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ABSTRACT. - The local expressions of a Lagrangian half-form on a
quantized Lagrangian submanifold of phase space are the wavefunctions
of quantum mechanics. We show that one recovers Maslov’s asymptotic
formula for the solutions to Schrodinger’s equation if one transports
these half-forms by the flow associated with a Hamiltonian H . We then
consider the case when the Hamiltonian flow is replaced by the flow
associated with the Bohmian, and are led to the conclusion that the use
of Lagrangian half-forms leads to a quantum mechanics on phase space.
@ Elsevier, Paris

RESUME. - Les expressions locales d’une demi-forme Lagrangienne
sur une sousvariete Lagrangienne quantifiee de l’espace des phases sont
les fonctions d’onde de la mecanique quantique. Nous montrons que
Ie transport de ces demi-formes par Ie flot associe a un Hamiltonien
H permet de retrouver les solutions asymptotiques de l’équation de
Schrodinger donnes par la formule de Maslov. Nous etudions ensuite Ie
cas ou l’on remplace ce flot par celui associe au Bohmien, et arrivons
a la conclusion que l’emploi des demi-formes Lagrangiennes permet
d’ elaborer une mecanique quantique en espace de phase. @ Elsevier, Paris
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548 M. DE GOSSON

1. INTRODUCTION

The fundamental tenet of Quantum Mechanics is Schrodinger’s equa-
tion

where HE is a differential operator associated with a classical Hamil-
tonian function H = H (x, p) by some "quantization rule" and the para-
meter ~ is given a certain value ? (Planck’s constant). It is a very common
belief that Quantum Mechanics cannot be derived from Classical Me-
chanics. However, this belief is, strictly speaking, not justified because
Eq. ( 1.1 ) can be rigorously derived for every ~ &#x3E; 0 from Hamilton’s equa-
tions of motion

when H is a quadratic function of the positions and the momenta. The ar-
gument is not very difficult; it goes as follows. Solving Hamilton’s equa-
tions one sees that the associated flow t consists of linear symplec-
tic transformations and is hence a continuous one parameter subgroup
of the symplectic group Sp(n). Now, (Z, +)) hence Sp(n)
has covering groups of all orders q = 1, 2,..., oo being
the universal covering). It turns out that one of these groups, the twofold
covering Sp2 (n), has a true representation as a group of unitary operators
acting on L 2 (Rx ) ; that group is denoted by Mp(n) and is called the meta-

group. By a classical result in the theory of covering spaces, there
exists a unique one parameter subgroup of whose projec-
tion on Sp(n) is precisely it is commonly called the lift of to

we now project that lift on of = Mp(n) we get a one
parameter group of unitary operators, whose datum is then mathe-
matically equivalent with that of the classical flow the knowledge
of the first unambiguously determines the second and vice versa. Setting

where M~, is, for À &#x3E; 0, the unitary scaling operator defined by

de Henri Poincaré - Physique theorique



549EVOLUTION OF LAGRANGIAN HALF-FORMS

we find that the function satisfies Eq. ( 1.1 ) when one chooses

the Hessian matrix of H ). This can be proven either by invoking
Stone’s theorem and using a Poisson bracket argument as in [ 16],
Chapter 1, or by a direct calculation using the integral representation
of the elements of Mp(n) together with the Hamilton-Jacobi theory for
generating functions. Either way, one sees that Eq. ( 1.1 ) essentially is
a classical equation which is equivalent to Hamilton’s Eq. ( 1.2). We
now want to emphasize the following point. Mathematically speaking
there is no reason, whatsoever, to assign a particular value to E (say
£ = ?) in Eq. ( 1.1 ); such a choice must be motivated by a physical
postulate, giving a physical significance to the corresponding solution
of these equations. A first guess would be to interpret the solution

t ) = "a la Max B orn", by deciding that t ) ~ 2 is the
probability density for finding the system in some region of configuration
space at time t . However, this misses the point, because it turns out

that this interpretation is again perfectly classical and in perfect accord
with the predictions of Liouville’s theorem, at least as long as quadratic
Hamiltonians and Gaussian wave-functions are considered (this is a

straightforward consequence of Ehrenfest’s theorem; see, for instance,
[ 17] ). Thus the probabilistic interpretation of ( 1.1 ) and of its solutions is
not per se convincingly and unquestionably defining a new physics. It is

only because we know a posteriori that has a very special (quantum)
interpretation after we have assigned the value h to the parameter £
that we can claim that quantum mechanics is born. A mathematical

justification for the need of Planck’s constant is thus needed. The aim
of this article is precisely to give such a justification by reinterpreting
the solutions to ( 1.1 ) as the local expressions in a conveniently chosen
frame of the "Lagrangian catalogues" we have introduced in our prior
works [ 13,14] . These Lagrangian catalogues are phase space objects
whose local expressions in a conveniently chosen frame are Leray’s
Lagrangian functions [ 18,19]. They are defined on the universal covering
of a connected Lagrangian submanifold V of the phase space Rx x Rp
and consist of "pages" which are "Lagrangian half-forms" on V, that is

expressions of the type

Vol. 70, n° 6-1999.



