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ABSTRACT. - We consider the complete normal field net with compact
symmetry group constructed by Doplicher and Roberts starting from a
net of local observables in ~ 2 + 1 spacetime dimensions and its set of
localized (DHR) representations. We prove that the field net does not
possess non-trivial DHR sectors, provided the observables have only
finitely many sectors. Whereas the superselection structure in 1 + 1

dimensions typically does not arise from a group, the DR construction is
applicable to ’degenerate sectors’, the existence of which (in the rational
case) is equivalent to non-invertibility of Verlinde’s S-matrix. We prove
Rehren’s conjecture that the enlarged theory is non-degenerate, which
implies that every degenerate theory is an ’orbifold’ theory. Thus, the
symmetry of a generic model ’factorizes’ into a group part and a pure
quantum part which still must be clarified. @ Elsevier, Paris

RESUME. - Nous etudions Ie reseau normal et complet d’algebres des
champs avec groupe de symetrie compact construit par Doplicher et Ro-
berts a partir d’un reseau d’ observables locales d’un espace temps de di-
mension superieure ou egale a 2 +1, ainsi que 1’ensemble des representa-
tions localises (DHR) qui lui est associe. Nous demontrons que Ie reseau
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360 M. MUGER

des algebres de champs ne possede pas de secteur DHR non-trivial, sous
la condition que Ie reseau des algebres d’ observable n’ ait qu’un nombre
fini de secteur de superselections. Alors qu’ en dimension 1 + 1 la struc-
ture des secteurs de superselection n’ est pas determinee par un groupe,
la construction de D.R. s’ applique aux ’secteurs degeneres’ dont 1’ exis-
tence, dans Ie cas rationnel, est equivalente a la non inversibilite de la
matrice S de Verlinde. Nous demontrons aussi la conjecture de Rehren
selon laquelle la theorie elargie est non-degeneree, impliquant que toute

theorie degeneree est une theorie ’orbifold’. Aussi, la symetrie d’un mo-
dele generique se decompose en une contribution venant d’un groupe et
une autre purement quantique dont la structure necessite encore d’ etre
elucidee. @ Elsevier, Paris

1. INTRODUCTION

A few years ago a long-standing problem in local quantum physics
[28] (algebraic quantum field theory) was solved in [22], where the
conjecture [ 10,13] was proved that the superselection structure of the
local observables can always be described in terms of a compact group.
This group (gauge group of the first kind) acts by automorphisms on
a net of field algebras which generate the charged sectors from the
vacuum and obey normal Bose and Fermi commutation relations. From
the mathematical point of view this amounts to a new duality theory for
compact groups [21 ] which considerably improves on the old Tannaka-
Krein theory. These results rely on a remarkable chain of arguments [ 17-
20] which we cannot review here. We refer to the first two sections of [22]
for a relatively non-technical overview of the construction and restrict
ourselves to a short introduction to the problem in order to set the stage
for our considerations.
Our starting point is a net of local observables, i.e., an inclusion

preserving map .4(0) which assigns to each double cone 0 (the
set of these is denoted by lC) in spacetime the algebra of observables
measurable in 0. More specifically, identifying the abstract local algebras
with their images in a faithful vacuum representation we assume the

to be von Neumann algebras acting on the Hilbert space The

C*-algebra A generated by all is called the quasilocal algebra.
As usual the property of Einstein causality (if 02 are mutually

Annales de l’Institut Henri Poincaré - Physique theorique



361CHARGED FIELDS WITH GROUP SYMMETRY

spacelike double cones then and ~4(C?2) commute elementwise)
is strengthend by requiring Haag duality

where ,A(O’) is the C*-algebra generated by .4(0), 1C ~ 0 
Typically one requires Poincare or conformal covariance but these

properties will play no essential role for our considerations, apart from
their being used to derive the Property B (cf. Section 2.1 below) which is
needed for the analysis of the superselection structure.
We restrict our attention to superselection sectors which are localizable

in arbitrary double cones, i.e., representations 7r of the quasilocal algebra
satisfying the DHR criterion [ 12,14] :

These representations are called locally generated since they are indistin-
guishable from the vacuum when restricted to the spacelike complement
of a double cone. Given a representation of this type, Haag duality implies
[ 12] for any double cone 0 the existence of a unital endomorphism of ,A.
which is localized in 0 (in the sense that peA) = A VA E ~4(0~)) such
that 7T ~ TTo o p - p. This is an important fact since endomorphisms can
be composed, thereby defining a composition rule for this class of repre-
sentations. Whereas (non-surjective) endomorphisms are not invertible,
there are left inverses, i.e., (completely) positive linear 2014~ ~
such that

in particular ~p o p = Localized endomorphisms obtained from DHR
representations are transportable, i.e., given p there is an equivalent
morphism localized in 0 for every (9 E IC. Furthermore, given two lo-
calized endomorphisms, one can construct operators ~(~1,~2) which
intertwine p 1 p2 and p2 p 1 and thereby formalize the notion of parti-
cle interchange (whence the name statistics operators). For p an irre-
ducible morphism, = gives rise via polar decompo-
sition Àp = to a phase and a positive number. From here on
the analysis depends crucially on the number of spacetime dimensions.
In ~2+1 dimensions [ 12,14] the statistics operators ~(~1,~2) are

uniquely defined and satisfy E (p , p ) 2 = 1 such that one obtains, for
each morphism p, a unitary representation of the permutation group
in A via 03C3i ~ 03C1i-1(~(03C1,03C1)). Furthermore, the statistics phase and

Vol. 71, n° 4-1999.



362 M. MUGER

dimension satisfy = and dp E N U {oo}. The statistics phase c~p
distinguishes representations with bosonic and fermionic character, and
the statistical dimension d (p) measures the degree of parastatistics. Ig-
noring morphisms with infinite dimension, which are considered patho-
logical, we denote by ZB the semigroup of all transportable localized mor-
phisms with finite statistics.
The analysis which was sketched above was motivated by the prelim-

inary investigations conducted in [ 10] . There the starting point is a net
of field algebras 0 t-~ acted upon by a compact group G of inner
symmetries (gauge group of the first kind):

The field algebra acts irreducibly on a vacuum Hilbert space ?oC and the
gauge group is unbroken, i.e., represented by unitary operators U(g) in
a strongly continuous way: ag(F) = Ad U(g)(F). (Compactness of G
need in fact not be postulated, as it follows by [ 16, Theorem 3.1 ] if the
field net satisfies the split property.)
The field net is supposed to fulfill Bose-Fermi commutation relations,

i.e., any local operator decomposes into a bosonic and a fermionic part
F = F+ + F- such that for spacelike separated F and G we have

The above decomposition is achieved by

where k is an element of order 2 in the center of the group G. V == Uk is
the unitary operator which acts trivially on the space of bosonic vectors
and like -1 on the fermionic ones. To formulate this locality requirement
in a way more convenient for later purposes we introduce the twist

operation Ft = Z F Z* where

which leads to ZF+Z* = F+, ZF_Z* = iV F_, implying [ F, Gt] = 0.
The (twisted) locality postulate ( 1.4) can now be stated simply as

Annales de l’Institut Henri Poincaré - Physique theorique



363CHARGED FIELDS WITH GROUP SYMMETRY

In analogy to the bosonic case, this can be strengthened to twisted duality:

The observables are now defined as the fixpoints under the action of G:

The Hilbert space ~-~C decomposes as follows:

where ~ runs through the equivalence classes of finite dimensional
continuous unitary representations of G and d is the dimension of ~.
The observables and the group G act reducibly according to

where jr~ and U~ are irreducible representations of and G, respectively.
As a consequence of twisted duality for the fields, the restriction of
the observables ,,4 to a simple sector (subspace ~C~ with d = 1 ), in
particular the vacuum sector, satisfies Haag duality. Since the unitary
representation of the Poincare group commutes with G, the restriction
of ,~4 to ~-~Co satisfies all requirements for a net of observables in

the vacuum representation in the above sense. As shown in [ 10], the
irreducible representations of ,A. in the charged sectors are globally
inequivalent but strongly locally equivalent to each other (i.e., 03C01 f
A(O’) 03C02  .4(0’)), in particular they satisfy the DHR criterion.
Obviously it is not necessarily true that the decomposition ( 1.11 ) contains
all equivalence classes of DHR representations (take .F = ..4, 7~C . _ ?-~o,
G = {e}). This completeness is true, however, if the field net ~" has
trivial representation theory (equivalently ’quasitrivial I-cohomology’),
see [43]. It was conjectured in [13] that every net of observables arises as
a fixpoint net such that the representation of A on ?-~ contains all sectors,
which furthermore means that the tensor category of DHR sectors with
finite statistics is isomorphic to the representation category of a compact
Vol. 71, n° 4-1999.
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group G. Under the restriction that all transportable localized morphisms
are automorphisms, which is equivalent to G being abelian, this was
proved in [ 11 ] . After the early works [ 13,41 ] the final proof in complete
generality [ 17-22] turned out to be quite difficult, which is perhaps not
too surprising in view of the non-triviality of the result.

