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Planar Permutation Graphs (1)

Gary CHARTRAND and Frank HARARY

INTRODUCTION

Ann. Inst. Henri Poincaré,

Vol. III, n° 4, 1967, p. 438.

Section B :

Calcul des Probabilités et Statistique.

One of the best known graphs in all of graph theory is the Petersen
graph, shown in Figure 1, named after the Swedish mathematician. Peter-
sen [3] proved that every cubic bridgeless graph contains a I-factor. He
also showed that not every such graph is 1-factorable by exhibiting a
counterexample which has become classic.

FiG. I. - The Petersen graph.

This graph consists of two disjoint cycles of length 5 (a pentagon and a
pentagram) joined by 5 additional lines. This is made clear in Figure 2 a
as we see how the two cycles are linked. This graph is then redrawn in
Figure 2 b to produce a labeling of the familiar Petersen graph shown
in Figure 1.

(~) Research supported in part by grants from the U. S. Air Force Office of Scientific
Research and the Office of Naval Research.
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FIG. 2. - The first permutation graph.

The points of each of the two copies of Cs (the cycle of length 5) are
labeled cyclically 1 through 5, with the points of the exterior cycle joined
to the points of the interior cycle according to the rule

Thus the numbers on the top row of the permutation (X correspond to
the exterior cycle and those in the second row to the interior cycle with
a point i on the exterior cycle joined to a point j on the interior cycle ifoc(f) = j.
Therefore, the Petersen graph can be regarded as two disjoint copies
of Cs joined according to this permutation (X. Looking at the Petersen
graph from this viewpoint, we are led to the following, more general concept.
Consider two identical disjoint copies of a labeled graph G with p points.

The a-permutation graph Pa(G) consists of these two copies of G along
with p additional lines joining these graphs according to a given permuta-
tion (X on Np = ~ 1, 2, ..., p }. A graph H is a permutation graph if there
exists a labeled graph G, having p points, and a permutation (X on the

set Np such that H = Pa(G). We note that the graph Pa(G) depends not
only on the choice of the permutation oc but on the particular labeling
of G as well. In fact, there are four permutation graphs which can be
obtained from Cs : the Petersen graph which is known to be nonplanar
(see [7]), the pentagonal prism (Figure 3 a) which is planar, and the two
nonplanar graphs in Figure 3 b. Certainly, more than one permutation
may result in the same permutation graph ; indeed, there are 10 permuta-
tions which produce the Petersen graph as there are for the pentagonal
prism, and each of the graphs in Figure 3 b can be obtained from 50 permu-
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FIG. 3. - The other permutation graphs of Cs.

tations. For example, if the points of Cs are labeled cyclically, then the
prism results from either the identity permutation or the cyclic permu-
tation ( 1 2 3 4 5).

PLANAR PERMUTATION GRAPHS .

Although Cs is obviously planar, we have seen that some permutation
graphs of Cs are planar and others nonplanar. We develop a criterion
for a permutation graph of a cycle as well as any other 2-connected graph
to be planar.
A graph G is homeomorphic from H if it is possible to insert points of

degree two into the lines of H to produce G (A graph G i is homeo-

morphic with G2 if there exists a graph G3 which is homeomorphic from
both Gi and G2). It is convenient to state in the following form the well-
known theorem of Kuratowski [2]. A graph is planar if and only if it

contains no subgraph homeomorphic from the complete graph Ks or
from the complete bigraph K 3, 3..
Given that Pa(G) is planar, it is certainly clear that G is also planar since

it is a subgraph of Pa(G). Furthermore, G must have the added property
that it can be embedded in the plane so that all its points bound some
region of G. Without loss of generality, we may assume this region to be
exterior. If G did not have this property, then no matter how the points
of the two copies of G are joined. in the forming of a permutation graph,
at least one of the added lines must cross some line in one of the copies
of G so that Pa(G) would be nonplanar. A connected graph. having at
least 3 points which can be embedded in the plane so that all its points
lie on the exterior region will be called outerplanar. A disconnected

ANN. INST. POINCARE. B H! 4 29
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graph is considered outerplanar if all its components are. Of course

every outerplanar nonseparable graph is hamiltonian. It is easy to see

that all graphs with less than 6 lines are outerplanar. While all graphs
with 6 lines are planar, there are two connected graphs among them which
fail to be outerplanar, namely, the complete graph K4 and the « theta-

graph » K2,3.