550 M. DE GOSSON

where ~ &#x3E; 0, p is a half density on V and ~p, ma are functions defined on
the universal covering V of V :

( 1 ) ~p is the phase of V : it is a function R, uniquely defined up to
an additive constant, by the requirement that

(jr is here the covering mapping V ~ V). After the choice of an origin in
V has been made, the phase can alternatively be defined by the formula

where the integration is performed along the path [zo, z] in V joining zo
to z and whose homotopy class is z; since V is Lagrangian that integral
only depends on the homotopy class of [zo, ,z], that is on the element z of
V whose projection = z.

(2) ma is a function V 2014~ Z associated with an (arbitrary) Lagrangian
plane .~a in Rx x R p and related to the ALM (Arnol’d-Leray-Maslov)
index m which we review in Section 2, by the formula

where l03B1,~ is any element of the universal covering of the Lagrangian
Grassmannian with projection and z 2014~ is an arbitrary lift of
the mapping z -~ = That function ma, which depends only
on  and l03B1 (and not on allows us to define the argument of the

half-density p by (see (1.5)). By the properties of the ALM index
ma is a locally constant function on V outside the caustic ~a relative to
l03B1 (03A303B1 is the set of all.z E V such that TZV = it is thus constant
on the connected components of the complement of ~a in V. If for
instance .~a is the vertical plane 0 x Rp, then ~a is the caustic of V in
the usual sense, e.g., the set of all z E V outside which V locally projects
diffeomorphically on the horizontal plane Rx x 0 and ma has constant
value on each connected component of projects on Rx x 0.
The interest of the notion of Lagrangian catalogue in Quantum

Mechanics cones from the following observation: suppose that the

Lagrangian manifold V is a graph, that is

Annales de Henri Poincaré - Physique theorique



551EVOLUTION OF LAGRANGIAN HALF-FORMS

where D is an open subset in If D is simply connected, so is V, and
hence we may identify V with its universal covering, so that both ~p and
ma are defined on V itself. Moreover, the half-density p may be identified
with its local expression in D. The datum of the "page" ( 1.5)
is thus equivalent with the datum of the usual wavefunction

familiar from elementary quantum mechanics, noting that the phase is
here given by

Conversely, to every such wave-function ( 1.9) one can associate a

Lagrangian catalogue on the graph ( 1.8) and whose pages are of the type
= 0, 1, 2, 3, ~ given by ( 1.9). If we now require that every page

( 1.5) has single valued local expressions, then we must impose to the
Lagrangian manifold V the quantum condition

which is equivalent to the condition

for all closed paths in V; m(y) is here the integer ma(yz) - ma(z); it
is independent of the choice of the Lagrangian plane We now define
Quantum Mechanics by a postulate of universal nature:

[QM] The only quantized Lagrangian manifolds are those for which the
quantum condition ( 1.10) holds true for the value ~ = h where h is

Planck’s constant.

Postulate [QM] means that all Lagrangian catalogues are single-valued
on the Lagrangian manifolds singled out by the condition

for all paths y in V. Lagrangian catalogues thus constitute the natural
generalizations of the usual wave-functions on quantized Lagrangian
Vol. 70, n° 6-1999.



552 M. DE GOSSON

manifolds; this will be developed in Section 3. Of course condition

( 1.11 ) trivially holds (as does ( 1.10) for every 8 &#x3E; 0) when V is simply
connected.
The aim of this article is to study the motion of Lagrangian catalogues

under the flow associated with a classical Hamiltonian function H, and
under the flow associated with the "Bohmian" associated with an initial
wave-function. The first leads to quasi-classical mechanics in phase
space and allows us to derive Maslov’s asymptotic solutions [21-23] of
Schrodinger’s equations. The second leads to a Quantum Mechanics in
phase space.
We have structured this article as follows:
In Section 2 we briefly review the properties of the ALM index proven

in [7,10,14] and relate that index to the Maslov index on the metaplectic
group defined in [9,11 ] (see also [8] );

In Section 3 we consider the flow associated with a time-

dependent Hamiltonian. Defining a Lagrangian manifold Vt by the

formula Vt = Ft,o V. We then show that one can define in a natural way
a Lagrangian catalogue on Vt by using the properties of the ALM index.
For example, when is given by ( 1.5) then

where the phase is given by

the integral being calculated along the phase-space trajectory leading
from z to z(t) = Ft,oz. The integer m,~ is associated with the Lagrangian
plane .~,~ obtained by applying the tangent mapping to Ft,o (see (3.3)).
The properties of the ALM index then allow us to show that one can
define the action of for arbitrary t, t" on Lagrangian catalogues
on Vt~ = and that this action satisfies the Chapman-Kolmogorov
law