In the next section we prove a few complementary results concerning
the DR-construction in ~ 2 + 1 dimensions. It is natural to conjecture
that the DR field net does not possess localized superselection sectors
provided it is complete, i.e., contains charged fields generating all DHR
sectors (with finite statistics) of the observables. Whereas, at first sight,
this may appear to be an obvious consequence of the uniqueness result
[22] for the complete normal field net we have unfortunately been able
to give a proof only for the case of a finite gauge group, i.e., for rational
theories. Under the same assumption we show that the complete field net
can also be obtained by applying the DR construction to an intermediate,
i.e., incomplete field net. Whereas in higher dimensions the restriction
to finite gauge groups is quite unsatisfactory, our results have a useful
application to the low dimensional case to which we now turn.

In 1 + 1 dimensions there are in particular two interesting classes
of models. The first consists of purely massive models, many of these
being integrable. Concerning these it has been shown recently [37]
that they do not have DHR sectors at all as long as one insists on
the assumption of Haag duality. As to conformally covariant models,
which constitute the other class of interest, the situation is quite different
in that it has been shown [5] that positive-energy representations are
necessarily of the DHR type due to local normality and compactness
of the spacetime. It is particularly this class which we have in mind in
our 2d considerations, but the conformal covariance will play no role.
Whereas in ~ 2 + 1 dimensions one has ~ ( p2, = ~2). in 1 + 1
dimensions these statistics operators are a priori different intertwiners
between 03C1103C12 and This phenomenon accounts for the occurrence
of braid group statistics and provides the motivation for defining the
monodromy operators:

which measure the deviation from permutation group statistics. An

irreducible morphism p is said to be degenerate if ~(/), a) = 1 for all
or. Given two irreducible morphisms one obtains the C-number

Annales de l’Institut Henri Poincaré - Physique theorique



365CHARGED FIELDS WITH GROUP SYMMETRY

valued statistics character [39] via

(Here QJj is the left inverse of 03C1j and the factor didj has been introduced
for later convenience.) The numbers Yi~ depend only on the sectors,
such that the matrix can be considered as indexed by the set of
equivalence classes of irreducible sectors. The matrix Y satisfies the

following identities:

Here is the conjugate morphism of and N ~ E No is the

multiplicity of in the decomposition of into irreducible

morphisms. The matrix of statistics characters is of particular interest
if the theory is rational, i.e., has only a finite number of inequivalent
irreducible representations. Then, as proved by Rehren [39], the matrix
Y is invertible iff there is no degenerate morphism besides the trivial one
which corresponds to the vacuum representation. In the non-degenerate
case the number or = ~i satisfies 12 = ~i d2 and the matrices

are unitary and satisfy the relations

where is the charge conjugation matrix. That is, S and T
constitute a representation of the modular group SL (2, Z). Furthermore,
the ’fusion coefficients’ N ~ are given by the Verlinde relation

Bbl.71,n°4-1999.
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As was emphasized in [39], these relations hold independently of

conformal covariance in every (non-degenerate) two dimensional theory
with finitely many DHR sectors. This is remarkable, since Eq. ( 1.20) first
appeared [47] in the context of conformal quantum field theory on the
torus, where the 5’-matrix by definition has the additional property of
describing the behavior of the conformal characters under the
inversion t 2014~ -1 / z .

Eqs. ( 1.19) and ( 1.20) do not hold if the matrix Y is not invertible,
i.e., when there are degenerate sectors. One can show that the set

of degenerate sectors is stable under composition and reduction into
irreducibles (Lemma 3.4). It thus constitutes a closed subcategory of
the category of DHR endomorphisms to which one can apply the DR
construction of charged fields. In Section 4 we will prove Rehren’s

conjecture in [39] that the resulting ’field’ net has no degenerate sectors.
Furthermore, we will prove that the enlarged theory is rational, provided
that the original one is. These results imply that the above Verlinde-type
analysis is in fact applicable to .~’.

2. ON THE RECONSTRUCTION OF FIELDS FROM
OBSERVABLES

Our first aim in this section will be to prove the intuitively reasonable
fact that a complete field net associated (in ~ 2 + 1 dimensions) with
a net of observables does not possess localized superselection sectors.
For technical reasons we have been able to give a proof only for

rational theories. This result, which may not be too useful in itself, will
after some preparations be the basis of our proof of a conjecture by
Rehren (Theorem 3.6). Furthermore, we show that the construction of
the complete field net ’can be done in steps’, that is, one also obtains the
complete field net by applying the DR construction to an intermediate,
thus incomplete, field net and its DHR sectors. For the sake of simplicity
we defer the treatment of the general case for a while and begin with the
purely bosonic case.

2.1. Absence of DHR sectors of the complete field net: Bose case

The supers election theory of a net of observables is called purely
bosonic if all DHR sectors have statistics phase +1. In this case the
charged fields which generate these sectors from the vacuum are local and
the fields associated with different sectors can be chosen to be relatively

Annales de l’Institut Henri Poincaré - Physique theorique
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local. Then the Doplicher-Roberts construction [22] gives rise to a local
field net ~, which in addition satisfies Haag duality. Thus it makes sense
to consider the DHR sectors of ,~ and to apply the DR construction
to these. (In analogy to [12,14] one requires ,~’ to satisfy the technical
’property B’ [ 12], which can be derived [2] from standard assumptions,
in particular positive energy. Since a DR field net is Poincare covariant
with positive energy [22, Section 6], provided this is true for the vacuum
sector and the DHR representations of the observables, we may take the
property B for granted also for .~.)
We cite the following definitions from [22] :
DEFINITION 2.1. - Given a net ,A of observables and a vacuum

representation Tco, a normal field system with gauge symmetry, {Jr, .~’, G},
consists of a representation n of ,,4. on a Hilbert space ?oC containing
Jro as a subrepresentation on H0 C H, a compact group G of unitaries
on ~-~C leaving ?-~Co pointwise fixed and a net C ,t3(~-~C) ofvon
Neumann algebras such that:

(a ) the g E G induce automorphisms ag of .~’(C7), 0 E 1C with
n (,~l(C~)) as fixed-point algebra,

(~B) the field net ~ is irreducible,
(y ) ?-~o is cyclic for VO E J’C,
(~) there is an element k in the center of G with k2 = e such that the

net .~ obeys graded local commutativity for the ~2-grading defined
by k, cf ( 1.4) and ( 1.5).

DEFINITION 2.2. - A field system with gauge symmetry F, G}
is complete if each equivalence class of irreducible representations
of ,A. satisfying ( 1.2) and having finite statistics is realized as a
subrepresentation of Tc, i. e., ~c describes all relevant superselection
sectors.

