
ANNALES DE L’I. H. P., SECTION A

M. NAKAMURA

T. OZAWA
The Cauchy problem for nonlinear wave equations
in the homogeneous Sobolev space
Annales de l’I. H. P., section A, tome 71, no 2 (1999), p. 199-215
<http://www.numdam.org/item?id=AIHPA_1999__71_2_199_0>

© Gauthier-Villars, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique
l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPA_1999__71_2_199_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


199

The Cauchy problem for nonlinear wave
equations in the homogeneous Sobolev space

M. NAKAMURA1, T. OZAWA
Department of Mathematics, Hokkaido University, Sapporo 060, Japan

Article received on 16 September 1997

Ann. Inst. Henri Poincare,

B~L71,n°2,1999, Physique theorique

ABSTRACT. - We consider the Cauchy problem for nonlinear wave
equations in the homogeneous Sobolev space where n  2
and 0 ~ ~  n/2 using the generalized Strichartz estimates given by
J. Ginibre and G. Velo ( 1995). @ Elsevier, Paris
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RESUME. - Nous considerons Ie probleme de Cauchy pour des
equations d’ ondes non lineaires dans l’espace de Sobolev homogene

2 et 0  ~c  ~/2, utilisant les estimees de Strichartz
generalisees par J. Ginibre et G. Velo ( 1995). @ Elsevier, Paris

1. INTRODUCTION

We study the Cauchy problem for nonlinear wave equations of the form

I JSPS fellow.
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in the homogeneous Sobolev space with n  2 and 0    n /2,
where A denotes the Laplacian in Rn and the typical form of f (u ) is the
single power interaction with À E Rand 1  p  oo . As usually
done, with data M(0) = ~, we regard ( 1.1 ) as the following
integral equation.

where = cos t~, K(t) = 
There are many papers on the Cauchy problem for ( 1.1 ) and large time

behavior of global solutions, see [2,4,5,7-15,17-23]. Recently, in [15]
H. Lindblad and C.D. Sogge studied (1.1) in the Sobolev space with
minimal regularity assumptions on the data. One of the key ingredients
in [ISJ is generalized Strichartz estimates on the free wave equation.
Those estimates are described exclusively in terms of the homogeneous
Sobolev space, and accordingly, the associated estimates on the nonlinear
term are required to take a form in the framework of the homogeneous
Sobolev spaces.

Unfortunately, however, when it comes to the Leibniz rule for frac-
tional derivatives, it sometimes happens that additional regularity as-

sumptions on f would be necessary more than one needed.
Meanwhile, we have recently found that the problem could be

efficiently dealt in the framework of the homogeneous Besov spaces [ 16],
see also [3,7]. Moreover, the Strichartz estimate are now available in the
fully extended version, especially in the homogeneous Besov setting [10].
The purpose of this paper is to reexamine the results of [ 15] on the

Cauchy problem for ( 1.1 ) in the homogeneous Sobolev spaces by means
of a number of sharp estimates described in terms of the homogeneous
Besov spaces. As a result of the homogeneous Besov technique, we have
refined and generalized the previous results in some directions. To state
our theorem, we make a series of definitions.

DEFINITION 1.1.-fbr ~ ~ -1 and p ~ 1, we class of
functions G(s, C(C, C) asfollows. We say f E G(s, p) satisfies
either of the following conditions:

1. For some nonnegative integers a, b with p = a + b,

where CI and C2 are constants and C1 is 0.

Annales de Henri Poincaré - Physique ~ theorique 
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where f (0) = 0 may be disregarded if s &#x3E; 0. Moreover, f satisfies
the estimates for all z, 03C9 ~ C

where [s] denotes the largest integer less than or equal to s, but
[0] _ -1. We call s the first index of G(s, p ) .

DEFINITION 1.2. - Let ~ &#x3E; 0. Let D£ be

1/(n - 1)) denotes an open ball with radius e and
center at (1/2, 1/2 - 1/(n - 1)). Let  n/2. Let 

. DEFINITION 1.3. - For any we define an
interval 1 = [a, b] Q R with length I a - &#x3E; 0 a function space ’

R) with metric d by

In ourtheorem below, denotes 1Il/1; 
03B1 denotes the ’ lower root of the quadratic equation

71, n° 2-1999.
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It follows that min(1, a) = 1 for n  6 and (n + 1)/(2n - 2)  a  1 for
n ~ 7. Finally, is given by

It follows that ,B(a) = a, ,B((n - 4)/2) = 1 and that is a strictly
increasing function in /a,.