We then proceed to investigate the local properties of Lagrangian
catalogues and of their images under Hamiltonian flows. The crucial
result is that when the Lagrangian manifold V satisfies the quantization

de l’Institut Henri Poincaré - Physique theorique
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condition ( 1.11 ) then one can patch together the local expressions of ( 1.5)
outside the caustic, when l03B1 is the vertical plane, to obtain functions of
the usual type

In Section 4 we relate the local expressions of Lagrangian half-forms in
the quantized case to Maslov’s formula

for asymptotic solutions to Schrodinger’s equation. We show that these
asymptotic solutions are exactly sums of local expressions of Lagrangian
half-forms provided that the half-density p on V has a support that is
compact and does not intersect the caustic: Lagrangian half-forms and
their evolution under Hamiltonian flows are thus the natural phase space
objects one should consider when studying "quasi-classical approxima-
tion".

In Section 5 we apply the results of Section 3, not to the Hamiltonian
flow (F~) itself, but rather to the "Bohmian flow" associated with the
Hamiltonian H and a solution ~(~) of the Schrodinger equation.
Recall [3,17] that to such a 03A8 one can associate a "quantum potential",
given in the one-dimensional case by the formula

when ~ ~ ~ &#x3E; 0 (see the discussion at the beginning of Section 5). Adding
that term to the Hamiltonian H one obtains a modified Hamiltonian

function, depending on H the "B ohmian"

The Bohmian can be viewed, for given as a new Hamiltonian function,

usually time-dependent even when H is not. Writing ~ in the form

one sees that S satisfies the Hamilton-Jacobi equation

6-1999.



554 M. DE GOSSON

and R the continuity equation

familiar from Fluid Mechanics. Using these equations we prove (The-
orem 2) that if one applies to a Lagrangian half-form the flow (To)
associated with the Bohmian then the local expressions are

exactly those obtained from the true solution ~ of Schrodinger’s equa-
tion. This result is striking because it shows that the concepts we have
introduced in this article might be a starting point for a theory of quan-
tum mechanics in phase space.
We finally want to emphasize the fact that the distinction we have made

throughout this article between Planck’s constant fii, and the variable
parameter ~, is essential. That distinction was first introduced in Leray’s
book [ 18] (see also [ 19] ). It is unavoidable not only if one wants to use
quasi-classical approximation arguments, but also if one wants to justify
quantization arguments, or the Bohmian theory of motion. Arguments
invoking a variable Planck’s constant, which one can let at will tend to
zero are not only intellectually repellent; they also lead to inconsistencies
(see Leray’s discussion in the preface to [ 18]).

2. REVIEW OF THE PROPERTIES OF THE ALM AND
MASLOV INDICES

For proofs and details we refer to our previous works [7,9,10,13] and
to the references therein; see also Dazord [4] for related results in the
category of symplectic fiber bundles. Cappell et al. [2] compare our
constructions to other indices appearing in the literature. We will use the
following notations: is the phase space Rx x R"; it will be equipped
with the standard symplectic form 03C9 = dp n dx. In the coordinates
~-=(~-1,...,~), 

We denote by Lag(n) the Lagrangian Grassmannian of ( Z (n ) , ~): it is
the set of all n-planes l, l’, etc. through the origin in on which
the symplectic form 03C9 vanishes identically; as a manifold Lag(n) is
the compact and connected coset space U (n)/ O (n) . As usual Sp(n)
stands for the symplectic group of (Z (n), ~): it is the group of all linear

Annales de l’Institut Henri Poincaré - Physique theorique
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automorphisms of which preserve 03C9. Let 03C3 : Lag3(n) ~ Z be the
Demazure-Kashiwara index [5,20] : for a triple ~ ~~ ~~ of Lagrangian
planes in Z(n), or(~~~~) is the integer a - b, where (a, b) is the

signature of the quadratic form .

on f 0 ~ @ ~. An essential property is then that the function

is a cocycle, that is

for all f, l’, l", l’’’ in Lag(n). Notice that 03C3 is obviously Sp(n)-invariant,
that is:

for all s E Sp(n). It is convenient to introduce the following associated
function, called the index 

where ~dim is the coboundary of the 1-cochain dim on Lag (n ) defined
by:

By the properties of the signature or established in [ 13,20], Inert(£, ~, .~")
is an integer. Since

it follows that the index of inertia also is a Sp(n)-invariant cocycle. In
fact, Inert coincides with the index of inertia defined by Leray in [ 18],
Chapter I, §§2, 4, in the transversal case: see [7] for a proof.

Let now Lagoo(n) denote the universal covering of Lag(n) and n
the natural projection Lagoo(n) ~ Lag(n). Using chain intersection
theory Leray (ibid. § § 2, 5 ) has constructed an integer-valued function m
defined on all pairs ~) E Lag(n) such that = 0.