For a given net of observables ,A we denote by a the set of all
transportable localized morphisms with finite statistics. Let h be a
closed semigroup of localized bosonic endomorphisms and let ,~’ be
the associated local field net. Now let E be a closed semigroup of
localized endomorphisms of ,~. After iterating the DR construction again
we are faced with the following situation. There are three nets .,4., .~, _,~’
acting faithfully and irreducibly on the Hilbert spaces 1-ío C ~C C ?-~C,
respectively, such _that Haag duality holds (twisted duality in the case
of .~). The nets ,~’ and .~ are normal field nets with respect to the
nets ,~’ and ,A., respectively, in the sense of Definition 2.1. Thus there
are representations 03C0 of ,A on H and  of F on H, respectively, such
Vol. 71, nO 4-1999.
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that 7T o G c .~’. Furthermore, there are strongly compact
groups G and G of unitaries on 7 C and 7~, respectively, acting as local
symmetries on .~’ and .~, respectively, such that = 0 E

1C, and 0 E 1C. The following result is crucial:

PROPOSITION 2.3. - Let the theory be rational G
be finite). Then the net normal field net with respect to the
observables ,,4.. In particu_lar, strongly compact group G of
unitaries on ~C containing G as a close_d normal subgroup. G implements
local symmetries such that = it 0 

Proof. - Let G be the group of unitaries on 1-[ implementing local
symmetries of .~’ which leave A pointwise and the algebras ~((9), 0 E
l’C globally stable. Clearly, G is strongly closed and contains G as a
closed normal subgroup. We can now apply Proposition 3.1 of [7] to the
effect that every element of G extends to a unitarily implemented local
symmetry of ~", thus an element of G, such that there is a short exact
sequence

By assumption, G is known to be compact in the strong topology
which, of course, coincides with the topology induced from G. The
group G being finite it is clearly compact with respect to any topology.
Compactness of G and G imply compactness of G (cf., e.g., [29,
Theorem 5 . 25 ] ) .

It remains to prove the requirements (,8)-(~) of Definition 2.1. Now,
(~8 ) and (8) are automatically true by [22, Theorem 3 . 5 ] . Finally, ( y ) ,
viz. the cyclicity of for .~’(C~), (9 E ~C is also easy: in application to

c gives a dense subset of ~C, the image of which
under the action of the charged (with respect to .~’) fields in ,~’ is dense in
~C. 0

Remark_. - As to the general case of infinite G we note that, G being
compact, G is (locally) compact iff G = G/G is (locally) compact in the
quotient topology. It is easy to show that the identical map from G with
the quotient topology to G with the strong topology induced from 
is continuous. Since we know that G is compact with respect to to the
latter and since both topologies are Hausdorff, G is compact with respect
to to the former (and thus G is compact) iff the identical map is open.
This would follow from an open mapping theorem [29, Theorem 5.29] if
we could prove that the G is locally compact and second countable with

Annales de l’Institut Henri Poincaré - Physique theorique
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the quotient topology. Clearly this idea can work only if the observables
have at most countably many sectors. We hope to return to this problem
in another paper.

We are now prepared to prove the absence of DHR sectors of the field
net. Let h = a, the set of all transportable localized morphisms of J~
with finite statistics. Using Proposition 2.3 we easily prove the following:

THEOREM 2.4. - The complete (local) field net ~" associated with a
purely bosonic rational theory has no DHR sectors with finite statistics.

Assuming the converse, the above proposition gives us a field
net ~ on a larger Hilbert space 7~ which obviously is also complete,
since the representation yr of on ~L is a subrepresentation of yr o yr.
Thus, by [22, Theorem 3.5] both field systems are equivalent, that is,
there is a unitary operator W : 1-[ -+ ~C such that

etc. In view of the decomposition

where the irreducible representations 03C003BE are mutually inequivalent, and

similarly for n o yr and jr can be unitarily equivalent only if G = G
and thus ~’ _ ,~’. 0

Remark. - After this paper was essentially completed I learned that this
result (with the same restriction to finite groups) has been obtained about
two years ago by R. Conti [8].
We have thus, in the purely bosonic case, reached our first goal. Before

we turn to the general situation we show that the construction of the

complete field net ’can be done in steps’, that is, one also obtains the

complete field net by applying the DR construction to an intermediate
field net and its DHR sectors, again assuming that the intermediate net is
local (this is not required for the complete field net).

2.2. Stepwise construction of the complete field net: Bose case

The following lemma is more or less obvious and is stated here since
it does not appear explicitly in [20,22].

Vol. 71, n° 4-1999.
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LEMMA 2.5. - Let h1, h2 be subsemigroups of d which are both
closed under direct sums, subobjects and conjugates and let i =

1, 2, be the associated normal field nets on the Hilbert spaces ?-Ci with
symmetry groups G i and Tci the representations of ,,4.. If h1 C h2 then
there is an isometry V : ~-C 1 -~ ?-~C2 such that

where E = V V *. Furthermore, closed normal subgroup N of
G2 such that E is the projection onto the subspace of N -invariant vectors
in 7~2 and GI, equivalent to G2/N, 

Proof - As usual, the field theory .~’2 is constructed by applying [22,
Corollary 6] to the quadruple (,,4., o2, ~, 77-o) and by defining to
be the von Neumann algebra on ~-C2 generated by the Hilbert spaces
Hp, p E 03942(O). Let E be the projection where B1 is the C*-
algebra generated by Hp, p E Trivially, B1 maps EH2 into itself.
B1 is stable under G2 as each of the Hilbert spaces Hp is. This implies
that G2 leaves E? L2 stable. Restricting and G2 to EH2 one obtains
the system (E7 C2, p E L1I 1 --~ EHpE) which satisfies a)
to g) of [22, Corollary 6.2]. With the exception of g) all of these are

trivially obtained as restrictions. Property g) follows by appealing to [ 19,
Lemma 2.4]. We can thus conclude from the uniqueness result of [22,
Corollary 6.2] that (E7-~ E L11 1 -+ is equivalent
to the system (7-~, p E L1) -+ Hp ) obtained from the quadruple
(,,4., 4 2 , E, no), that is, there is a unitary V from HI 1 to E ~C2 such that

= VU1 = U2V. Interpreting V as an
isometry mapping into ?-~C2 we have (2.3)-(2.5). The rest follows from
[22, Proposition 3.17]. 0

LEMMA 2.6. - Let the field net associated to a sub-
semigroup r closed under direct sums, subobjects and conjugates.
Then every localized endomorphism 7] E L1 extends to an endomor-

phism  of F commuting with the action of the gauge group. local-
ized in 0 the same holds for ~.
Remark. - This result is of interest only r. Otherwise we already

know that 7] extends to an inner endomorphism of JF by definition of the
field algebra.

Annales de l’Institut Henri Poincaré - Physique theorique
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Proof. - By the preceding result we know that the field net .~’ == .~r
is equivalent to a subnet of the complete field net ~’ _ We identify
F with this subnet. By construction every localized endomorphism ~ E
/B((9) of ,A. extends to an inner endomorphism of ~’, i.e., there is a

multiplet of isometries E ~((~), i = 1,..., d, satisfying =

1, = such that ~ o o r~ {A) where

Since ~ commutes with the action of G, it is easy to verify that ~
leaves .~’ == JF stable and thus restricts to an endomorphism of ~’ which
extends yy. This extension is not necessarily local, if F

is a fermionic operator localized spacelike to 0 and ~ is a fermionic

endomorphism. This defect is easily remedied by defining

Clearly, ~ has the desired localization properties and coincides with 17
on "A.. Transportability of  is automatic as W E (1],1]’) implies 7r(W) E

17’). Finally the statistical dimensions of ~ and  coincide as is seen
using, e.g., the arguments in [32]. 0

Remark. - The preceding lemmas do not depend on the restriction to
bosonic families 7~ of endomorphisms or on the finiteness of the gauge
group.

LEMMA 2.7. - Let ,~. be rational, let F be a semigroup 
endomorphisms and be the associated (incomplete) local field net.
Let 03A3 be the semigroup locali.zed endomorphisms Then the

associated DR-field net is a complete field net with respect to A.

