3) To = 0 and i~, = oo.

For each stopping time 03C4t we can define a o-field Fzt as usual. If a process
X = (xt, Ft) is progressively measurable, we can define a new process
TX = FTt). This process is said to be a process obtained from X by
a change of time.

PROPOSITION 2. - The family (Ftt) is right continuous and quasi-left
continuous.

Proof. - Let t be any fixed real number ~ 0. If

then for each h > 0 we have

From (2)

Consequently A n [zr  u] E F"+ = Thus A E The converse inclu-
sion is obvious. Hence the family (F~) is right continuous.
Next we shall verify the second assertion. Let be an increasing

sequence of stopping times with respect to the family (F~), and let

Then clearly [~,t  u] = [t  E Fzu. Thus each ~,t is a stopping time
with respect to the family (F~t). Therefore it follows from



14 NORIHIKO KAZAMAKI

that is an increasing sequence of stopping times with respect to the
family (Ft). According to the quasi-left continuity of the family (Ft),
we have

Consequently the family (F~=) is quasi-left continuous. This completes
the proof.

COROLLARY. - If the family is not quasi-left continuous, then the
family (F~t) is not quasi-left continuous for any change of time 

Proof. Suppose there exists a change of time such that the family
(F tt) is quasi-left continuous, and put 

’

Then it is clear that (~,t) is a change of time with respect to the family (F"t)
and = t. Consequently, by Proposition 2, the family (Ft) = (F=~t)
is quasi-left continuous. This is a contradiction. 
The following lemma is obvious. We shall omit the proof.

LEMMA 3. - (1) Let (At) and (yj be changes of times with respect to
the family (Ft). Then (At A and (At v are also changes of times
with respect to the same family.

(2) Let be a change of time with respect to the family (Ft) and let
(~pt) be a change of time with respect to the family (FAt). Then (AfPt) is a
change of time with respect to the family (Ft).
Note that for each change of time (Ar) there exists a change of time 

such that for each t. Indeed, if we put

then is a desired change of time.
Now we shall designate by the set of all locally square integrable

martingales M = (Mt, Fr) with Mo = 0 such that for some change of time
(it) (of course, with respect to the family (Fx) !) (MTt’ Fzt) is a square inte-
grable martingale. Clearly If M = (Mr, FJ E ~BM,
then for every change of time (it) such that (MTt’ is a square integrable
martingale, there exists some positive real number c (independent of 
satisfying the condition: for each t, essw inf c.

If H = (Ht, Ft) is a left continuous process, for every change of time 
(Htt, Ftt) is also left continuous. This fact implies the following lemma.
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LEMMA 4. Let H = (Ht, Ft) be a predictable process. Then for any

change of time (HTt’ FTt) is predictable.

4. In the following we shall investigate some properties of stochastic

integrals for locally square integrable martingales under the assumption
that the family (Ft) is quasi-left continuous.

THEOREM 5. For every M E there exists a continuous increasing
process (Ar) such that (Mf - At) is a local martingale. (At) is unique,
and we denote it by ( M, M ) = (( M, M )t).

This theorem is fundamental for the theory of martingale integrals.
Since it is proved in [5], we omit its proof. The next theorem will play an
essential role in the following.

THEOREM 6. .~ ; that is to say, any locally square integrable
martingale can be deduced from some square integrable martingale by a
change of time.

Proof. It is sufficient to verify that Now let

that is, there exists an increasing sequence of stopping times with respect
to the family such that oo, in  oo, dn) = 1 and for each n

(Mt^03C4’n, Ft) is an L2-bounded martingale. Let 03BBt = t + ( M, and

zt = inf { u > 0 : 03BBu > t }. Then it is not difficult to see that (resp. 
is a change of time with respect to the family (Ft) (resp. the family (F~*)).
Obviously ( M, M ~~*  t and ~,~* = = t. Since for each n

(M203C4t^03C4’n-M, M~03C4t^03C4’n,F03C4t) is a martingale, we have

from which it follow that sup E[M203C4t^03C4’n]  t. Thus the sequence(M03C4t^03C4’n) lt= 1, 2n L ~ ~ 
is uniformly integrable. Consequently (MTt, FTJ is a martingale and
for each t M=t is square integrable. Hence the theorem is established.

