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ABSTRACT. - The propagation of sound waves and electromagnetic
radiation in a background medium is strongly influenced by the addition of
random scatterers. We study random perturbations of a background medium
which has a spectral gap in its permissible energy spectrum. We prove that
the randomness localizes waves at energies near the band edges of the
spectral gap of the background medium. The perturbations of the dielectric
function or the sound speed are described by Anderson-type potentials,
which include random displacements from the equilibrium positions which
model thermal vibrations. The waves with energies near the band edges are
almost-surely exponentially localized. We prove a Wegner estimate valid at
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all energies in the spectral gap of the unperturbed operator. It follows that
the integrated density of states is Lipschitz continuous at energies in the
unperturbed spectral gaps. (c) Elsevier, Paris

Key words : localization, random operators, pure point spectrum, Schrodinger operators,
band gaps.

RESUME. - Nous etudions la propagation des ondes acoustiques et

electromagnetiques dans les milieux aleatoires. Le modele est decrit par
un operateur non-perturbe avec un gap dans le spectre. Ajoutant une
perturbation aleatoire, nous montrons F existence des ondes localisees aux
energies aux bords du spectre de 1’ operateur non-perturbe presque surement.
En plus, nous donnons une demonstration de 1’ existence et la continuite
lipschitzienne de la densite d’ etats integree, suivant une nouvelle estimation
de type Wegner. (c) Elsevier, Paris

1. INTRODUCTION, THE MODELS, AND MAIN RESULTS

Properties of wave propagation in perturbed structures has been

extensively studied for both deterministic and random perturbations. In
this paper, we apply the methods developed in [4], [8], and [ 10] to

prove localization at energies near the band edges of the unperturbed,
background medium, and to study the density of states for families of
random self-adjoint operators which describe the propagation of acoustic
or electromagnetic waves in randomly perturbed media. These families of
operators have the form

where {~(.r)} belongs to a permissible class of stochastic processes
and Ho is a (deterministic) self-adjoint operator. We assume that the

spectrum of Ho has an open spectral gap G == (B~,~) c 7R in its
resolvent set. We study the propagation properties of waves in the perturbed
medium with energies near the band edges l3~ of this gap. Our two main
examples come from the study of wave propagation in random media:
(1) Acoustic waves. The wave equation for acoustic waves propagating in
a medium with sound speed C and density p is

Annales de Poincaré - Physique theorique



383BAND EDGE LOCALIZATION FOR RANDOM MEDIA

where the propagation operator H is given by

This operator is self-adjoint (under appropriate conditions on the

coefficients C and p) on the Hilbert space = 

We are interested in the spectral properties of this operator. It is convenient
to change Hilbert spaces; by a standard unitary transformation, we consider
the operator H, unitarily equivalent to 7J, given by

acting on the Hilbert space ~ = L2(Rd), d &#x3E; 1. In this paper, we

concentrate on the case of media characterized by a randomly perturbed
sound speed and a positive, bounded density p satisfying 0  /’1;0  p-1 
/’1;1  oo, for some positive constants /’1;i, i = 0,1.
We consider perturbed sound speeds of the form

for g &#x3E; 0. The role of the coupling constant g is to insure that for a given
process Cw, the quantity is boundedly invertible. The unperturbed
sound speed Co is assumed to be a bounded, nonnegative function. The

perturbation Cw is given by a bounded, Anderson-type stochastic processes,
constructed below. To relate this to ( 1.1 ), we factor out the unperturbed
sound speed Co and define the unperturbed acoustic wave propagation
operator Ho by

The coefficient Aw appearing in ( 1.1 ) is given by

(2) Electromagnetic waves. The wave equation for electro- magnetic waves
can be written in the form of equation ( 1.2) for vector-valued functions ~ .
In this case, the operator H describing the propagation of electromagnetic

Vol. 70, n 4-1999.
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waves in a medium characterized by a dielectric function E and a magnetic
permeability ,~ = 1 is given by

acting on the Hilbert space ?-~ = L2(I~3,~G’3). The matrix-valued operator
II is the orthogonal projection onto the subspace of transverse modes.
This representation of Maxwell’s equations is derived in Appendix 4. We
consider random perturbations of a background medium described by a
dielectric function Eo and given by

where 6~ is a stochastic process. The unperturbed operator describing the
background medium is defined by

and the coefficient Aw in ( 1.1 ) is given by

We note that Aw is the velocity of light for the realization cc;. The

electromagnetic case is of interest because of the intense research going on
in this field with the aim of finding experimental evidence for localization.
In the case of electrons, the repulsion between electrons can cause effects
which tend to obscure disorder-induced localization. These effects are not

present for photons. For a review of these questions, see [6].
Whereas many of the results below hold for a general, non-negative, self-

adjoint operator Ho, we will take Ho to be of either of the two forms given
above. Note that Ho need not be a periodic operator. We simply require
that its spectrum contain an open spectral gap (there are other technical
assumptions on Ho given below). Unlike the Schrodinger case, zero is

always the bottom of the spectrum for multiplicatively perturbed operators
and, as we discuss below, no localization is possible near this band edge.
Our processes will be of Anderson-type which are constructed as follows.