Proof. - Let ~ be a localized endomorphism of A. By the preceding
lemma, there is an extension (typically reducible) to a localized endo-
morphism  of F. By Proposition 2.3, is a normal field net for A

By completeness of F with respect to endomorphisms of JF, ~ is imple-
mented by a Hilbert space in .~’ and there is a subspace of 7 C such that

as a representation of .~’. Restricting to and choosing an
irreducible subspace ~C~ we have jro o 1]. Thus .~’ is a complete
field net for .4. 0

VoL71,n°4-1999.
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THEOREM 2.8. - rational net and let 7"
be a bosonic subsemigroup of 0394 with the associated field net Then
the complete normal field net obtained from the, net and
its semigroup 03A3 of all localized endomorphisms is equivalent to the
complete normal field net F0394. In particular the group G obtained in
Lemma 2.3 is isomorphic to the group belonging to 

Proof. - By Lemmas 2.3 and 2.7, Fr, is a complete normal field net
for ,A. The same trivially holding for ~, we are done since two such
nets are isomorphic by [22, Theorem 3.5]. D

2.3. General case, including fermions

In the attempt to prove generalizations of Theorem 2.4 for theories
possessing fermionic sectors and of Theorem 2.8 for fermionic interme-
diate nets .~’ we are faced with the problem that it is not entirely obvious
what these generalizations should be. We would like to show the repre-
sentation theory of a complete normal field net, which is now assumed to
comprise Fermi fields, to be trivial in some sense. It is not clear a priori
that the methods used in the purely bosonic case will lead to more than, at
best, a partial solution. Yet we will adopt a conservative strategy and try
to adapt the DHR/DR theory to Z2-graded nets. The fermionic version of
Theorem 2.8 will vindicate this approach.

Clearly, the criterion ( 1.2) makes sense also for Z2-graded nets. Since
things are complicated by the spacelike anticommutativity of fermionic
operators, the assumption of twisted duality for ,~’ is, however, not
sufficient to deduce that representations satisfying ( 1.2) are equivalent
to (equivalence classes) of transportable endomorphisms of ,~’. To
make this clear, assume 7r satisfies ( 1.2), and let xCJ : 2014~ ~Cn be
such that xCJ A = VA E ~(0’). We would like to show that
p (A) - maps into itself if Oi D 0. Now, let x E

y E which implies xy = yx. We would like to apply p
on both sides and use p (y) = y to conclude that

As it stands, this argument does not work, since jr and thus p are defined
only on the quasilocal algebra .~’, but not on the operators V F_ E .~’t
which result from the twisting operation. Assume, for a moment, that the
representation p lifts to an endomorphism p of the on ?-~
generated by .~’ and the unitary V, such that p(V) = V or, alternatively,
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p(V) = 2014V. Using triviality of p in restriction to ~’(C~1 ) we then obtain
= .F(C~)~ which justifies the above argument. Now, in order

for consistent, we must have

i.e., p o ak = ak o p. In view of p (A) = we can now claim:

LEMMA 2.9. - There is a one-to-one correspondence between 
alence classes of :

(a) Representations which are, for every 0 E unitarily equi-
representation p on such that = i d and

p o ak = ak o p (where Aut S(?~o) 3 ~ = Ad V);
(b) Transportable localized endomorphisms commuting with ak.

Remark. - In (a) covariance of n with respect to ak is not enough.
We need the fact that, upon transferring the representation to the vacuum
Hilbert space via peA) = ak is implemented by the gra-
ding operator V.

Proo, f : - The direction (b) =* (a) is trivial. As to the converse, by
the above all that remains to prove is extendibility of p to p. By the
arguments in [46, p. 121] the C*-crossed product (covariance algebra)
,r 03B1k Z2 is simple such that the actions of F and Z2 on and H03C0
via TTo = id, V and vr, V,~ can be considered as faithful representations
of the crossed product. Thus there is an isomorphism between C*(.F, V)
and C~(7r(~), which maps F into 7r(F) and V into 0

DEFINITION 2.10. - DHR representations and transportable endo-
morphisms are called even iff they satisfy (a) and (b) of Lemma 2.9, re-
spectively.

We have thus singled out a class of representations which gives rise
to localized endomorphisms of the field algebra .~. But this class is still
too large in the sense that unitarily equivalent even representations need
not be inner equivalent. Let p be an even endomorphism of ~", localized
in 0. Then or = AdUV o p with U E F_(O) is even and equivalent
to p as a representation, but ( p , a ) n ,~’ = which precludes an
extension of the DHR analysis of permutation statistics etc. Furthermore,
p and or, although they are equivalent as representations of ~", restrict to
inequivalent endomorphisms of ~+. This observation leads us to confine
our attention to the following class of representations.
Vol. 71, n° 4-1999.
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DEFINITION 2.11. -An even DHR representation of .~ is called

bosonic if it restricts to a bosonic DHR representation (in the conven-
tional sense) of the even subnet .~’+.
A better understanding of this class of representations is gained by the

following lemma.

LEMMA 2.12. - There is a one-to-one correspondence between the
equivalence classes of bosonic even DHR representations of .~ ancl
bosonic DHR representations of .~’+; that is, equivalent bosonic even
DHR representations of .~ restrict to equivalent bosonic DHR represen-
tations of .~’+. Conversely, every bosonic DHR representation of .~+ ex-
tends uniquely to a bosonic even DHR representation of .~’.

Remark. - It will become clear in Theorem 2.14 that nothing is lost by
considering only representations which restrict to bosonic sectors of .~’+.

Proof - Clearly, the restriction of a bosonic even DHR representation
of .~’ to .~’+ is a bosonic DHR representation. Let be irreducible even
DHR morphisms of .~, localized in 0, and let T E (p, ~r). Twisted duality
implies T E i.e., T = T+ + T_ V where Tt E .~t. Now both sides
of

must commute with ak. The first two terms on the right hand side
obviously having this property, we obtain

For F = F* this reduces to = 0, which can be true only if
T+ = 0 or T_ = 0 since p is irreducible. The case T = T_ V is ruled
out by the requirement that the restrictions of p and or to .~’+ are both
bosonic. Thus we conclude that T E .~+ (C~) and the restrictions p+ and
o-+ are equivalent.
As to the converse, a bosonic DHR representation 7T+ of .~’+ gives

rise to a local 1-cocycle [42,43] in ~, i.e., a mapping z: ~l -+ 
satisfying the cocycle identity

and the locality condition z(b) E b This cocycle can be
used as in [43,44] to extend ~c+ to a representation ~ of .~’ which has
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all the desired properties. We omit the details. By this construction, the
extensions of equivalent representations are equivalent, an intertwiner
T E ( p , or) lifting to 77 ( T ) on ?-~ . 0

THEOREM 2.13. - complete normal field net associated
to a rational net of observables. Then ~’ does not possess non-trivial
bosonic even DHR representations with finite statistics. Equivalently,
there are no non-trivial bosonic DHR representations of the even
subalgebra F+ with finite statistics.

Proof. - Assume that ~’ has non-trivial bosonic even DHR representa-
tions ; by the lemma this is equivalent to the existence of bosonic sectors
of ~+. For the latter the conventional DHR analysis goes through and
gives rise to a semigroup 03A3 of endomorphisms of F+ with permutation
symmetry etc. These morphisms lift to .~ and we can apply the DR con-
struction to (F, 03A3). Since all elements of 03A3 are bosonic, no bosonization
in the sense of [22, (3.19)] is necessary. All this works irrespective of the
fact that .~’ is not a local net since the fermionic fields are mere spectators.
That the resulting field net again satisfies normal commutation relations
is more or less evident since the ’new’ fields are purely bosonic. Further-
more, Lemma 2.3 is still true when the ’observable net’ is Z2-graded.
Now the rest of the argument works just as in Theorem 2.4. 0

Remarks. - 1. In the fermionic case, the even subnet .~’+ has exactly
one fermionic sector. This sector is simple and its square is equivalent to
the identity, as follows from the fact that bosonic sectors of .~’+ do not
exist.