THEOREM 1.1. - Let n &#x3E; 2, 0 ~  n/2 and 2~(n - 2/a,) ~ p - 1.
Let n, f, p satisfy any of the following conditions:

(Al) n = 2, f E G(0, p) and

(A2) n &#x3E; 3, 0 ~ ~ ~ min(l, a ), f E G(O, p) and

Let e &#x3E; 0 be sufficiently small. Then for any data (~, 1/1) E x 

there exists a unique local solution o,f (1.2) in X£(I, R) with |I| &#x3E; 0
sufficiently small and R sufficiently large. Moreover if p -1 = 4/ (n - 2i,c)
and 11 (03C6, 1/1) II  is sufficiently small, there exists a unique global solution
in X£ ((-oo, (0), R) with R sufficiently small.
On the solutions given by above, we have the following results:
(1) (u, atu) is continuous in time with respect to the norm H~‘ x 
(2) The solution u depends on the data (~, 1/1) continuously. Namely let

v be the solution of ( 1.2) with data 1/10) such that II (03C6-03C60, 1/1 -1/10) ~
tends to .zero, then d(u, v) --+ 0 for p ~ J, v -+ u in D’(Rn+1 ) for p E J,
where D’ (Rn+1 ) denotes the space of distribution and J denotes an

Annales de l’Institut Henri Poincare - Physique theorique
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interval defined only for (A3) and (A4) as

for (A3),

(A4).
(3) Lc&#x3E;t p - 1 = 4/(n - 2~,c). There exists a pair (~+, 0/+) in x 

that

(4) Lot p - 1 = 4/ (n - 2/~). Let y &#x3E; 0 be sufficiently small. Then for
data (03C6_, 0/-) satisfies ~(03C6_, 1/1-)11/1  Y, there exists a , global

x such that

Moreover J, then the map (~_,1/r~_) r-+ (~+. 1/r~+) is continuous in
x 

Remark 1. - By dilation argument, it is natural to call p = 1 +

4/ (n - 2/1) the critical exponent for the well-posedness of the Cauchy
problem for (1.2) in x H~-l. On the other hand, H. Lindblad and
C.D. Sogge [ 14,15] showed the ill-posedness in the following three cases:

(a) p &#x3E; 1 + 4/ (n + 1 - 4/1) with n = 2 and 1 /4  /1 ~ 1 /2;
(b) p &#x3E; 1 ~- 4/ (n + I -4/1) with ~ 3 and (n - 3) / (2n - 2)  /1 ~

1 /2;
(c) 

Remark 2. - We use the homogeneous Besov space for the linear and
nonlinear estimates for ( 1.2), by which it becomes easy to deal with the
fractional derivative of nonlinear term (see Propositions 2.1 and 2.2).
For the definition of the homogeneous Besov space and its properties,
we refer to [ 1, 8,10,24] . Our results for the local and global solvability
of ( 1. 2) in the homogeneous Sobolev space with 3 / 2  /1  and

the corresponding results on scattering are new.

Vol. 71, n° 2-1999.
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2. ESTIMATES FOR NONLINEAR 0 TERMS

PROPOSITION 2.1. - Let s &#x3E; 0, 1  p and ,f’ E p). Let 1 ~ ~ ’

with 1 /.~ ’ = ( p - ’ + l/r. Then

where the second and third terms on the right hand side of the
last inequality are disregarded for p  2 and p ~ ([s] + 1, [s] ’+ 2),
respectively.