Vol. 70, n° 6-1999.
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He calls m the "Maslov index on Lagoo(n)" and shows that m is
characterized (together with a topological condition: see (2.5) below) by
the property that a m = 03C0*Inert, that is :

where (~,~~) is the projection It turns out that one
can extend Leray’s definition to all pairs ~) E Lag(n), without
any transversality assumption: using the cocycle property of the index of
inertia it suffices to define for arbitrary ~~ by formula
(2.2) choosing ~ in such a way that .~" _ .~" n .~’ = 0. One then
verifies, by repeated use of the cocycle property of Inert that the value
of independent of the choice of ~ (see [7 ] ) . We will
call the function m :Lag2~(n) ~ Z thus defined the ALM (Arnol’d-
Leray-Maslov) index. The fundamental group (Z, +) acts
on denoting by {3 the generator whose image in
Z is +1 we have

for all integers k, k’. This shows in particular that the range of m is Z; i.e.
takes all integer values when one of its arguments describes

Lag (n). Moreover, the ALM index is invariant under the action of the
universal covering of the symplectic group Sp(n):

for all Soo E This is easily seen using the fact that m is
characterized by (2.2) together with (2.5) below, and taking into account
the Sp(n)-invariance of the index of inertia (2.1 ). We finally notice that
m has the following topological property:

(2.5) m is locally constant on the set n .~’ = 0}, and is
hence constant when ~~ move continuously in such a way that their
projections l, l’ remain transverse.

Let now V be a connected Lagrangian submanifold of Z (n ) . We denote
by

the mapping which to every z E V associates the tangent Lagrangian
plane = This mapping can be lifted (in infinitely many ways)

Annales de l’Institut Henri Poincaré - Physique theorique
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to a mapping

Supposing chosen once for all, we define for every 
a function

by the formula

This is the term appearing as the exponent of i = in definition

( 1.5) of a Lagrangian half-form. Whenever there is no risk of confusion
with the Maslov indices on Mp(n) defined below we will use the shorter
notation in lieu of (z) . In view of (2.2) these functions
transform following the law

which shows that the "pages" of a Lagrangian catalogue are deduced
from one another by the formula

where the integer-valued function ~8) is given by the right-hand side
of Eq. (2.8).

Let now y E zo), the base point zo E V being chosen once for
all. We claim that there exists an integer m(y) E Z such that

That integer is defined as follows: for all y and all z, the elements 
and have same projection on Lag(n) hence there
exists an integer k such that .~~ ( y z) _ That integer k is denoted
by m ( y ) because it is independent of z : if z is the homotopy class of the

path 03B3Z0Z joining zo to z and y is the homotopy class of the closed loop
03B3Z0Z0 then yz is by definition the homotopy class of the path 03B3Z0Z0
from this follows that is the homotopy class so

that 03C01(Lag, l(Z0)) can be identified with the homotopy class of the
closed loop in Lag(n); this class is of course independent of z,
and hence of z. By property (2.3) of the ALM index we immediately get

Vol. 70, n° 6-1999.
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the important identity

which holds for all y and z . Notice that m(y) is the integer appearing
in the quantum conditions (1.10)-(1.11). Clearly m(y) = 0 when V is
simply connected. One can prove that

(see [24] ), more generally [4,13] :

(see [4,18] for the definition of q-orientability; that notion is, intuitively,
a measure of "how far" V is from being simply connected).

Let us now briefly discuss the metaplectic group. It can be constructed
as follows: 1et s be a free linear symplectic transform. This means that
if we set (x , p ) = s (x’ , p’ ) , then there exists a unique quadratic form
A = A(x, x’) such that 0 the Hessian matrix) and

For .f’ in the Schwartz space S(Rx) we then define

where the complex number d (A) is given by

The operators SA are essentially Fourier transforms, and thus continuous
automorphisms of which extend into unitary automorphisms of
L 2 (Rx ) . The inverse of the operator SA is easily seen to be

The group generated by the SA is by definition the metaplectic group
Mp(n); it is a connected (nonclassical) Lie group with same dimension
n (2n ~ 1) as Sp(n). In fact, Mp(n) is a realization as a group of unitary

Annales de l’Institut Henri Poincaré - Physique theorique
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operators of the twofold cover of Sp(n); the covering projection

is simply the mapping which to each SA associates the free symplectic
transformation s; this property suffices to define the projection of

any element S of Mp(n) since yr is an epimorphism and S is a product of
operators SA (in fact exactly two ; see [ 18], Chapter I). In [9] we proved
the following results:

( 1 ) For every E Lag(n) there exists a unique mapping ma : Mp(n) 
Z4 having the two following properties which uniquely characterize ma :

where s and s’ are the projections on Sp(n) of E Mp(n), and

We have called ma the Maslov index relative to the Lagrangian plane 
(2) Moreover, for the choice l03B1 = 0 x R; we have