2. At this point one might be suspicious that there exist relevant DHR-
like representations of F which are not covered by this theorem. In
particular the restriction to bosonic even DHR representations was made
for reasons which may appear to be purely technical and physically
weakly motivated. The next theorem shows that this is not the case.

THEOREM 2.14. - Let be a rational net of observables, let h C a
be a subsemigroup of DHR morphisms containing not only bosonic
sectors and let be the incomplete Z2-graded field net associated with
(A, h). Then an application of the DR construction with respect to the
bosonic even morphisms 17 as described above, leads to a field
net F r, E which is equivalent to the complete normal field net 

Since ,~’ is assumed to contain fermions, every contains

unitaries which are odd under ak, giving rise to fermionic automorphisms
By composition with one of these, every irreducible endomorphism
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can be made bosonic. It is thus clear that it suffices to extend .~’

by Bose fields which implement these bosonic sectors (more precisely,
their extensions to ~"). The rest of the argument goes as in the preceding
subsection. 0

It is thus the existence of bosonic sectors of the even subnet which

indicates that a fermionic field net is not complete, and only such sectors
need to be considered when enlarging the field net in order to obtain the
complete field net.

3. DEGENERATE SECTORS IN 1 + 1 DIMENSIONS

3.1. General results on degenerate sectors

We begin with a few easy but crucial results on the set of degenerate
DHR sectors. Let .4(0) be a net of observables satisfying Haag
duality on the line or in 1 +1 dimensional Minkowski space. (For remarks
on the duality assumption cf. the end of the next subsection.) As shown
in [23], with each pair of localized endomorphisms there are associated
two a priori different statistics operators s(p, p ) * E 

DEFINITION 3.1 ([39]). - Two DHR sectors have trivial monodromy
iff the corresponding morphisms satisfy ~) = ~(~, p) * or, equiva-

1]) = 1 (this is independent of the choice within their

equivalence classes). A DHR sector is degenerate iff it has trivial mon-
odromy with all sectors (it suffices to consider the irreducible ones).

A convenient criterion for triviality of the monodromy of two mor-

phisms is given by the following
LEMMA 3.2. - Let irreducible localized endomorphisms.

Furthermore, let be equivalent to ~ localized to the spacelike left
and right o, f ’ p, respectively, with the (unique up to a constant) intertwiner
T E Then triviality of the monodromy 1]) is equivalent to

Proof. - Using the intertwiners TL/ R E the statistics opera-
tors are given by c ( p , ~ ) = p ) = The mon-

odromy operator is given by

Thus, = 1 is equivalent to p (TL TR ) - TL TR . The proof is
completed by the observation that TL TR equals T * up to a phase. D
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At first sight one might be tempted to erroneously conclude from this
lemma that there is no non-trivial braid statistics as follows: The above

charge transporting intertwiner T commutes with .4(0) which, appealing
to Haag duality, implies that it is contained in the algebra of the spacelike
complement 0’. On this algebra every morphism localized in 0 acts
trivially, so that the lemma implies permutation group statistics. The
mistake in this argument is, of course, that T is contained in the weakly
closed algebra R(O’) = A(O’)" = .4(0)’ but not necessarily in the C*-
subalgebra A(O’) of the quasilocal algebra ,A. It is only the latter on
which p is known to act trivially.

LEMMA 3.3. - A reducible DHR representation Jr is degenerate iff all
irreducible subrepresentations are degenerate.

Proof. - Let p be equivalent to yr and localized in 0, decomposing
into irreducibles according to p = 03A3i~IVi 03C1i(.) Vi* . That is, the 03C1i are
localized in 0 and Vi E .4(0) with and 03A3i ViVi* = 1. By
Lemma 3.2, jr is degenerate iff /)(r) = T for every unitary intertwiner
between (irreducible) morphisms ~, or’ which are localized in the two
different connected components of 0’. Now, p(r) ~
equals T iff ’all matrix elements are equal’, i.e., V* T Vk = 

E I . But since T E ,A(C~)’ the left hand side equals 
which leads to the necessary and sufficient condition = T V j E 7,
which in turn is equivalent to all pi being degenerate. 0

LEMMA 3.4. - Let a D be the set of all degenerate morphisms with
finite statistical dimension. Then permutation symmetric,
specially directed semigroup with subobjects and direct sums.

Proof - Let pl , p2 be degenerate, i.e., c~ ) = 1 Due to the
identities [24]

we have

Thus ZBD is closed under composition. By the preceding lemma the
direct sum of degenerate morphisms is degenerate, and every irreducible
morphism contained in a degenerate one is again degenerate. That
Vol. 71, n° 4-1999.



378 M. MUGER

(dD, ~) is specially directed in the sense of [20, Section 5] follows
as in [22, Lemma 3.7] from the fact that the degenerate sectors have
permutation group statistics. D

3.2. Proof of a conjecture by Rehren

In Section 2 we proved that the DR field net corresponding to a rational
theory A in  2 + 1 dimensions does not have DHR sectors (with finite
statistics). The dimensionality of spacetime entered in the arguments only
insofar as it implies permutation group statistics. By the results of the
preceding subsection it is now clear that we can proceed as in Section 2,
restricting ourselves to the degenerate sectors. More concretely, we apply
the spatial version [20, Corollary 6.2] of the construction of the crossed
product to the quasilocal observable algebra and the semigroup o D of
degenerate sectors with finite statistics. As the proofs in [22, Section 3]
were given for ~2+1 spacetime dimensions it seems advisable to

reconsider them in order to be on the safe side, in particular as far as
(twisted) duality for the field net is concerned.

PROPOSITION 3.5. - Let JF be the spatial crossed product [20,
Corollary 6.2] by (L1, ~) where 0394 is as in Lemma 3.4, and let 
be defined as in the proof of [22, Theorem 3.5]. Then 
normal field system with gauge symmetry and satisfies twisted duality.

Proof - The proof of existence in [22, Theorem 3.5] holds unchanged
as it relies only on algebraic arguments independent of the spacetime
dimension. The same holds for [22, Theorem 3.6] with the possible
exception of the argument leading to twisted duality on p. 73. The latter
boils down algebraically to the identity

Finally, the proof of this formula in [22, Lemma 3.8] is easily verified to
be correct in 1 + 1 dimensions, too, provided ,,4. ~ satisfies duality. In
our case this is true by assumption. D

1. The reader who feels uneasy with these few remarks is

encouraged to study the proofs of [22, Theorems 3.5, 3.6] himself, for it
would make no sense to reproduce them here.

2. It may be confusing that in theories with group symmetry satisfying
the split property for wedges (SPW), Haag duality for a field net JF and
the G-fixpoint net ,A (in the vacuum sector) are in fact incompatible [36].
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The SPW has been verified for massive free scalar and Dirac fields and is

probably true in all reasonable massive theories. On the other hand, a net
of observables which satisfies Haag duality and the SPW does not admit
DHR sectors anyway [37]. In view of this result, we implicitly assume in
this section that the observables do not satisfy the SPW. The point is that
one must be careful to distinguish between conformally covariant or at
least massless theories, with which we are concerned here, and massive
theories since the scenarios are quite different.

THEOREM 3.6. - Let aD be the set of all degenerate morphisms
with finite statistics, corresponding to only finitely many sectors. If a D
is purely bosonic, the local field net .~ constructed from ,~ and a D
does not have degenerate sectors with finite statistics. If d D contains
fermionic sectors, the normal field net ~’ does not have degenerate
bosonic even sectors with finite statistics. Equivalently, the even subnet
has no degenerate bosonic sectors with finite statistics.

Proof. - The proofs of Theorems 2.4, 2.13 are valid also in the 2-
dimensional situation since neither the argument of Lemma 2.3 on
the extendibility of local symmetries nor the uniqueness result of [22,
Theorem 3.5] require any modification. D

This result, which was conjectured by Rehren in [39], is quite
interesting and potentially useful for the analysis of superselection
structure in 1 -I- 1 dimensions. It seems worthwhile to restate it in the

following form.