As in [8], we introduce two classes of stochastic processes indexed by ~d.
E ~d ~ be a family of independent, identically distributed

random variables with a common distribution h(a) dA. We will
assume that the density h has bounded support (see, however, the remark
after Theorem 1.2 below). The precise conditions are given below. Let

E ~d ~ be another family of vector-valued, random variables

Annales de Poincaré - Physique theorique
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with E BR(0), 0  R  1 2. We assume that the random variable 03BEi has
an absolutely continuous distribution, for example, a uniform distribution.
These random variables will model thermal fluctuations of the scatterers
with random strengths about the lattice points We will denote by

a cube of side l centered at ~,

and by the characteristic function for When x == 0, we will
write 1~.~ for simplicity. We denote 0 a single-site potential function.
The random perturbation of the sound speed Cw and the dielectric

function EW are taken to be Anderson-type. The Anderson-type perturbation
is defined by

for a single-site potential u &#x3E; 0 satisfying the conditions below.
In consideration of the form of the modification to the sound speed given

in ( 1.7), and the modification of the dielectric function given in ( 1.11 ), we
unify the notation as follows. We define an effective "potential" for

X = A (acoustic) and X = M (Maxwell) by

in the acoustic case, and by

in the Maxwell case. We define an operator by

The family of random operators can now be written

where the unperturbed operator Ho is given in ( 1.6) for X = A and

in ( 1.10) for X = M.

We next turn to a description of the assumptions on the random processes
and on the unperturbed operator Ho. Let us recall that the unperturbed
operator No has the form

Vol. 70, n° 4-1999.
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in the acoustic case, and

in the electromagnetic case. When a result concerning Ho does not depend
on whether it is for the acoustic case or Maxwell case, we will not

distinguish between the unperturbed operators and simply write Ho.
(HI) The operator Ho is essentially self-adjoint on for X = ~

and on Co (IR3, ~G’3), for X = M. This is a condition on the

unperturbed medium described by the functions Co and 60.
(H2) The spectrum of Ho, is semibounded and has an open

gap G. That is, there exist finite constants Eo,~-,B+ such that
inf ~o and ~o  B_  B+  oo such that

Remark. - For Ho of the form ( 1.17) or ( 1.18), we show below that
~o = 0. However, this is not essential for the results.

(H3) The operator Ho is strongly locally compact in the sense that for any
f E for X = A, or for any f E for X = M,
with compact support, the operator E for some

integer q, 1  q  oo, and for some constant Mo.
(H4) Let p(x) == ( 1 + I I ~ I I 2 ) 1 / 2 . The operator

defined for 0152 E 7R, admits an analytic continuation as a type-A
analytic family to a strip

for some 0152O &#x3E; 0.

Remark. - We note that if the functions Co and Eo are bounded and in
C2(IRd) (d = 3 for X = M), then the conditions (HI) and (H3)-(H4)
hold. Condition (H4) is verified in Appendix 3, for a very general class of
unperturbed operators of the form ( 1.15)-( 1.16), as in [4].

Statements regarding relative compactness in the Maxwell case are to be
understood for the unperturbed Hamiltonian ( 1 - where Po is the
projection onto the zero eigenvalue subspace.
We now enumerate the conditions on the random coupling constants ~i .

Annales de l’Institut Henri Poincaré - Physique theorique
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(H5) The coupling constants f ~i(c~) ~ liE form a family of

independent, identically distributed (zzd) random variables. The

common distribution has a density h satisfying 0  ~ E n

C(lR). There exist finite, positive constants 0  such that

supp h c [-m,M] and h(0) &#x3E; 0.

(H6) The density h decays sufficiently rapidly near -m and near M in
the following sense:

for some ,~ &#x3E; 0.

Remarks.

1. It is important to note that for a given density h as in Condition
(H6), we can take the coupling constant g small enough so that

given in ( 1.15 ), is invertible. This is the only reason we insert
a coupling constant g. In particular, once g is chosen so that is

invertible, it does not have to be adjusted again to prove localization.
2. The hypothesis (H6) can be modified to allow densities with support

[2014m,0] or [0,M]. In these cases, we only require decay of the
density M, respectively. In the former case,
we will prove localization near the lower gap edge B- (provided
it is not equal to 0), whereas in the latter case, localization will be
established near the upper gap edge B+.

We take H == to be the probability space equipped with
the probability measure IP induced by the finite product measure. The

single-site potential u in ( 1.12) is assumed to satisfy the following condition.