It turns out that the Maslov indices ma are related to the ALM index by
the following crucial formula:

where (respectively, E has projection s E
Sp(n) (respectively, Lag(n)). Moreover the ALM index modulo 4
can be reconstructed using only the properties of the Maslov indices
on Mp(n). Property (2.14) shows that if we define the pull-back by
S E Mp(n) of a Lagrangian half-form ( 1. 5 ) via the formula

where Soo is any element of with same projection s on Sp(n) as
S, then

This formula is crucial because it is the key to the study of the action
of Hamiltonian flows on Lagrangian catalogues of Sections 3 and 5. We

Vol. 70, n° 6-1999.
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notice that in view of the properties of the ALM and Maslov indices the
pull-back satisfies

for all S, S’ in Mp(n); if one defines the action of a one-parameter
subgroup (St) of Mp(n) on a Lagrangian half-form by

then (2.17) will guarantee that we have

for all 

3. THE CLASSICAL EVOLUTION OF LAGRANGIAN
HALF-FORMS

This section precises and complements the results in [ 14], §6.
Let H be a smooth function Z (n ) x R; we assume for simplicity

that the time-dependent flow associated with H is defined for all
values of t and t’. Let Up be a Lagrangian catalogue (LC for short) on a
Lagrangian manifold V; we define FtU03C1 = Ft,oUp by:

where the phase ~(., t) of Vt = Ft V is given the mapping V --~ V ( V the
universal covering of V ) defined by the formula

where the integration is performed along the trajectory going from the
point z E V to z(t) = E Vt. One verifies, using the properties [ 1 ] of
the Poincare invariant p (h- - H dt that ~p (., t) is a phase of Vt in the sense
of ( 1.6); the universal covering of Vt is identified with that of V by the
projection

Annales de l’Institut Henri Physique . theorique .
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The integer t) is expressed in terms of the ALM index by:

where SPoo(n) is defined as follows: for every z E V the tangent
mapping = dzFt is a symplectic mapping; t ~ is then the

unique continuous mapping through the identity of at time t = 0

that covers the mapping t ~ Notice that

where the integer is defined by (2.6). Clearly formula (3.1 ) defines

FtU03C103B1 as a LC on Vt equipped with the phase (3.2), for in view of the
Sp~(n)-invariance property (2.4) of the ALM index we have

so that (3.1 ) actually defines a Lagrangian half-form (and hence a LC) on
Vt; we will denote that page by 7~(., t ) and the corresponding LC by the
symbol L~(., t ) . It turns out that the mapping

defined by (3.1 ) is an isomorphism in the following sense: suppose we
choose the phase ~(., t) of Vt as being given by (3.2). Then, if

for some half density  on Vt, we can determine uniquely U03C103B1 such that
FtU03C103B1 = i7 by choosing = and p == (Ft)* . We will denote
the LC on V thus defined by For U E and arbitrary t,
t" we define:

In view of the discussion here above it is clear that the law of Chapman-
Kolmogorov

holds for all t, t’, t" and U E In fact, we have a somewhat

stronger result which shows that (3.5) remains valid for the pages of U,
namely that

Vol. 70, n° 6-1999.
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This property is an immediate extension of the corresponding result for
time-independent Hamiltonian flows (see (2.16)) and is proven in the
same way.

Recall from the Introduction that the Lagrangian manifold V is

quantized if it satisfies the "quantum condition":

for all y E the integer m(y) was defined in Section 2. The
interest of condition (3.7) is that if it is satisfied by V then it allows us
to define Lagrangian half-forms (and hence Lagrangian catalogues) as
objects on the manifold V itself. We begin with a local study. Assume
that Supp(p) is compact and does not intersect the caustic ~7. There exists
an open set SZ in V containing Supp (p ) and such that SZ n 17 = 0. Then

f ), f the projection (x, p) ~ x, is a local chart of V. Choose now
£(1 = £0 (the vertical plane 0 x Rp); we have

for some a E R). Suppose now V is quantized. Then, by (2.3)
together with the obvious identity

it follows that

and hence ~) is defined on V itself rather than on V. In view of
(2.5), is moreover constant for z in any of the decks of 
(assuming ~2 small enough). It follows that if o- is any section of
jr : V 2014~ V over ~2, then ~C) = has the local expression

for any pair (~~ , defined by

Annales de l’Institut Henri Poincaré - Physique theorique



563EVOLUTION OF LAGRANGIAN HALF-FORMS

Let ~t be the caustic of Vt = Ft V. It is the set defined by

and suppose that

Then the mapping jc -~ x(t) is a diffeomorphism /(~) 2014~ call it

Xt. Let us calculate the local expression of FtU03C10 in the chart 
f ) . In view of the expression (3.2) of the phase of FtU03C10 we can

write, recalling that V is identified with the universal covering of Vt using
the projection Tct = Ft o yr:

where 03C3t is the section 03A9t -+ V, of 03C0t associated with the section

cr: il 2014~ V, that is ~ == or Thus:

the integration being performed along the unique trajectory arriving at
z(t) from z = (x, p) E Notice that the latter formula can be rewritten,
if one wants, in the familiar form

where L == px 2014 H is the Lagrangian function associated to H by the
Legendre transform. Consider next the term