COROLLARY 3.7. - Every degenerate quantum field theory in 1 + 1

dimensions (in the sense that there are degenerate sectors, which in the
rational case is equivalent to non-invertibility of S) arises as the fzxpoint
theory of a non-degenerate theory under the action of a compact group
of inner symmetries. That is, all degenerate theories are orbifold theories
in the sense of [9] .

Now we indicate how the preceding arguments have to be changed
in the case of conformal theories. We first remark that everything we
have said about theories in 1 ~-- 1 dimension remains true for theories
on the line. In the rest of this subsection we consider chiral theories
on the circle [24], which are defined by associating a von Neumann
algebra A(I) to each interval I which is not dense in S1. The ’spacetime’
symmetry is given by the Mobius group PSU( 1, 1 ) ~ PSL(2, II~) . The set
of intervals not being directed, the quasilocal algebra must be replaced by
Vol. 71, nO 4-1999.
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the universal algebra of [24] which has a non-trivial center due to the non-
simply connectedness of S1. Triviality of the center of the C*-algebra
,,4 was, however, an essential requirement for the Doplicher-Roberts
analysis, in particular [ 17] . One may try to eliminate this condition,
but we prefer another approach. We begin by restricting the theory to
the punctured circle, i.e., the line, for which one has the conventional

quasilocal algebra ,A which is simple. The following result shows that
the restriction of generality which this step seems to imply since Haag
duality on M is equivalent to strong additivity, which does not hold for all
theories is only apparent.

PROPOSITION 3.8. - Given a chiral conformal local-

ized endomorphisms of the algebra (corresponding to the punctured
circle) and their statistics can be defined without assuming duality on the
real line. In the case without fermionic degenerate sectors the DR con-
struction can be applied to the (Mobius covariant) degenerate sectors
with finite statistics and yields a conformal precosheaf F on S 1 which
is Mobius covariant with positive energy and does not have degenerate
sectors statistics).

Proof. - Let ,A be the quasilocal algebra obtained after removing a
point at infinity. By the results of [24, Section 5] the semigroup a C
End A of localized endomorphisms with braiding can be defined without
assuming duality on the line. We can thus apply the DR construction to ,,4
and a D and obtain a field net R D 1 t-~ ~"(7), but we clearly cannot hope
to prove Haag duality Before we can prove duality on S1 (as it holds
for the observables) we must define the local algebras for intervals which
contain the point at infinity. Due the conformal spin-statistics theorem
[27] a covariant bosonic degenerate sector, having statistics phase 1, is
in fact covariant under the uncovered Mobius group P~L(2,R), and
consequentially also the extended theory ,~ is Mobius covariant with
positive energy. This fact can be used to define the missing local algebras
and to obtain a conformal precosheaf on Then the abstract results of

[4,26] apply and yield Haag duality on The argument to the effect that
the extended theory is non-degenerate works as above. D

3.3. Relating the superselection structures of and .~’

In the preceding subsection we have seen that whenever there are
degenerate sectors one can construct an extended theory which is non-
degenerate. The larger theory has a group symmetry such that the
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original theory is reobtained by retaining only the invariant operators.
Equivalently, all degenerate theories are orbifold theories. By this result,
a general analysis of the superselection structure in 1 + 1 dimensions

may begin by considering the non-degenerate case. It remains, however,
to clarify the relation between the superselection structures of the

degenerate theory and the extended theory. This will not be attempted
here, but we will provide some results going in this direction.

LEMMA 3.9. - All irreducible morphisms contained in the product
of a degenerate morphism and a non-degenerate morphism are non-
degenerate.

Proof - The fact that the composition of degenerate morphisms yields
a sum of degenerate morphisms can be expressed in terms of the fusion
coefficients N ~ as

i and j degenerate, k non-degenerate =} ~ = 0. (3.4)

By Frobenius reciprocity Nk. = NJik this implies

i and j degenerate, k non-degenerate =} N k = 0. (3.5)

(We have used the fact that the conjugate p is degenerate iff p is

degenerate. ) D

Remark. - This simple fact may be interpreted by saying that the set
of non-degenerate sectors is acted upon by the set of degenerate ones,
i.e., a group dual G. If G is abelian, K = G is itself an abelian group
and we are in the situation studied, e.g., in [25]. The result of the

preceding subsection thus constitutes a mathematically rigorous though
rather abstract solution of the field identification problem [45], cf. also
the remarks in the concluding section.

Being able to apply the DR construction also in 1 + 1 dimensions

provided we consider only semigroups of degenerate endomorphisms,
we are led to reconsider Lemma 2.6 concerning the extension of

localized endomorphisms of the observable algebra to the field net. The
construction given in Section 2 cannot be used for the extension of non-
degenerate morphisms ~ since we do not have a complete field net at
our disposal. There are at least two approaches to the problem which
do not rely on the existence of a complete field net. The first one [33,
Proposition 3.9] uses the inclusion theory of von Neumann factors which,
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however, we want to avoid in this work since a proof of factoriality
of the local algebras exists only for conformally covariant QFTs but
not for general theories. Another prescription was given by Rehren
[40] . The claim of uniqueness made there has, however, to made more
precise. Furthermore, it is not completely trivial to establish the existence
part. Fortunately, both of these questions can be clarified in a relatively
straightforward manner by generalizing results by Doplicher and Roberts.
In [20, Section 8] they considered a similar extension problem, namely
the extension of automorphisms of ,~4 to automorphisms of .~’ commuting
with the gauge group. The application that these authors had in mind was
the extension of spacetime symmetries to the field net [22, Section 6]
under the provision that the endomorphisms implemented by the fields
are covariant. For a morphism p E a the inner endomorphism of .~’ which
extends p will also be denoted by p .
LEMMA 3.10. - Let ,t3 be the crossed product [20] of the C*-algebra

,,4. with center Cl by the permutation symmetric, specially directed
semigroup ( d , ~ ) of endomorphisms and let G be the corresponding
gauge group. Let I-’ be a semigroup of unital endomorphisms of ,A. Then
there is a one-to-one correspondence between actions of h on ,t3 by unital
endomorphisms 1] which extend r~ E h and commute elementwise with G
and mappings (p, r~) ~ L1 x h to unitaries of satisfying

for all r~, r~’ E 7~ p, p’ E L1. The correspondence is determined by

Furthermore, if a unitary S E (~, ~’), ~, ~’ E 1-’ satisfies

then S E (ry, ~).

Proof. - An inspection of the proofs of [20, Theorem 8.2, Corol-

lary 8.3], where groups of automorphisms were considered, makes plain
that they are valid also for the case of semigroups of true endomor-
phisms and we refrain from repeating them. Besides ~ not necessarily
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being onto, the only change occurred in (3.6) which replaces the property
Wp E ( p , which does not make sense for a proper endomorphism
~8. Given ~ and setting

where = 1,..., d, is a basis of Hp, it is clear that Wp satisfies (3.6).
The other properties of the W’s are proved as in [20]. As to the converse
direction, we are done provided we can show that [20, Theorem 8.1 ]
concerning the extension of ~ to the cross product of A by a single
endomorphism p generalizes to the case of ~ an endomorphism. We give
only that part of the argument which differs from the one in [20].

Therefore let ,A and p satisfy the assumptions of [20, Theorem 8.1 ],
let ~ be an inj ective unital endomorphism of A and let W E (03C1~,
satisfy [20, (8.1 ), (8.2)]. As in [20, Theorem 8.1 ] we consider the

monomorphisms of and C~d into defined by 
r~ (A) ®,~ 1 and ç’ : 1/1 t-~ W ®~, 1/r~, ~ E H, respectively. The calculation
leading to 03B6’(03C8)03C0’(A) = 11:’ o 03C1(A)03B6’(03C8) is correct also for ~ a true
endomorphism. Furthermore, with ~1 = ç’ we have ~i(0~(~)) E
~(~4) thanks to the conditions on Wand the fact that is generated
by the elements  and 8, see [ 18]. Thus 0 Ç{ is well defined and
equals ~1 o cr, where or is the canonical endomorphism of As in

[20] we conclude that ç’ o Thus by the universality of
,A ®,~ 0 d there is an isomorphism between A ®,~ 0 d and the subalgebra
generated by and ~’ ( ~ ) . Equivalently, there is an endomorphism
y of ,A ®,~ C~d such that

Now the rest of the proof goes exactly as in [20, Theorem 8.1 ], i.e., after
factoring out the ideal J03C6 we obtain an endomorphism  of the crossed
product S = which commutes with the action of the gauge

group G.