(H7) The single-site potential u has compact support and 0  ~  1.
The fixed sign assumption on the single-site potential u is necessary in

the proof of spectral averaging given in section 4. Specifically, it guarantees
that the real part of the derivative in (4.6) has a fixed sign.
We need to assume the existence of deterministic spectrum ~ for families

of multiplicatively perturbed operators as in ( 1.1 ) with Ho satisfying (Hl)-
(H7). If Ho is periodic with respect to the translation group and

for Anderson-type perturbations described above, the random families

of operators are measurable, self-adjoint, and Zd-ergodic (see

Appendix 1). In this case, it is known (cf. [34]) that the spectrum of

the family is deterministic. That is, there exists a closed subset E C IR

such that = S almost surely. We also need to consider the nature
of 03A3 near the unperturbed spectral gap G = (B-,B+).

Vol. 70, n 4-1999.
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(H8) There exists constants j3~ satisfying B_  B’-  B~  B+ such
that

In light of hypothesis (H8), we define the band edges of the almost sure
spectrum ~ near the gap G, as follows:

and

Let us give a simple example for which these hypotheses hold. We will
give further examples at the end of section 4 of operators Ho for which
hypothesis (H8) holds. The question of the existence of open gaps for
the background operator Ho, hypothesis (H2), is discussed at the end of

Appendix 1. Let us assume that Ho is a periodic operator with an
open spectral gap G = (B_ , B+ ), as in (H2). Let the single-site potential
u = be the characteristic function on the unit cube. It is easy to
check that E if and only if 0 EAw). The almost sure
spectrum of the Zd-ergodic Schrodinger operator Ho - EAW can
be described precisely:

(The proof of this result is basically the same as for Schrodinger operators,
cf. [28] and section 1 of [29].) It is now easy to check that the
almost sure spectrum ~ of HW fills the intervals [~-,(1 2014 m) -1 B_ ~ and
[(1 + M) -1 B+, B+~ . By adjusting m and M, we see that ~ has an open
spectral gap as in (H8) with _ ~ (1-m)-1-B_ and + ~ (1+M)-1B+.
The main results are the following two theorems.

THEOREM Assum_ e (7-/7)-(7-~. There exist constants E~ satisfying
J5- ~ E-  B_ and B+  E+  J3+ such that ~ n (E_ , E+ ) is pure
point with exponentially decaying eigenfunctions.

THEOREM 1.2. - Assume (Hl )-(H8). The integrated density of states is
Lipschitz continuous on the interval (B_, B+).

1. It is easy to modify the proofs of Theorems 1.1-1.2 for the case
when the random variables ~i (c~) are correlated without changing the
results (see the discussion in [9, 11]).

Annales de l’Institut Henri Poincaré - Physique theorique
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2. The proofs easily apply to the situation when the disorder is such that
B- = B+ so that the unperturbed spectral gap is no longer open. To
control the location of the eigenvalues in this case, we must adjust the
coupling constant g. We refer the reader to [4] for a discussion. The 

..

proofs here can also be extended to the case when the density h has
unbounded support. We refer the reader to section 6 of [4] and [5].

3. Using the methods of this paper, one can also prove the absence of
diffusion, in the sense that

using an argument of Barbaroux [3].
Let us make some comments about the localization of classical waves.

We note that for the unperturbed operators Ho given in ( 1.17)-( 1.18), we
always have the bottom of the spectrum ~o == 0. This is easily proved using
a Weyl sequence argument making use of the bounded invertibility of the
coefficients. (In the Maxwell case, one uses a smooth localization function
such that 0.) In fact, one can verify by the same type of argument
that the above hypotheses imply that inf == 0 for any realization w.

Hence, there is no fluctuation boundary near zero energy and we do not
expect Lifshitz tail behavior for the integrated density of states as E 2014~ 0.
This indicates that we do not expect localized states near zero energy.
Physically, the absence of localized states near zero energy can also be
seen from the fact that the Rayleigh scattering cross-section for waves with
wavelength A scales like a-4. At very low energies (long wavelengths), the
Rayleigh scattering cross-section vanishes. This provides some indication
that wave propagation at low energies is similar to free wave propagation.
This is in contrast to the case of a Schrodinger operator with a positive
perturbation which pushes the bottom of the essential spectrum upwards.
Hence, the bottom of the spectrum is a fluctuation boundary. On the other
hand, near nonzero band edges, the results of Theorem 1.1 are similar to
those for band edge localization for Schrodinger operators ([4], [29]). If

a background operator Ho does have 0, then ~o is a fluctuation

boundary and we expect to have localized states near ~o. For example, we
can take -d + where Vper is a positive, periodic potential.