Remark. I dont know whether this relation is true or not
in the case that the family (Ft) is not quasi-left continuous.
Note that, by the uniqueness of ( M, M ), we have

ANN. INST. POINCARÉ, B-VH-1 1
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for any change of time T = with respect to the family (Ft),
Let M E M o~. We shall designate by H~ the set of all predictable

r

processes H --- Ft) such that P (t0H2sd ‘ M, M ~s  oo - 1 for all

t > 0.

PROPOSITION 7. - Let M = (M ~, Ft) E and H = (H t, Fr) E HM,
then there exists a change of time T = such that the process TM is a

r 

square integrable martingale and E TM, TM ~s ~  oo for all

t > 0.
r 

Proof - Let .~t = t -~- ~ M, M ~t +  M, M >s. Clearly ~,t is

Ft-measurable, 03BB0 = 0, 03BB~ = oo, 03BBs  03BBt (s  t) and t ~ zr is continuous.
Put ir = inf { u > 0 : 03BBu > t ). Then T = is a change of time such
that M, M ~03C4t = TM, TM ~t  t for each t and

Consequently this T is a desired change of time. This completes the proof.
Together with each pair (M, N) of elements of there is a process

defined by the relation

t

Put H o ~ M, N ~ = M, N ~~, Ft where M, N E and H E 

THEOREM 8. Let M E and H E Then there exists one and

only one H o M E such that for every N E 

Proof. 2014 Since the uniqueness of H o M is clear, we shall show the
existence. Now let

It follows from Proposition 7 that we have
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and TM is a square integrable martingale. Furthermore, as t, TN

is a square integrable martingale whenever N E M. Then there exists one

and only one square integrable martingale TH o TM such that

Since A = is a change of time with respect to the family (FJ and
= t, we have

for every N E M and A(TH o TM) belongs to Consequently we have

for every N E Mfoc. This implies that A(TH o TM) does not depend on T.
Therefore this process is the desired element H o M This completes
the proof.

In the remainder of this paper we shall give a topological property of
H o M. Let H~"~ _ Ft) and H = (Ht, Ft) be stochastic processes.
If for each t P(lim sup [ Hu"~ - Hu [ = 0) = 1, then we say that H~"~

n 

converges uniformly almost surely to H. Next if for each t and e > 0

lim P(sup 8) = 0, then we say that H~"~ converges
n Out

uniformly in probability to H.

THEOREM 9. - Let H~n~ _ = 1, 2, ..., be a sequence of

elements of HM. If for each t P(lim sup [ Hum~ - 0) = I, then
m,n 

sup H~"~ [ belongs to HM and H~"~ converges uniformly almost surely to
n

some H E HM.

Proof - Put Ht = lim a.s for each t. Clearly H = (Ht, Ft) is
n

a stochastic process satisfying P(lim sup ( Hu"~ - Hu [ = 0) = 1, and
n 

~ "

so H is predictable. In addition, for each t we have
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from which  oo - 1. Consequently HE HM. Simil-

lary we can prove that sup E HM. Thus the theorem is established.
n

THEOREM 10. - Let H~n~ _ Ft), n = 1, 2, ..., be a sequence of
elements of HM. If converges uniformly almost surely to H, then
H~"~ o M converges uniformly in probability to H o M.

Proof - Let

It is easy to verify that is a change of time with respect to the family (F~).
Since Jo BH~ - ( M, M B ~ 4t, the bounded convergence theorem
shows that

Furthermore since f (H~"~ o M), - (H o M)~t ~ is a martingale, we have
for any ~ > 0

by using the extension of Kolomogorov’s inequality to martingales, from
which

It follows from oo that for each 6 > 0 there exists some integer
N ~ 0 such that P(t >  ~. Then we have

Consequently lim P f sup o M)u - (H o [ > E ~ - 0. This
n 

completes the proof.
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