Now let S E (1], 1]’) satisfy (3.11). Then for 1/1 E 7-~ we have

Since ~, ~’ are determined by their action on the spaces HP this implies
a
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We are now ready to consider the wanted extensions of localized
endomorphisms. Motivated by Lemma 2.6 where we had (in the case
of bosonic 03C803C1)

we appeal to the preceding lemma with Wp ( r~ ) = ~(/), 
PROPOSITION 3.11. - Let be the field net obtained via

the Doplicher-Roberts construction from the algebra ,,4 of observables
and a semigroup of degenerate morphisms, closed under direct sums,
subobjects and conjugates. Then every localized (unital) endomorphism
~ of A extends to a locali,zed endomorphism  of F commuting with the
action of the gauge group. If ~ is localized in (9 the same holds for .
Every S E (yy, o-) lifts to S E (r~, o-).

Proof. - We set W03C1(~) = ~) and verify the requirements (3.6)-
(3.9). Obviously (3.6) is fulfilled by definition of the statistics operator.
(3.8) and (3.9) follow from (3.1 ) and (3.2), respectively. Finally, (3.7) is
just ~(//, r~ ) T = r~ ( T ) ~ ( p , r~ ) which holds for T E (p , p’) . The statement
on the localizations follows from the fact that s (p, yy) = 1 if p , r~ are
spacelike localized, since p is degenerate. Finally, with S E (r~, cr) one
has c ( p , = p (S) ~ ( p , or) such that the condition (3.11 ) is satisfied.

0

The above result is unaffected if the field net is
fermionic. In this case the identitity ’ií o ak - ak o ~ where kEG
is the grading element (which distinguishes bosonic and fermionic

fields) shows that ~ leaves the statistics of fields invariant. In fact, this
observation provided the motivation for introducing the notion of even
DHR sectors in Section 2.3.

2. As already remarked, an alternative proof can be given using
[33, Proposition 3.9]. In this approach the localization of the extended
morphism in a double cone follows since the morphism p~ appearing there
is the restriction to of the canonical endomorphism y from 
into for some (9 E J’C. But in the situation at hand we have

thus p is degenerate.
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3. In principle, the construction of the field algebra works for every
family of sectors with permutation group statistics which is closed under
direct sums and subobjects. As emphasized by Rehren [40], the extension
~ is localized in a double cone only if the charged fields in .~’ correspond
to degenerate sectors, for otherwise e ( p , r~) == 1 holds only if p is

localized to the right of ~ (or left, if ~(~, p)* is used).

In the special case where 17 is an automorphism, the extension ~
can be defined via [20, Theorem 8.2], using as above. Clearly,
~ is irreducible since it is an automorphism. In general, however, the
extension ~ will not be irreducible. Rehren’s description [40] of the
relative commutant can also be proved rigorously by adapting earlier
results [ 19, Lemma 5 .1 ] .

LEMMA 3.12. - The relative mJ  
closed linear space by sets of the form ( p r~ , ~)77~, p E a .

Proof. - By twisted duality, an operator is contained in

where 0 is the localization region of 17. Due to .~’ = the

selfintertwiners of  in F are bosonic. Obviously, (03C1~, 17)1/1, 1/1 E Hp is in
r~ (,A.)’. Now, just as yy, so can be extended to an endomorphism p r~

of by the proposition. Furthermore, T E ( p r~ , 17) lifts to an intertwiner
between and ií. Thus ( p r~, r~ ) ~ p is in ,~’ D ~(~)~. As to the converse,
~ (~’ n ,~’ is globally stable under the action of G since ~ commutes
with G. is generated linearly by its irreducible tensors
under G. If Tl , ... , Td is such a tensor from .~’ n ~ (~’, then there is
a multiplet ~i , i = 1, ... , d, of isometries in .~’ and transforming in
the same way, since the field algebra has full Hilbert G-spectrum. With
X = Ti 1/1;* E we have Ti = and we must prove X E (03C1~,
Now TiF = F T for F implies

Multiplying the second identity with 1/1;* and summing over i we obtain
= 7?(F)X, F since ~i = 1 by construction of the

field algebra. Thus X E ( p r~ , 1]). D

COROLLARY 3.13. -  is irreducible iff the endomorphism 
does not contain a morphism p E d.

Proof. - By the lemma, the existence of a morphism p E a with
(r~p, 1]) 7~ {OJ is necessary and sufficient for the non-triviality of ~" n
~ (,~’. But by Frobenius reciprocity, r~p ~ r~ is equivalent to 1]ij  p. 0

Vol. 71, n° 4-1999.



386 M. MUGER

Remark. - The irreducible endomorphisms obtained by decomposing
an extension ~ are even, provided we use bosonic isometric intertwiners.
This can always be done as the relative commutant is contained in .~’+ by
Lemma 3.12.

In the above considerations we had to assume, for the technical
reasons explained in Section 2, that there are only finitely many
degenerate sectors. There was, however, no restriction on the number
of non-degenerate sectors. We conclude with an important observation
concerning rational theories.

PROPOSITION 3.14. - Let have finitely many DHR sectors 
erate and non-degenerate) with finite statistics. Then the extended theory
.~’ has only , finitely many sectors with , finite statistics (all of which are
non-degenerate by Theorem 3.6).

Proof - As a consequence of Proposition 3.11 we have yyi 9)~2 ~
r~ { E9 since the intertwiners Vi E (~,~1 ? r~2), i = 1, 2, are in

(iji, ~J1 1 E9 ~2). Thus every irreducible .~’-sector fJ which is contained in
the extension  of an A-sector ~ is already contained in the extension
of an irreducible 1]’ . As observed in [40] the statistical dimensions
of ri, ~ satisfy d~ = (This follows from the existence of a left

inverse which extends and the fact 1]) == ~(~, ~ ) again
by Proposition 3.11.) Thus ~ decomposes into finitely many irreducible
F-sectors. Since by assumption the number of irreducible ,,4.-sectors is
finite we obtain only finitely many irreducible F-sectors by inducing
from ~4. The claim follows provided we can show that every irreducible
fJ E is contained in some ~. This is true by the observation after [3,
Theorem 3.21 ], but we prefer to give a direct argument.

For fJ E also ~8g = ag o /? o g E G, is localized in (9 and

transportability is easy. Let now {Vg, g E G} be a multiplet of isometries
in satisfying Vg*Vh = 03A3g VgVg* =1 and ah(Vg) = Such
a multiplet exists since the action of G on by construction has full
Hilbert spectrum. Then

commutes with the action of G and thus restricts to a transportable
endomorphism of which is localized in 0. Now ,8 can be considered
as an extension to ~", commuting with G, of ~8 ~ ,,4 and by Lemma
3.10 there exists a family {~(/3 E d } satisfying (3.6)-(3.8) and
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the boundary condition = 1 for p E 4A(C~’). Since p is

degenerate the unique solution to these equations is

This implies ~8 ~ === ~8 and in view of ,B - ~8, ,8 is contained in the
extension to ~’ of the .4-sector ~3 ~ 0

Remark. - The connection with the argument in [3, Theorem 3.21 ] is
provided by the observation that the expression y = I:g Vg ~g(’) Vg built
with the above V’s is nothing but the extension [33, Corollary 3.3] to .~’
of a canonical endomorphism from into ~4(0). Furthermore, ~8 ~ ,,4.
coincides with the canonical restriction :== y o I A of [3 3, 3] . Relying
on our version of the induction procedure (Lemma 3.10), the above proof
is clearly independent of the inclusion theory of von Neumann factors
used in [33,3] and thus more in the spirit of DHRIDR theory to which
the assumption of local factoriality is alien. (The main application of
our considerations being to conformal theories where local factoriality
is automatic, this added generality admittedly is not very important.)