Condition (3.10) implies that for 0 small enough the Lagrangian
plane == has not crossed .~o = 0 x R;; in view of (2.5)
we thus have

Vol. 70, n° 6-1999.
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Let us finally determine the local expression = o Ft)*p of
(Ft )*p at x (t ) . A straightforward calculation shows that we have

which reads, in the local coordinate x(t):

Summarizing, we have thus proven :
PROPOSITION 1. - Let S2 be an open subset the quantized La-

grangian manifold V ; we assume that SZ does not intersect the caustic:
such that S2 n 17 == ø. Let p be a half-density on V with support in S~.
Then, for SZ and t suffzciently small, the local expression of FtU03C10|~=h in
the chart (SZr, ,fr), D = Fr03A9, .fr = f|03A9t is

where the function ~ ~ : Rx x C is given by

if the local expression p in (D, f ’ ) is the phase 03A603C3(., t )
appearing in (3.15) is given by formula (3.11) and the integer m0,03C3 by
formulas (3.9), (3.12).

To deal with the general case need the following elementary algebraic
result:

LEMMA 1. - There exists an atlas (03A9j, fj)j of V having the following
properties : foY all indices j for which 03A9j n 17 = ø the diffeomorphisms

aYe given by f~ = f ~ and:

(i) If 03C3k aYe two sections V ~ V over 03A9j, S2k Yespectively,
and i, f ’ SZ~ n ø, then there exists y~k E 1fl ( V, zo) such that =

03B3jk03C3kz for Z E 03A9j E 03A9k;
(ii) i, f’ crk are thYee such sections with SZ~ n SZ~ n ø, then

we have the relation
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PYOOf - It is straightforward; see, for instance, [ 14], Lemma 5.1 and
Theorem 5.3. D

Lemma 1 allows us to prove the following sheaf property in the
quantized case:

PROPOSITION 2. - Let V be a quantized Lagrangian manifold and
(il J , , an atlas satisfying the conditions (i), (ii) in Lemma 1. Let

Up be a Lagrangian catalogue on V . Then the local expressions {3.14)
of FtU03C10|~=h in two overlapping charts (S23,t, of the
Lagrangian manifold Vt = Ft03A9 coincide ; in fact

where ’ are the functions (3.15) on, respectively, 03A9j and S2k.

Proof. - We have, by formulas (3.11 ) and ’ (3.9)

for x E 03A9j n and hence in view of Lemma 1 (i) :

By a similar argument we have the equality

and hence,

since V satisfies the quantization condition (3.7). This proves Proposi-
tion 2. D
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4. THE RELATION WITH SEMI-CLASSICAL
APPROXIMATION

We briefly recall the main result of the theory of asymptotic solutions
to the Schrodinger equation

associated with a time-independent Hamiltonian

Here U (x) is a smooth real valued function of x = (xl , ... , xn) and p2 is
the square of the length of p = (pi,..., Maslov and Fedoriuk [22],
§ 12, prove that if one chooses an initial condition

where and a are smooth and real valued, a with compact support, then
an approximate "modulo ?" solution ~ to (4.1 ) is given by the formula

as long as (x, t) is not a "focal point" (i.e., x is not the projection of a
point of the caustic). The functions Sj (x, t) are given by

(L the Lagrangian function associated with H) and the x~ are defined as
follows: consider a trajectory s ~ (x(s), of the Hamilton system
( 1.2). Since (x, t) is non-focal there exists a finite number of points
(x~ , such that

for some p . The appearing as exponents in (4.4) are the so-called
"Morse indices" of the trajectories from xj to x; see [ 1 ], App. 11. We
claim that:

Annales de l’ Institut Poincaré - Physique theorique



567EVOLUTION OF LAGRANGIAN HALF-FORMS

THEOREM 1. - Let ’ Lagrangian manifold with equation p =
and p the half density on V whose local expression in 

Then:

(1) For i. e., as remains a graph, the approximate
solution is given by

where 03A8hv is given by. (3.15) with 03A9 = V ;
(2) For arbitrary t such that x(t) is not the projection of a point on the

caustic ~t (4.6) must be replaced by the formula

where the sum on the right is calculated for all disjoint neighborhoods
03A9j of points zj = (x, E V for some pj.

