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Section B :

Calcul des Probabilités et Statistique.

SUMMARY. - In this paper mathematical methods are given for finding
the distribution of the supremum for compound recurrent processes and
for stochastic processes with stationary independent increments. New
and simple proofs are given for a result of H. Cramer and for a result of
G. Baxter and M. D. Donsker. The paper also contains some extensions
of these results.

I . INTRODUCTION

Our aim is to give mathematical methods for finding the distribution
of = sup for separable stochastic 0  u  oo ~.(. -’B /? 2014 J

Such methods were given by H. Cramer [2] in the case u  00 }
is a compound Poisson process and by G. Baxter and M. D. Donsker [1]
in the case where { ~(M), stochastic process with statio-
nary independent increments. In this paper we shall give new and simple
proofs for the results of H. Cramer [2] and G. Baxter and M. D. Donsker [1].
Furthermore we shall give various extensions of these results. In parti-
cular, we shall find the joint distribution of 17(t) and ç(t) for stochastic pro-
cesses with stationary independent increments and for compound recurrent
processes.

(*) This research was supported by the National Science Foundation under Contract
No. GP-7847.
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2. COMPOUND RECURRENT PROCESSES

First we shall consider the case where { 03BE(u), 0 _ u  ~ } is a separable
compound recurrent process which is defined in what follows. Let us

suppose that Tn - (n = 1, 2, ..., io = 0) is a sequence of mutually
independent and identically distributed positive random variables with
distribution function P ~ in - x ~ - F(x) and xn (n = 1, 2, ... )
is a sequence of mutually independent random variables with distribution
function P ~ xn _ x ~ - H(x). Furthermore let us suppose also that the
two sequences { are independent.

Let us define

for u >_ 0 where c is a constant. We shall say that the process
{ ç(u), compound recurrent process.
We shall write

for t >_ 0.

Let us introduce the following notation

for Re(s) ~ 0 and

for Re(s) = 0.
Denote by Fn(x) (n = 1, 2, ... ) the n-th iterated convolution of F(x)

with itself and by H"(x) (n = 1, 2, ... ) the n-th iterated convolution of
H(x) with itself. Let Fo(x) = Ho(x) = 1 for x ~ 0 and Fo(x) = Ho(x) = 0
for x  0.

Let us define also

for n = 1, 2, ... and
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for n = 1, 2, ... = 0. Let

for n = 0, 1, 2, ...

THEOREM 1. If c >_ 0, Re(q) > 0, Re(s + v) >_ 0 and Re(v) _ 0, then
we have

Proof - First let us suppose that i" (n = 0, 1, 2, ... ) and xn (n = 1, 2, ... )
are numerical (non-random) quantities for which

Let us define ~(t), 17(t) for 0 ~ t  oo and for 0 _ n  oo in exactly
the same way as above. We shall show that if Re(q) > 0, Re(s + v) >__ 0,
Re(v) _ 0, then the following basic relation holds between the functions
?)? 17(t) (0 ~ t  oo ) and the sequences in, ’m q" (o __ n  oo )

The proof of (9) is very simple. If c ~ 0, then obviously 17(t) = 17n and
?) = ’n - c(t - in) for in  t  Thus

for n = 0, 1, 2, ... If we add (10) for n = 0, 1, 2, ..., then we get (9).
Next suppose that { in ~ and are random variables as defined at

the beginning of this section. Then (9) holds for almost all realizations
of { 03BE(t), ~(t); 0  t  ~ } and { i", 03BEn, ~n; 0 __ n  If we form the

expectation of (9), then we obtain that



240 LAJOS TAKACS

where

Let us define a sequence of random variables 11: (n = 0, 1, 2, ... ) in
the following way ~*0 = 0 and

for n = 0, 1, 2, ... where [x] + = x for x ~ 0 and [x] + = 0 for x  0.

Then we can write also that

For (12) remains unchanged if we replace ~ 1, ~2, ..., ~n by ~n, ~n-1, ... , ~ 1
respectively and by these substitutions ~n becomes 

Here Uo(s, v, q) = 1 and U"(s, v, q) for n = 1, 2, ... can be obtained
recursively.