There is another phenomenon concerning the localization of waves which
we would like to mention which is not treated in this paper. Consider the

model constructed above with Co or Eo equal to constants. One can then
verify that ~ = IR+ . The expected localization range in this case is quite
different from electron localization. Electron localization is caused primarily
by the trapping of the particle in a potential well, whereas localization of

Vol. 70, n° 4-1999.
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light is caused primarily by backscattering. By considering the Helmholtz
equation for a wave of frequency c~ one sees that localization at low

energy is not expected at any disorder since the influence of the randomness
vanishes with the frequency. Similarly, localization is not expected at high
energy (for fixed disorder) since the influence of the disorder is very small.
Hence, for fixed disorder, one expects (if at all) localization for waves
ih a fixed, positive energy interval bounded away from .zero and infinity.
For further analysis of light localization and the Ioffe-Regel criteria for
localization, we refer to the review article by John [27]. The proof of this
conjecture remains an open problem.

There are several recent, related papers on this topic, some of which
appeared while this work was in progress. The lattice version of the

Anderson-type model with ~2 = 0 was treated by Faris [ 16, 17] in the
acoustic case with Ho = - 0, the discrete Laplacian. Figotin and Klein
proved localization for the lattice case of acoustic and electromagnetic
waves in randomly perturbed periodic media in [ 19] . Most recently, Figotin
and Klein [20, 21] studied a continuous version of these models for which
the background medium is periodic. Stollmann [38] studied a related family

d

of perturbations of the form Hw = - ~ for a family of random,

matrix valued functions These models describe anisotropic media.
Band edge localization for Schrodinger operators on the lattice was proved
in [2, 18], and for continuum models in [4, 29].

Figotin and Klein [20, 21] ] studied localization near the band edges for
Anderson-type perturbations of periodic operators Ho of the following
form. For acoustic waves, they considered operators of the form

where p = &#x3E; 0 describes the random perturbation, for g &#x3E; 0,
of a periodic background medium characterized by the strictly positive,
bounded density 03C1per. Electromagnetic waves are described by the operator
of the form

where E is a random perturbation of a background, periodic dielectric
function similar to the acoustic case. For both models, they assume that
the background periodic operator has a gap in its spectrum and prove
exponential localization near the band edges.

Annales de l’ Institut Poincaré - Physique theorique
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To see the relation between multiplicatively perturbed operators Hw
in ( 1.1 ) and ( 1. 20)-( 1. 21 ), let us define an operator Q * - ’

where we have used the fact that 0. Then, the operators in ( 1.1 ) have

the form Q*Q. It is easy to check that the operators studied by Figotin and
Klein are of the form QQ* (see Appendix 4 for a detailed discussion of
this in the electromagnetic case). It is well-known (cf. [7, 25]) that Q* Q,
restricted to the closure of the range of Q*, and restricted to the

closure of the range of Q, are unitarily equivalent. Hence the localization
results proved here apply to the models studied by Figotin and Klein

[20, 21 ] in the periodic case. In addition to the periodicity assumption, we
mention that the results of [20, 21 ] require that the coupling constant g be
taken sufficiently small for localization. They also require that the single-
site potential u satisfies 03A3i~Zd u(x - i) &#x3E; Co &#x3E; 0. These conditions, and

the periodicity for the background operator Ho, allow them to locate ~

precisely.
Both our work, and that of Figotin and Klein, require a certain rate of

decay of the density of the distribution of the random variables near the

edge of its support (see hypothesis [H6]). The recent work of Klopp [30]
on internal Lifshitz tails may allow removal of this hypothesis.

This paper is one of a series of papers concerning localization for

disordered systems, cf. [4, 8, 9, 10, 11]. Some of the results of this paper
were announced in [9].

There is an extremely large literature on random Schrodinger operators.
We refer to the monographs by Carmona and Lacroix [ 12] and by Pastur
and Figotin [34] for references to earlier papers on random operators. The

key background papers related to this work are [24, 26, 31, 37, 36, 40],
which deal primarily with the lattice case.

2. THE WEGNER ESTIMATE

In this section, we prove a Wegner estimate for local Hamiltonians valid

at all energies in the spectral gap G of Ho. For ease of notation, we
continue to write

where the potential Yw is given in (1.13) and (1.14). We will need one
result on spectral averaging in this section, Lemma 4.1, which is proven
in section 4.

Vol. 70, n° 4-1999.
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Let A C IRd be a bounded region and denote by VA == so that
= 0 for x ~ A, and define A ~ 1 + The local Hamiltonian

associated with the region A, and acting on the Hilbert space 7~, has
the form HA = where for the acoustic case d &#x3E; 1 and

?~ = L2 (IRd), and for the Maxwell case d = 3 and ?-C = L~(7R~~). In the
Maxwell case, we use the identity = A~ 1/2Po I~.oA~ ~~2,
where Po is the projection onto the zero eigenvalue subspace of Ho, and
Po - 1- Po . This results in an additional term in (2.6) that can be absorbed
into the provided g  1 / 2 . We drop the subscript in this
section. It is easy to check that VA is relatively Ho compact. Consequently,
the spectrum 03C3(N) n (B-, B+) is discrete.