Proof - Everything readily follows from Propositions 1 and 2 noting
that the Morse indices in Maslov’s formula (4.4) can be identified
with the integers associated with sections ~~ over SZ~ in view of
[22], §7, and properties (2.5) and [ 18], Theorem 6, §2.6. D

5. THE QUANTUM EVOLUTION OF LAGRANGIAN
HALF-FORMS

In all what follows c will again be a variable parameter &#x3E; 0. We
assume that the Hamiltonian H is of the type (4.2), but we now allow
the potential U to depend on time:

We also assume that the solutions (x, p) to Hamilton’s equations of
motion ( 1.2) exist for all time and all initial data (~(0),~(0)). We
consider the partial differential equation

and look for solutions of the type
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If we impose, as is usual in quasiclassical approximation methods, that
the phase ~ is a real Coo function satisfying Hamilton-Jacobi’s equation

then a straightforward calculation shows that the amplitude a (x, t) must
satisfy the "transport equation"

which is then asymptotically solved by expanding a as a formal series

where the coefficients a~ are independent of ~, and to write down the
equations satisfied by these functions. Of course, this method only yields
asymptotic solutions for small t, more precisely as long as the Lagrangian
manifolds Vt = Ft V (Ft = Ft,o, the time-dependent flow associated with
H) admit diffeomorphic projections on R~. For large t, Vt will eventually
"bend" so that the projection (x, p) ~ x no longer in general is a

diffeomorphism, i.e., caustics will appear. Global asymptotic solutions
can, however, still be obtained by Leray’s methods [ 18,19] or by Maslov’s
canonical operator method [21-23].

Suppose now we instead look for exact solutions ~ to the Eq. (5.2);
we write ~ in polar form

where both real functions S and R are now allowed to depend on
the variable ~ . If we assume that R vanishes to infinite order when it

vanishes, one shows [3,17] that S and R must satisfy the system of partial
differential equations
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which is rigorously equivalent to Eq. (5.2). Introducing, following Bohm
[3,17], the "quantum potential

the first Eq. (5.4) can be viewed as the Hamilton-Jacobi equation

for the modified Hamiltonian function 7/~ (sometimes called "Bohmian"
in the literature) associated with H and the quantity p = R2:

Notice that all questions relative to the existence of the solution to the
first Eq. (5.4) are here eliminated since by hypothesis S is already defined
globally !

It is important to notice that Eq. (5.6) does not in general reduce to the
usual Hamilton-Jacobi Eq. (5.3) "at the limit 6’ ~ 0". This is because p
itself, and hence also 0p/p, usually depends on £ and does not in general
tend to 0 with £ (see [ 17] for examples); we will return to this point at
the end of this section. We now apply the results of Section 3, not to H,
but rather to the Bohmian For given we can consider the time-

dependent flow F’° = F~o defined by the Hamilton equations

We denote by V the Lagrangian manifold with equation

where we have set == 0). Define the half-density p on V by

with Ro(x) = R (x , 0) and consider the Lagrangian manifold = F’° V .
To prove Theorem 2 below we need the two following lemmas:
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LEMMA 2. - The phase of Vtp is given by the formula

Proo, f: - Set X == P = in these variables we have in view
of (5.6)

and hence

On, the other hand, differentiating the expression (3.2) of ~p (z, t) with
respect to X and Y one also gets

The lemma follows since ~p(z, t) = S(x, t). o

LEMMA 3. - The index mo (z, t) defined in (3.3)-(3.4) is constant and
equal to 0.

Proof. - V03C1t is a graph for all t and there are thus no caustics. This

implies that mo (z, t) is constant and equal to mo (z) = 0. D

We are now able to prove the following essential result which clearly
shows the relationship between wave-functions of quantum mechanics,
half densities, and "Bohmian trajectories":
THEOREM 2. - Let V and p be given by (5.9) and (5.10), respectively.

Then the local expression (3 .14) of F’° Uo in the global chart ( V , , f ’t )
where ft: (x, p) ~ x, is given by the formula

where W is the integral

calculated from the point z = (x, p) _ (x, a So/ax) to zp (t) = F’°.z, and
~ is the solution to (5.2) at time t.
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Proof - We must show that (3.15) reduces to

S and R solutions to (5.4). In view of (3.11 ) and Lemma 2 hereabove we
have t ) = t ) for all x and t ; taking Lemma 3 into account we
thus only have to prove that

Set P = R2; Eq. (5.42) becomes the classical continuity equation of Fluid
Mechanics:

It follows from the general theory of that equation that we have

hence (5.13). 0

Let us finally briefly discuss the relationship between classical and

quantum evolution of Lagrangian catalogues. It is often claimed, both
in the physical and in the mathematical literature, that one obtains an
approximate solution

to Schrodingefs equation by replacing Eqs. (5.4) by their classical

counterparts

Since this procedure of "resolution" of Schrodinger’s equation amounts
to neglecting the "quantum potential" (5.5), it is clear that one will obtain

good approximations only if () 2014~ 0 when ~ ~ 0 and this is in fact

usually not the case (recall that R is allowed to depend on ~). Consider
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for instance a solution to Schrodinger’s equation of the type

i.e., t) == -Et. The amplitude R then satisfies the usual equation

so that Q = E - U; the "Bohmian" is in that case Hp = p2/2 ~ E. If for
instance H = ( p2 -~- x2)/2 (the one-dimensional harmonic oscillator) and
Ro is the Gaussian centered at the origin

then ~ will be a solution for E = ~/2, given by

However, a straightforward calculation using (3.15) (respectively, (4.6))
leads to an incorrect result. The reason for this failure is the following:
the amplitude Ro depends on ~ ; the domain of validity of Maslov’s
method is that of the stationary phase method, which does not apply in
the considered case; see the example ( 12.22) in [22] for an illustration of
this fact.