Proof - We have already shown the first inequality in [ 16]. The second
inequality would be proved analogously and we omit the proof. 0

For the proof of the next proposition, we describe fundamental
relations between 1 /q and 1 /r with ( 1 /q, 1 /r) E UE&#x3E;o S2t, _
LEMMA 2.1. - Let /1, pER. Let 1/q, 1/r satisfy

If p, q , satisfy any of the following $ conditions, then the above 1 /q, 1 / r
satisfy (1/~, 1/r) E 

Annales de Henri Physique - theorique
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PROPOSITION 2.2. - p, _f satisfy ahy of the assumptions in
Theorem 1.1. the first index of G. Then for sufficiently small
8&#x3E; 0, there exists (l/qo, [2£ with

and two triplets

such that

where II = ~~ ~; Lqi (I, Bpi ) ~~ and 6 = 2 - (p - 1) (n - 2~c,~)/2 and
the constant C is independent o, f ’ I . On the right hand side of the last

inequality, the second and third terms are disregarded for p  2 and

p ~ (~-po~ + 1, ~-po~ + 2), respectively.

Proof. - Let 1/r* = l/rl - 03C11/n and 1/r** = 1/r2 - (po -I- p2)/n. If

and

then by Proposition 2.1 and the embeddings C B~, C and

the Holder inequality in time, we obtain the required inequality, where
we use the embedding Lq C Bq with 1  q  2 for po = o.
By a simple calculation, we see that the above assumptions are satisfied

by a pair S2£ and po with

and two triplets E = 1, 2, which satisfy the

following conditions:

Vol. 71, n° 2-1999.
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We show the existence of the above triplets ( 1 /qi , 1/r~, i = 0, 1, 2,
using Lemma 2.1. We make some comments here. By the condition (3),
we must assume

By (4), we must assume p - 1 ~ 4/(n - 2~), but this is required for the
well-posedness of ( 1.2) in 

In the following, we consider the case n  4 only since the proofs
for the case n = 2, 3 are analogous. We make a classification on ~. The
problem is reduced to the existence of the required 1 /qi , i = 1, 2.

Case 1. 0 ~  (n - 3 ) / (2n - 2).
Let 03C1i = 0, i=0,1,2.Let

Then by Lemma 2.1, we have E SZ£ and E

= 1, 2, for sufficiently small 8 &#x3E; 0. Now i = 0, 1, 2, must
satisfy (2.9), but the existence of such 1 /qi , i = 0, 1, 2, is guaranteed if p
satisfies

Case2.~=(~-3)(2~-2).
In Case 1, with 1/q0  1/2 replaced with 1/q0  1 /2, we conclude the

existence of the required i = 0, 1, 2, if p satisfies 
.

In the following cases, the argument after setting 1 /qi , i = 0, 1, 2,
is similar to that of Case 1, so that we omit it and write the assumption
on p only.

Case 3. (n - 3) / (2n - 2)  /~ (n + 1 ) / (2n - 2).
Let 03C1i = 0, i=0,1,2.Let

Henri Poincaré - Physique theorique
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for  (n + 1)/(2n - 2),

for = (n + 1)/(2n - 2). The required assumption on p is

Case 4. (n + 1 ) / (2n - 2)  ~c  min(l, a ) .
Let 03C1i = 0, i = 0, 1, 2. Let

The assumption on p is

We refer to the constant a which depends on the spatial dimension. By
the condition (2.9), we must assume at least

which is equivalent to

To enlarge the right hand side than 4/ (n - must satisfy F(~) ~ 0.
But this is guaranteed if C a since a is the lower root of F(x) = 0.

Case 5. n &#x3E; 7, a   (n - 4) /2.
Let -03C10 = p = p2 =  - 03B2( ). Let

The assumption on p is

Vol. 71, n° 2-1999.
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We refer to which depends on the spatial dimension and By
the condition (2.9), we must assume at least

but the right hand side is equal to 4/(n - 2~,c) by the definition of ~6(~).
Case 6. max(l, (~ - 4)/2) ~ ~c  n/2.
Let -03C10 = pl = pz =  - 1. Let

and

The assumption on p is

3. PROOF OF THEOREM 1.1

We prove Theorem 1.1 in this section.