Since the single-site potential u has compact support, if two regions 111
and A2 are sufficiently far apart, the local operators for i = 1, 2,
are independent random variables. In particular, if we define another local
perturbation ~4 A ~ 1+~ ~ ~A where 11 = then the difference

AA - AA has compact support near the boundary of the region A. The in-
radius of this region depends only on supp u. This overlap region, and
the consequent lack of independence, can be controlled in the multi-scale
analysis as described in [ 11 ] . Consequently, we will assume independence
for local operators associated with disjoint regions and refer the reader
to [11] ] for the details.

Let 7?A and aeA denote the probability and expectation with respect
to the random variables associated with A n ~d - 11. We denote by Tr
the trace on Let and ~A(.) denote the resolvent and the
spectral projection for respectively. We write for (Ho - 
The proof of the following theorem follows the lines of that given in [4].

We will give all the modifications necessary for the case of multiplicative
perturbations. We simply sketch those parts of the argument which are
common with the Schrodinger case given in [4].

THEOREM 2.1. - Assume (HI )-(H3), and ~7~-fN~. For any

Eo E (B-? B+) and for any ~  1 2 dist(E0, 03C3(H0)), there exists finite
constant CEo&#x3E; 0, depending on Eo, the dimension d, the (H3),
the coupling constant g, and such that:

Proof.
1. Let 11] == [Eo - ~, Eo + ~]; we write Ro for By Chebyshev’s

inequality the left hand side of (2.2) is bounded above by

Annales , de l’Institut Henri Poincaré - Physique theorique
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We control the trace by writing a perturbation-type formula for the

projection using the boundedness of Ro and the relative compactness
of We define an operator Ko by

Suppose that is an eigenfunction of H~ satisfying E 

E E 7~. In a manner similar to the derivation of the Birman-Schwinger
kernel, the eigenvalue equation can be written as

Since the spectrum of HA in the gap G is discrete, it follows easily
from (2.5 ) that,

Let ~ ~q denote the norm in the Schatten class Tg (see Simon [37]
for the results concerning these ideals that we use here). Noting that

is a positive, trace class operator,

and by the assumption on ~:

Remark. - A first result of (2.8) is the following. We take the

expectation of (2.8) and then apply Holder’s inequality twice, first on
the trace norm (cf. [35]) and then on the expectation, to obtain,

Since all of the nonzero eigenvalues of an orthogonal projector are one,
we have that == In Appendix 2, we summarize
various results on the Schatten class properties of the operator Ko.

Vol. 70, n° 4-1999.
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From this remark concerning projections and Proposition 8.4 of

Appendix 2, we obtain from (2.9),

Upon solving this inequality, we obtain,

The existence of the integrated density of states for the multiplicatively
perturbed models at energies in the unperturbed gap follows from this
result.

2. We return to (2.8). We must continue to iterate the procedure (2.6)-
(2.8) until we get q factors of Ko or Ko in the trace on the right side
of (2.8), where q is determined by (H3). We take the adjoint of (2.6)
and multiply on the left by Ko to derive the equation,

(2.12)
The trace norm of the second term on the right of (2.12) can be
estimated as above. Following that argument, we obtain,

Hence, by (2.8), we have the estimate.

If q &#x3E; 2, one continues this procedure. Returning to (2.6), one finds
an expression for by multiplying (2. 6) on the
left by I~o - 2 and on the right by 

We first bound the second term on the right. One has by cyclicity of
the trace and Holder’s inequality,

Annales de l’Institut Henri Poincare - Physique theorique
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Taking the expectation and then applying Holder’s inequalities and

Proposition 8.2, one can bound the expectation of the left hand side
of (2.16) by:

for some constant Co. Consequently, results (2.14)-(2.17) imply the
bound,

s

for some constant depending on q and Eo. The second term on
the right in (2.18) exhibits the correct volume dependence, so we
concentrate on the first term.

3. We now estimate the expectation on the right hand side of (2.18).
From the definition of Ko given in (2.4), we find that

where

and

We expand the potential V~ = where 

and A = A U Zd. For each q-tuple of indices {z} ~ ( i 1, ... , iq) ~ 11q ,
we define:

Similarly, for each of indices ~i~ - (zi,..., iq+1) E 
we define

We prove in the Appendix 2 that (H3 ) implies that == 

for either j = 1 and q’ == q or j == 2 and q’ = q +1. In terms of these

Vol. 70, n° 4-1999.