Let us define an operator A in the following way. If ( is a complex
random variable for which E { ( ~ ~ ~  oo and q is a real random variable,
then E { ~e - S’’ ~ exists for Re(s) = 0 and it determines uniquely E ~ ~e S’’ ~ ~
for Re(s) >_ 0 where r~ + - max (0, r~). Let us write

for Re(s) ~ 0. Here A is a linear operator. We note that for Re(s) > 0
we can write that

where e  y  oo ~. Since (15) is con-
tinuous for Re(s) >_- 0, (16) determines (15) for Re(s) = 0 by continuity.

Since 11:+ 1 = + ~n+ 1]+ and ~n+ 1 = ~n + ~"+ 1 for n = 0, 1, 2, ... we

can write that for Re(q) > 0, Re(s + v) ~ 0, Re(v)  0 and n = 0, 1, 2, ...

and here A operates on the variable s. The generating function of the

sequence {Un(s, v, q)} can be expressed as follows:
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and (18) is convergent if 1. It is easy to check that (18) is indeed
the correct solution. Let us denote by U(s, v, q, p) the right-hand side
of (18). If we form the coefficient of p" for n = 0, 1, 2, ... in the power
series expansion of U(s, v, q, p) and apply the operator A, then every coeffi-
cient remains unchanged. If we form the coefficient of p" for n = 0,1, 2, ...
in the power series expansion of [1 - pt/J(s + v)~p(q - cs - cv)]U(s, v, q, p)
and apply the operator A, then we obtain 1 if n = 0 and 0 if n >- 1. Hence

we can conclude that the coefficient of p" in the expansion of U(s, v, q, p)
satisfies the same initial condition and the same recurrence relation as

Un(s, v, q), that is the coefficient of p" in the expansion of U(s, v, q, p)
is exactly q). This proves (18). We note that (18) can also be
proved by using the method of F. Pollaczek [5] or the method of

F. Spitzer [6].
Since

we get (8) by (11) and (18). This completes the proof of theorem 1.
If v = 0 in (8), then we get the Laplace transform of E ~ e-S’’~i~ ~, and

E ~ e-S’’~t~ ~ and P f  x ~ can be obtained by inversion.
By (8) we can write also that

if c ~ 0, Re(q) > 0, Re(s + v) >_ 0 and Re(v)  0.
Finally, for the sake of completeness we shall mention the following

result which, however, will not be used in this paper. If c ~ 0, Re(q) > 0,
Re (s + v) >_ 0 and Re(v) __ 0, then we have
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where

and A operates on the variable s.

3. COMPOUND POISSON PROCESSES

Let us suppose that in the previous section

that is, cp(s) = À/(À + s) for Re(s) ~ 0. Here À is a positive constant.
In this case {03BE(u), 0 ~ u   ~ } is called a compound Poisson process.
Then

for x ~ 0,

for u >_ 0 and

for Re(s) = 0.
In this case we have the following result.

THEOREM 2. - If Re(q) > 0, Re(s + v) ~ 0, and Re(v) __ 0, then we have
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If v = 0, then (27) reduces to

Proof. - First we shall prove (27) for c ~ 0. In this case (27) is a parti-
cular case of (8). Now 1 - ~p(q - cv) = (q - cv)/(~, + q - cv) in (8) and

by using (24) and (25) the exponential factor in (8) can be expressed as
follows:

Since

we get (27) by (29).
For c ~ 0 we can easily deduce (27) from the previous case. Since the

finite dimensional distribution functions of the two processes

are identical, we can conclude that r~(t) - ç(t) and - ç(t) have exactly
the same joint distribution as sup [ - ~(u)] and - ~(t). Furthermore if

c ~ 0, then for the process ( - ç(u), 0 ~ u  oo ~ we can apply (27) if

we replace c by - c and ç(u) by - ~(M). Thus we obtain that for c ~ 0,
Re(q) > 0, Re(s + v) >- 0 and Re(v) -- 0

If we replace v by - (v + s) in (31), then we obtain (27) for c ~ 0. This

completes the proof of theorem 2.
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In the case compound Poisson process
the Laplace transform of E { has previously been found by H. Cra-
mer [2]. Here we provided a new proof for Cramer’s result and we also
found the Laplace transform of E ~ e ~ S’’to - "~tt~ ~ which makes it possible
to find the joint distribution of 17(t) and 

4. PROCESSES
WITH STATIONARY INDEPENDENT INCREMENTS

Let us suppose now separable stochastic
process with stationary independent increments for which P~ ~(0) = 0 ~ =1.
Then for Re(s) = 0 and 0 ~ u  oo we can write that

where is an appropriate function.