[1] V.I. ARNOLD, Mathematical Methods of Classical Mechanics, 2nd ed., Graduate
Texts in Mathematics, Springer, Berlin, New York, 1989.

[2] S.E. CAPPELL, R. LEE and E.Y. MILLER, On the Maslov index, Comm. Pure Appl.
Math. 47 (1994) 121-180.

[3] D. BOHM and B.J. HILEY, The Undivided Universe: An Ontological Interpretation
of Quantum Theory, Routledge, London and New York, 1993.

[4] P. DAZORD, Invariants homotopiques attachés aux fibrés symplectiques, Ann. Inst.
Fourier, Grenoble 29 (2) (1979) 25-78.

[5] M. DEMAZURE, Classe de Maslov II, Exposé No. 10, in: Séminaire sur le Fibré
Cotangent, Orsay 1975-1976.

[6] G.B. FOLLAND, Harmonic Analysis in Phase Space, Annals of Mathematics
Studies, Princeton University Press, Princeton, NJ, 1989.

Annales de l’Institut Henri Poincaré - Physique " theorique "



573EVOLUTION OF LAGRANGIAN HALF-FORMS

[7] M. DE GOSSON, La définition de l’indice de Maslov sans hypothèse de transversal-
ité, C. R. Acad. Sci. Paris Série I 309 (1990) 279-281.

[8] M. DE GOSSON, La relation entre Sp~, revêtement universel du groupe symplec-
tique Sp et Sp x Z, C. R. Acad. Sci. Paris 310 (1990) 245-248.

[9] M. DE GOSSON, Maslov indices on the metaplectic group Mp(n), Ann. Inst. Fourier,
Grenoble 40 (3) (1990) 537-555.

[10] M. DE GOSSON, The structure of q-symplectic geometry, J. Math. Pures Appl. 71
(1992) 429-453.

[11] M. DE GOSSON, Cocycles de Demazure-Kashiwara et géométrie métaplectique,
J. Geom. Phys. 9 (1992) 255-280.

[12] M. DE GOSSON, On the Leray-Maslov quantization of Lagrangian manifolds,
J. Geom. Phys. 13 (1994) 158-168.

[13] M. DE GOSSON, Maslov Classes, Metaplectic Representation and Lagrangian
Quantization, Research Notes in Mathematics, Vol. 95, Akademie-Verlag, Berlin,
1996.

[14] M. DE GOSSON, On half-form quantization of Lagrangian manifolds, Bull. Sci.

Math. 1997.

[15] V. GUILLEMIN and S. STERNBERG, Geometric Asymptotics, Math. Surveys
Monographs, Vol. 14, Amer. Math. Soc., Providence, RI, 1977.

[16] V. GUILLEMIN and S. STERNBERG, Symplectic Techniques in Physics, Cambridge
University Press, Cambridge, MA, 1984.

[17] P.R. HOLLAND, The Quantum Theory of Motion: An Account of the de Broglie-
Bohm Causal Interpretation of Quantum Mechanics, Cambridge University Press,
Cambridge, MA, 1993.

[18] J. LERAY, Lagrangian Analysis, MIT Press, Cambridge, MA, London, 1981;
Analyse Lagamgienne RCP 25, Strasbourg 1978; Collège de France, 1976-1977.

[19] J. LERAY, The meaning of Maslov’s asymptotic method the need of Planck’s
constant in mathematics, Bull. Amer. Math. Soc., Symposium on the Mathematical
Heritage of Henri Poincaré, 1980.

[20] G. LION and M. VERGNE, The Weil Representation, Maslov Index and Theta Series,
Progress in Math., Birkhäuser, Boston, 1980.

[21] V.P. MASLOV, Théorie des Perturbations et Méthodes Asymptotiques, Dunod, Paris,
1972; Perturbation Theory and Asymptotic Methods, Moscow, MGU, 1965 (in
Russian).

[22] V.P. MASLOV and M.V. FEDORIUK, Semi-Classical Approximations in Quantum
Mechanics, Reidel, Boston, 1981.

[23] A.S. MISCHENKO, V.E. SHATALOV and B.YU. STERNIN, Lagrangian Manifolds
and the Maslov Canonical Operator, Springer, Berlin, 1990.

[24] J.M. SOURIAU, Indice de Maslov des variétés Lagrangiennes orientables, C. R.
Acad. Sci. Paris Série A 276 (1973) 1025-1026.

Vol. 70, n° 6-1999.