4. A SUFFICIENT CRITERION FOR NON-DEGENERACY

The results of this section depend on an additional axiom, the split
property.

DEFINITION 4.1. - An inclusion A C B ofvon Neumann algebras is
split [ 16] if there exists a type I factor N such that A C A net

of algebras satisfies the ’split property for double cones’ if the inclusion
C A(O2) is split whenever Oi (c O2, i. e., the closure of O1 is

contained in the interior 

The importance of this property derives from the fact [1,16] that it is
equivalent to the following formulation: For each pair of double cones
Oi 1 C O2 the algebra v ,,4 ( C~2 )’ is unitarily equivalent to the tensor
product ~t(0i) 0 ,A.(C~2)’. It is believed that this form of the split property
is satisfied in all reasonable quantum field theories.

In the rest of this section we will give a sufficient criterion for the
absence of degenerate sectors. The following result is independent of the
number of spacetime dimensions.

PROPOSITION 4.2. - Let .4(0) be a net of observables fulfilling
Haag duality and the split property for double cones. Let p be an
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endomorphism of the quasilocal algebra ,,4. which is localized in 0
and acts identically on the relative commutant ,,4.(C7) n ,,4(C~)’ whenever
ð 3&#x3E; O. Then p is an inner endomorphism of ,~L, i. e., a direct sum of
eopies of the identity morphism.

Proof - Choose double cones C~1, O2 fulfilling 0 C 01 C O2 C ð.
Thanks to the split property there exist type I factors Ml , M2 such that

We first show p ( Ml ) C Mi. If A E Ml we have /)(A) E ~(C?2). Due to
C Ml and the premises, p acts trivially on M~ n ~t((9). Thus

The last identity follows from Mi, M2 being type I factors. Thus p
restricts to an endomorphism of Mi. Now every endomorphism of a type I
factor is inner [31, Corollary 3.8], i.e., there is a (possibly infinite) family
of isometries Vi E E I , with Vi*Vj = ViVi* = 1 such that

(The sums over I are understood in the strong sense.) Now by (4.3) and
the premises, ~ ~ ,A.(C7)’ n Ml = id, implying

Therefore p = 1] on and p = 1] = i d on ~4(0~). In order to prove
p = 1] on all of ,,4 it suffices to show peA) = r~ (A) VA E ,A(C~2) where
we may, of course, assume O2 ::) For the moment we take for granted
that

Having just proved and remarking that ~4(C?2) A
,4(0/ = i d is true by assumption, we conclude by local normality
that ~4(C?2) = In order to prove (4.4), apply the split property to the
inclusion (9i. Under the split isomorphism we have
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Thus .4(0/ ~ ~4(0)’ Q9 Z3(~o) and ,,4.(C~2) n ~(0)’ ~ ~(0)’ Q9 ~(~2).
from which (4.4) follows at once. D

Remark. - The first part of the proof is essentially identical to [ 15,
Proposition 2.3]. There it was stated only for automorphisms but the
possibility of the above extension was remarked. In [ 15] the C*-version
of the time-slice axiom was used to conclude p = r~ on .4. We have

dispensed with this assumption by requiring triviality of p on the relative
commutant ~(0) n .4(0/ for all (9 ~) 0. For our purposes this will be
sufficient.

We are now in a position to state our criterion for the absence of
degenerate sectors in 1 + 1 dimensions:

COROLLARY 4.3. - Assume in addition to the conditions of the
proposition that , for each pair (9 E (9 the algebra .4(0) n 
generated by the charge transporters from OL to C7R (and vice 
Here C~R are the connected components of C7 see the figure
below. Then there are no degenerate sectors. More precisely, every

degenerate endomorphism is inner in the above sense.

Proof - Due to Lemma 3.2, a degenerate morphism localized in 0
acts trivially on the charge transporters between C~L to As these are

weakly dense in ,,4.(C~) by assumption and due to local normality,
the morphism acts trivially on the relative commutant. This is true for
every (9 ~) 0. The statement now follows from Proposition 4.2. D

Remarks. - 1. In [37] we show that a much further-reaching result can
be proved if one requires the split property not only for double cones but
also for wedge regions. This property can, however, hold only in massive
quantum field theories.

2. Admittedly the condition on the relative commutant seems difficult
to verify. One may perhaps hope that something can be said in the case
of rational theories, which have finitely many sectors.

3. It is likely that the condition on the relative commutant made in the
corollary is also necessary. The argument goes as follows. If there are
degenerate sectors then there is a field net JF with group symmetry such
that the net ,A is the restriction of the invariant subnet to the vacuum

sector, cf. the next section. Assuming that the field net also satisfies
the split property, one can define localized implementers of the gauge
group as in [6]. In particular, for every inclusion A = (0 (c (9) and every
x E U (G)" n U (G)’ one obtains an operator E .4(0) n .4(0)’. We
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Fig. 1. Relative commutant of double cones.

see no reason why should be contained in the algebra generated
by and the charge transporters.

5. SUMMARY AND OUTLOOK

In this work we have proved two intuitively reasonable properties of
the Doplicher-Roberts construction: The (essentially unique) complete
field net which describes all DHR sectors has itself no localized sectors,
and also it can be obtained from an intermediate, thus incomplete, field
net by an application of the DR construction. Unfortunately, we have
been able give a proof only under the quite restrictive assumption that
there are only finitely many sectors, which is equivalent to finiteness
of the gauge group G. We emphasize that the problem consists in

proving compactness of G in Proposition 2.3. If this proposition can be
generalized the rest of the arguments goes through unchanged. In any
case, the complete (with respect to the DHR sectors) field net may still
have non-trivial representations with the weaker Buchholz-Fredenhagen
localization property.

In a sense, the situation in low dimensions is quite similar. The

degenerate sectors may be considered ’better localized’ than generic
DHR sectors insofar as they arise from local fields, in contrast to what
is to be expected in the general case. Non-local charged fields played a
role, e.g., in [36] where, however, the underlying quantum symmetry was
spontaneously broken. As we intend to show elsewhere, the symmetry
breakdown encountered there is generic in massive models. As was
mentioned above, the peculiar nature of the superselection structure of
massive models manifests itself also in an analysis which starts from
the observables [37]. For this reason, the considerations in Sections 3
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and 4 were aimed primarily at conformally covariant theories in 1 + 1

dimensions.

Turning to a brief discussion of open problems, the most obvious one
is relaxing the rationality assumption on the superselection structure of
the observable net in the proof of Proposition 2.3, which is the basis of
most of our results. In trying so it is not inconceivable that one may find
counterexamples, but the author is convinced that this cannot happen for
theories with countably many sectors.
The hope expressed in Remark 2 after Corollary 4.3 has already been

vindicated by reducing the relative commutant property needed there to
a simple numerical identity which can be proved for large classes of
models, cf. [3 8] .

In Section 3.2 and Proposition 3.14 we have proven that every rational
QFT in 1 + 1 dimensions can be extended to a rational non-degenerate
one (on a bigger Hilbert space). To the new theory ~" Rehren’s analysis
[39] applies and proves that the category of DHR sectors is a modular
category in the sense of Turaev. Since the identification of the degenerate
sectors with a group dual [ 17-20] has a categorical analogue [21 ] it is

very natural to conjecture that there exists an abstract version of this
construction for braided C*-tensor categories. We conclude this paper
with the following

CONJECTURE 5.1. - Given a braided C*-tensor category with dual

objects, direct sums and subobjects (thus ribbon category
by [34, Section 4]) one can construct a non-degenerate category of the
same type using methods from [21]. If the original category is rational,
the same is true for the new one which thus is 

Work on this conjecture is in progress.
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