FIG. 4. - The prototypes of non-outerplanar graphs.

THEOREM 1. A graph G is outerplanar if and only if it contains no sub-

graph homeomorphic from K4 or K2, 3.

Proof It is obvious that G is not outerplanar if it contains a subgraph
homeomorphic from K4 or from K2,3.
To prove the converse, let G contain no subgraph homeomorphic

from K4 or from K2,3 but assume G is not outerplanar. If G is nonplanar,
then, by Kuratowski’s theorem, it contains a subgraph homeomorphic
from Ks or from 1(3 3, so it certainly contains one homeomorphic from K4
or from K2,3. Hence, G is planar. Since G is not outerplanar, it must
contain a block B with more than two points, which is not outerplanar.
Embed B in the plane so that a maximum number of points lie on the
exterior cycle Z. Since Z is not hamiltonian, there is at least one point
which lies in the interior of Z. Let u be a point interior to Z which is

adjacent to a point v 1 on Z. Since B is a block, deg u ? 2. Hence, there

is a path P from u to some other point v2 on Z. There are two cases to

consider. 
’

Case 1. Points vi and v2 are consecutive on Z.

In this case, some point of P different from v2 must have degree at least 3;
otherwise, the path could be transferred outside of Z to produce a. planar
embedding of B having a longer exterior cycle. Thus, there is a path from
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a point of P, say w, to a point ~3 of Z not containing any other point of P
(See Figure 5 a). The lines of Z and the 3 paths from w to Z induce a
subgraph of B homeomorphic from K4.

Case 2. Points vi 1 and v2 are not consecutive on Z.

Clearly, the lines of Z and those of the path through u from v 1 to v2
constructed in Case 1 induce a subgraph homeomorphic from K~3 (see
Figure 5 b), completing the proof.

FIG. 5. - Homeomorphs of K4 and K2,3.

We now return to the Petersen graph and ask which permutations
applied to a given cycle or, more generally, to a given nonseparable outer-
planar graph G result in a planar permutation graph. This may depend
on how G is labeled. Since G is outerplanar, it can be embedded in the
plane so that its exterior cycle Z is hamiltonian. If we label the points
of Z cyclically, 1 through p, then we say that G is « cyclically labeled ».
It is convenient to assume that every nonseparable outerplanar graph is
cyclically labeled. One sees that every nonseparable outerplanar graph
has 2p cyclic labelings, p labelings of the points in cyclic clockwise order
and p more counterclockwise.

Obviously, the number of ways of constructing a planar permutation
graph from two disjoint copies of a nonseparable outerplanar graph
with p points is the same as that of obtaining a planar permutation graph
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from two copies of C~, namely 2p, the number of permutations is the dihedral
group Dp of degree p generated by the two permutations: 

.

When 03B1~Dp, we say (X is dihedral.

We now summarize these observations.

LEMMA. Given a nonseparable outerplanar graph G, the permutation
graph P(I(G) is planar if and only if a is dihedral.
Combining Theorem 1 and the lemma, we arrive at a characterization

of planar permutation graphs of nonseparable’ graphs.

THEOREM 2. The permutation graph P(I(G) of a nonseparable graph G
is planar if and only if G is outerplanar and (X is dihedral.

In general, the conclusion of Theorem 2 does not follow for connected
outerplanar graphs with cutpoints, showing the necessity of the hypo-
thesis that G is nonseparable. For example, consider the chain W~ with
n points. It is easy to verify that all 24 permutation graphs of W4 are
planar, not just those obtained from the 8 permutations in D4. This is

not so for Cs since Pa(CS) is not planar when

for it contains a subgraph homeomorphic from K3,3.
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