396 J. M. COMBES, P. D. HISLOP AND A. TIP

operators, the first term on the right side of (2.18) becomes the sum
of two expressions. We first look at the expression involving 

Since is compact, we write it in terms of its singular value
decomposition. For each multi-index ~z~, there exists a pair of

orthonormal bases, and ~~Zl , and nonnegative numbers
~ ~ ’ ~ all independent of such that

Inserting the representation (2.25) into (2.24) and expanding the trace
we obtain

where == Recalling that &#x3E; 0, we
bound the k-sum above bv:

4. We now apply the spectral averaging theorem (see section 4, [8] or
[10]) to each term in (2.27), using the independence of the to

define a new density A~(A). For example, the first term of (2.27) can
be bounded as:

AnnaZes de Henri Poincare - Physique theorique
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where C1 is finite according to (H6). An analogous calculation leads
to a similar estimate for the second term involving K(2)i. From (2.26)-
(2.28), we obtain an upper bound for the first term on the right hand
side of (2.18),

In the Appendix 2, we prove in Proposition 8.2 that ~ finite constant

CEo&#x3E; 0, depending only on and the dimension

d &#x3E; 1, such that (2.29) is bounded above by

Results (2.18) and (2.30) prove the theorem. D

3. GREEN’S FUNCTION ESTIMATES

FOR MULTIPLICATIVELY PERTURBED OPERATORS

The proof of Theorem 1.1 for random families of multiplicatively
perturbed operators of the form ( 1.1 ), where the random coefficient 
is given in ( 1.12)-( 1.15 ), requires an initial length-scale estimate for the
local Hamiltonians HA = = We prove this estimate, called

[H 1 ] (~yo, .~o ) in [4, 8], in this section. At the end of this section, we
show how to use the results of sections 2 and 3 to prove the almost

sure exponential decay for the Green’s function. The Schrodinger operator
version of these results are given in [4]. We must prove that if the local
Hamiltonians create eigenvalues in the unperturbed spectral gap C of Ho,
then we can control the distance from these eigenvalues to the band edges
of 03A3 with a good probability. (At the end of this section, we consider the

question of proving the existence of such eigenvalues.) This will allow us
to apply the Combes-Thomas estimate of [4] (see Appendix 3) and prove
the assumption [H 1 ] (.~o , ~yo ~ . We will often use the elementary fact that
~c E if and only if 0 E 
We continue to use the notation of section 2. The finite volume

Hamiltonians H~ = Hn,W,Wf are defined as

Vol. 70, n ° 4-1999.



398 J. M. COMBES, P. D. HISLOP AND A. TIP

We will suppress the index w’ in this section as it will play no role
in the calculations. Since has compact support, it is a relatively
compact perturbation of Ho (or, ( 1 - Po)Ho, in the Maxwell case) and
hence One of our first tasks is to locate precisely
the eigenvalues of in the gap G = (B_ , B+ ) of Ho, with good
probability. We will often write H~ for and for (1 + 
Let us recall that g is fixed so that A-1 exists. When no confusion will
result, we will drop the subscript A.
The condition on the resolvent of written as

l~~(z) _ z)-1, when it exists, is the following. For any x E C2,
we define the first-order, local differential operator by

where ho is the first-order differential operator defined in the acoustic case
by

and in the Maxwell case by

where p - This operator is localized on the support of ~x. For any
fixed 8 &#x3E; 0 small, we let A£,8 == {:r E 11~ ~ I &#x3E; 8}. We will
use ~l to denote a function satisfying ~l|l,03B4 = 1, supp ~l C l, and
~l ~ 0. It follows that supp ~~l c A£BA£,8 and W(~l) is also localized in
this region. The condition [H 1 ] (-yo, .~o ) that we must verify is the following
[H1] (~yo, .~o ) : &#x3E; 0 and £0 » 1 such that "’10£0 » 1 and

for E near the band edges ± of 03A3 and for some 03BE &#x3E; 2d.

We prove 
" this estimate " in two steps.

1. We first prove 
" that for 03B4 1 &#x3E; 0 small,

with good probability.
2. We then apply the improved Combes-Thomas result of [4] to conclude

exponential decay at energies E E (B_ - ~/2, B) U (B+, B+ + b/2)
Annales de Henri Poincaré - Physique theorique
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with a good probability. This allows us to verify for

energies in this interval with an appropriate choice of and £0.
We now discuss the location of the spectrum of the finite volume

Hamiltonians in the unperturbed spectral gap G. Recall that we
assumed that the family has an almost sure spectrum ~ and that
this set has an open spectral gap (B_ , B+ ) . The probability space is
n == 

LEMMA 3.1. - If  E for some E 03A3.