Proof of Theorem 1.1. - First of all, we recall the following inequalities
by Proposition 3.1 in [ 10] .

for any p, po E Rand

with

where C is a constant independent of I.
Let n, {t, p, f satisfy any of the assumptions in Theorem 1.1. Let 

= 0, 1, 2, be those in Proposition 2.2. By the above
inequalities and Proposition 2.2, we have

de l’Institut Henri Poincaré - Physique theorique
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for any (1/~, l/r, p) E where C is independent of I . Therefore we
obtain

for any M e R). Similarly we have

for any u, v E Xg(7, R), where C is independent of I and the second term
on the right hand side of (3.21 ) is disregarded for p ~ J . If p  J, then
the unique solution of ( 1.2) is given by the standard contraction argument
on (Xg(/, R ) , d ) with R sufficiently large and III &#x3E; 0 sufficiently small
for the local solution, with R and ( (~~ , ~ ) ~ ( ~, sufficiently small for the
global solution. If p E J, then we have only to consider the case

and R satisfy

and let be sufficiently small for or = 0. Let Mo = 0 and

for i = 1, 2,.... Then there is a subsequence C 

and u E Xp(/, R ) such that converges to u in the distribution sense as

k ~ oo . On the other hand, let

and let À &#x3E; 0 and

then we have for sufficiently small E &#x3E; 0,

Vol. 71, n° 2-1999.
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Indeed, let  and WÀ satisfy

and

then w = WÀ on 11 (~,), where X~~~,~ is a characteristic function on ~4(~).
By this fact and (3.18) and the argument as described in the proof of
Proposition 2.2, we obtain the above inequality.
By (3.23), we conclude that converges to some v03BB strongly in

for any (1/q, l/r,0) E so that u = VÀ on 11(~,).
Therefore we have for any À &#x3E; 0

by which we conclude that u = ~ (u) a.e (t, x) E I x Rn, namely u =
~(M)in(X,(/,~)~).
The uniqueness of the solution also follows from (3.23).
( 1 ) The continuity of the solution (u , atu) in time with respect to the
x follows from the Lebesgue convergence theorem. The

proof is standard and we omit it.
(2) For the continuous dependence on the initial data of its solution,

we consider the case p E J only since for p fJ- J the last term of (3 .21 ) is
disregarded, so that we can use the standard argument [3]. By (3.23), we
have

Annales de l’Institut Henri Poincaré - Physique + theorique +



211NONLINEAR WAVE EQUATIONS

where C À is a constant dependent on À, but not on I. So that we conclude

as (CPo, 0/0) tends to (~ , ~ ) , by which we conclude that v converges to u
in as required.

Then we have

where we have used a similar result to (3.18) and Proposition 2.2, and
we can take i = 1, 2, for oo since p - 1 = 4/(~ 2014 
Therefore we have 

.

(4) For (~_, ~_) E x let ø - be an operator defined by

Similarly to ø, we have

for any u, v E Xp (/,/?), where the second term on the right hand side
of (3.26) is disregarded for p ~ V. Therefore for p ~ J we have the

Vol. 71, n° 2-1999.
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unique fixed point in R ) by a contraction argument with
and R sufficiently small. We show that for p E J we also

have a fixed point of ø - in Xp (7, R ) with I and R sufficiently
small in the following. We may assume

Let

Let Ro &#x3E; 0. Let R , Ro) and do be

for any E X F ( 1, R , R~) . Then similarly to (3 .25) and (3 .26), we have

So that if (c/J-, 1/1-) E x H~~-1 and if 1/1-)1111- and R are suf-
ficiently small and Ro sufficiently large, then ~- becomes a contrac-
tion map on R , Ro) with the metric do . Therefore we obtain the
unique fixed point of ~_ . Let II (c/J-, 1/1-)1111- be sufficiently small. Let

~/)}~i be a sequence such that

in x as i ~ oo and

Then by the above argument, there exists u i E which

satisfies

Annales de l’Institut Henri Poincare - Physique theorique 
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for i sufficiently large. We can take a subsequence of which

converges to some u in the distribution sense. This u is the required fixed
point of ø- in Xg(/, 7?). For details, we refer to the discussion before
Lemma 7.1 and itself in [15]. The result

now follows similarly to the proof of (3).
Next we show that the scattering map

is continuous in the neighborhood at the origin in H  x for p ~ J.
By the proof of (3) and (4), we have the following relation between
(~, 1/1-) and (~+, 1/1+) as

where u is the solution of u = ~_ (u). Let

be another triplet. It suffices to show that

Similarly to the proof of (3.21 ), we have

and

Since  1, we conclude that

Vol. 71, n° 2-1999.
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as 11(1- - 1-,0/- - tends to zero. For 111/1+ -0/+; the

proof is analogous. D
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