THEOREM 3. 2014 If { 03BE(u), 0 __ u  ~ } is a separable stochastic process
with stationary independent increments, then formulas (27) and (28) hold
unchangeably.

Proof - We can find a sequence of separable compound Poisson pro-
0 ~ u  ~ } such that the finite dimensional distribution

functions 0 ~ u  oo ~ converge to the corresponding finite

dimensional distribution functions of { ç(u), 0 ~ u  oo ~. If

for Re(s) = 0, then we can achieve the desired convergence by choosing
ck, Àk and in such a way that

for Re(s) = 0.
If 17k(t) = sup ~k(u), then it follows that the joint distribution of I1k(t)

and ~k(t) (k = 1, 2, ... ) converges to the joint distribution of and ç(t)
as k - oo. Since (27) holds for all ~k(t) and (k = 1, 2, ... ), if follows

by the continuity theorem for Laplace-Stieltjes transforms that (27) holds
also for ç(t) and 17(t). This completes the proof of the theorem.

In a somewhat different form formula (28) was found by G. Baxter and
M. D. Donsker [l]. Formula (27) for stochastic processes is similar to
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a result of F. Spitzer [6] for partial sums of mutually independent and iden-
tically distributed random variables.

Note. - If we take into consideration that for Re(q) > 0 and Re(s) = 0

w here the principal value of the logarithm is used, then by (27) we obtain
that 

’

for Re(q) > 0, Re(s + v) ~ 0, Re(v) _ 0 and the operator A is defined by (16).

5 . EXAMPLES

Suppose that { ç(u), separable stochastic process with
stationary independent increments and has a stable distribution
with parameters a and f3 where 0  a ~ 2 and - 1 ~ f3 ~ 1. Then

oo where for (l =1= 1,0a_2and -1/31

and for a = 1 and - 1  ~3 -- 1

In this case the distribution of = sup ç(u) has been determined
o s ust

by several authors in various particular cases. We refer to the works
of D. A. Darling [3], G. Baxter and M. D. Donsker [1] and C. C. Heyde [4].
We can always use formulas (28) or (36) to find the Laplace-Stieltjes trans-
form of P { r~(t)  x } and by inversion we can obtain P { ~(t)  x ~. How-
ever, if is given by (38) or by (39) with /3 = 0, then 17(t) has the same
distribution as and this observation makes possible some simpli-
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fications. Following D. A. Darling [3] we can also express the left-hand
side of (28) in another way. Let

and suppose that P { q(t) _ x } = where 0  o: ~ 2. If q = 1
in (28) then the left-hand side can be expressed as

for Re(s) > 0 where

for Re(s) > 0. We observe that for 0 ~ x  oo the function I(x) is a dis-
tribution function of a positive random variable. If we write s = 1/y
in (41) where 0  y  oo, then

can be interpreted as the distribution function of the product of two inde-
pendent positive random variables having distribution functions I(x) and
W(x) respectively.
On the other hand G(x) can be obtained by using (28) or (36). In (36)

if q = 1, then

for Re(s) > 0. If we denote the right-hand side of (44) by L(s), then we
can write that

for 0  x  oo.

Finally the unknown W(x) can be obtained from (43) by using Mellin-
Stieltjes transform. Since
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for 1 - a  s  1, we obtain from (43) that

for 1 - a  s  1 and I s  a. By inversion we can obtain W(x).
If, in particular, a = 1, then (47) reduces to

for 0  s  1 hence

for x > 0, where the definition of G(s) is extended by analytical continua-
tion to the complex plane cut along the negative real axis from the origin
to infinity.
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