Proof - Let 03C803C90 be an eigenfunction of H,03C90 with eigenvalue
=  : H,03C90 03C803C90 = = 1. We set 03C603C90 = 

and note that there exist finite, nonzero constants C 1, C2, depending only
on g, u, and supp h such that  C2 . For any R, such that
 ~~ B, and for any v &#x3E; 0, consider the following events

and

We set == Iv n Let ~ E C2 be a smoothed characteristic
function with supp X C A2, 0 ::; 1, and ~|1 == 1. For R &#x3E; 1, set

== so that == for I0152I == 0,1,2. Choose
Ri sufficiently large so ~~R103C603C90~ &#x3E; l/(2Ci), and for R &#x3E; Ri, we define
~R == so that == 1. Then, by the definition of ~p
and the local Hamiltonians,

and it follows that for all w E B R,v,

The commutator is estimated as follows. For the acoustic model, the

unperturbed Hamiltonian (1.6) is Ho = so we

have,
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For the Maxwell case Ho = -(l+6o)’~~(6-p)~(l+6o)"~~ so we obtain,

where

Now is an eigenfunction of Ho - for eigenvalue zero, so we
estimate the first term on the right in (3.7) by

and the constant C3 is independent of R. A similar estimate holds for the
first term on the right in (3.9). Hence, by taking R sufficiently large, it
follows from (3.4) that

This shows that for any v &#x3E; 0, n ~-v, v~ ~ ~ with probability
&#x3E; O. Since the spectrum of the family {Hw}

is deterministic, this implies M E 2:. 0

LEMMA 3.2. - Suppose that the local potential is positive. be a

normalized eigenfunction o, f’ for eigenvalue M. Defirte 
so that CPw satisfies

Then, we have the lower bound

Proof - Since M~V,03C9 &#x3E; under the hypothesis that &#x3E; 0,
we have
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The eigenvalue equation gives = 2014(~o " so that

which is (3.13).

LEMMA 3.3. - 2 ~ B~ - and set 0  8 #  

~min(b+, b_ ~~ ~. Suppose that the random coefficients satisfy either of the ,
z ~ l1~ satisfy

where , we take X = m for B_ and X = M for # Then, under the B-
condition, we have

and, under the B+ condition, we have

Proof - Without loss of generality, we assume has an eigenvalue
[.8+,.8+ + 8]. Furthermore, we can assume that &#x3E; 0,

since by Lemma 3.1, we always have  &#x3E; B+ and the eigenvalues of
are decreasing functions of the coupling constants ~Z (c,~) ~i E 11 .

This fact follows, for example, from a variant of the Feynman-Hellman
formula and the positivity of ~. Indeed, an eigenfunction 1/;w of for

eigenvalue satisfies the identity

Upon differentiating this equation with respect to A,, we obtain,

For 9 E IR, define ~(9) = 1 + The family T(9) =
~((9)’~~o~(~)"~~ for 9 in a small neighborhood of 9o = 1, is an

analytic type A family which is self-adjoint for 03B8 real. If  has multiplicity
m, there are at most m functions (k)(03B8), analytic in 03B8 for 03B8 near 80 = l,
and which satisfy ~~~(9) = Let ~~~&#x3E; (8) be an eigenfunction
corresponding to the eigenvalue ~c~~&#x3E; (8), with !!~~(9)!! = 1, for (9 real
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11 small. Applying the modified Feynman-Hellman formula again,
we find

We now assume condition (3.14) that  (1 - 
Vi E A, and fix

Applying Lemma 3.2 to in (3.19) under these conditions, and using
the fact that ~c~~~ (8)  ~  B+, we obtain

Upon integrating over [1, ()1], we get, by monotonicity of ~~,~k~(B) for H real,

This shows that the local Hamiltonian

has an eigenvalue outside of E which contradicts Lemma 3.1. D

Remark. - Equation (3.18) shows that the eigenvalues are decreasing
functions of the coupling constants. This is in contrast to the Schrodinger
case for which the eigenvalues are increasing functions of the coupling
constants (see [4], equation (5.5)).
The main consequence of these three lemmas is the following proposition

on the location of the spectrum of the local Hamiltonians.
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PROPOSITION 3.1. - For 0  8  (gB+M~ ) -1 [min(b+, b_ )~ 2, we have

and

~~

Proo_f. - The probability that Ài(W)  (8+,8_)] -2 )X ,
Vz E A, is given by

We choose X = m for B- and X = M for B+, and write A =

min (!L, !)+). The proposition now follows by expanding this probability
and from Lemma 3.3. D

We note that hypothesis (H6) on the decay of the tail of the density h
near the endpoints of its support m and M is essential in order to control
the probability in Proposition 3.1.

It remains to verify the initial step of the multiscale analysis, namely
[H 1 ] (~yo , of [8] . Since there is no classically forbidden region for 
we use the Combes-Thomas technique [ 13] rather than tunneling estimates.
We verify by combining Proposition 3.1 on the location of the

spectrum of 7~,~ and the Combes-Thomas exponential decay estimate.
The improved Combes-Thomas estimate of [4] is discussed in Appendix 3.
We first give the decay estimate for the localized resolvent and then

comment on the gradient term.

PROPOSITION 3.2. - Let ~i, i = 1,2, be two functions with ~~i~~  I?
supp ~1 G 039Bl/3 and supp ~2 localized near ~039Bl and 03B4± ~ 1 2|± - B±|.
For ~3 &#x3E; 0 (H6), consider &#x3E; 0 such that 0  v 

4/3(2/? + 3~. Then_ 3~ = ~(M~+,~M) such that &#x3E; ~ and
~E e (B_ - lv-20, -] ~ [+, + + lv-20),

with probability 2:: 1 - füÇ, for some ~ &#x3E; 2d.

Vol. 70, n° 4-1999.



404 J. M. COMBES, P. D. HISLOP AND A. TIP

Proof - From Proposition 3.1 and (H6), we compute the probability that
is at a distance 8 = 2~’~ from .8~,

where X = m for B_ and X == M for B+. A simple computation
shows that the right side of (3.21 ) is bounded below by 1 - füÇ for

some ç &#x3E; 2d provided v satisfies 0  v  4/3(2{3 + 3d)-1. We now
apply Theorem 9.1 to Let E E [.8- - .~0-2, B_ ) and following
the notation of Theorem 9.1, let ð- == dist(.8- - b, E) &#x3E; 8/2 = .~0-2
and ð+ &#x3E; 1.8+ - B.. Since dist (supp ~2, supp ~1) &#x3E; fo/3 (in dimension
d &#x3E; 9, this is no longer true; one has to replace fo/3 by for the
diameter of the inner cube), we obtain from Theorem 9.1,

The result follows by taking .~o large. D

PROPOSITION 3.3. - 3~ such that &#x3E; ~ hypothesis [HI] ] (~yo , ~o )
holds VE E (.8- - .~0-2, B_~ LJ [.8+,.8+ + .~0-2) and any v satisfying
0  v  4,Q(2,~ ~ 3d)-1, with (3 as in (H6).
Proof - We write the details for the acoustic case. The Maxwell case can

be treated the same way with p - -zV replaced by p - E. As in Lemma 3.1,
of [9], we write

for a function localized within distance v of Let xi, i = 1,2,
be smooth functions such that = = and supp ~i is
localized within a distance 2v for i = 1 and 3v for i = 2, of Then,
we write for each j and any u E 
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Taking u == ~l/3f, we see that (3.22) is bounded above as in

Proposition 3.1 provided is large enough and for any f &#x3E; ~, with a
probability &#x3E; 1- f-Ç since we have is bounded. 0

Finally, we consider the question as to whether local, multiplicative
perturbations can actually create eigenvalues in the spectral gap G of No.
Recall that for Schrodinger operators, the proof of the existence of

eigenvalues in a spectral gap G of a Schrodinger operator Ho is rather

easy under certain conditions (cf. [14] for a complete discussion). Consider
a local, additive perturbation of Ho of the form H ( ~ ) = Ho - where

supp W is compact and the potential W has fixed sign. In this case,

the Birman-Schwinger principle states that E E G is an eigenvalue of

H(a) provided is an eigenvalue of the nonzero, compact, self-adjoint
operator W1~2(Hp - E)-1W1~2. By adjusting A, we see that any E E G
is an eigenvalue for some 
The Birman-Schwinger principle for multiplicatively perturbed operators

is similar. Suppose that Ho has a spectral gap G as in (H2) and

E E G. Let V be a positive potential of compact support and define

~4(A) = 1 + aY &#x3E; 0 for A &#x3E; 0. It is easy to show that E is an eigenvalue
of H = A ( ~ ) -1 ~ 2 Hp A ( ~ ) -1 ~ 2 ~f and only if the compact operator

has an eigenvalue 1/AE. As K(E) is a nonzero, compact, self-adjoint
operator, it follows that each E E G is an eigenvalue for some ~(A).
This proves that a local, multiplicative perturbation A = 1 + V of Ho can
create an eigenvalue E in the unperturbed spectral gap G. Consequently,
by Lemma 3.1, the almost sure spectrum E n G / 0 at least in the large
disorder regime. This verifies hypothesis (H8) for these examples.

4. SPECTRAL AVERAGING AND KOTANI’S TRICK

We apply the method of differential inequalities as used in [ 10] to obtain
the following key technical lemma. We consider a one-parameter family jH~
of self-adjoint operators on a Hilbert space 7~, which are multiplicative
perturbations of a self-adjoint operator Ho (note that this Ho is not

necessarily the operator appearing in ( 1.1 )). We show at the end of section 5
how to associate a one-parameter family of multiplicatively perturbed
operators to our acoustic and Maxwell models ( 1.1 ). Let Ca - 1 + A~,
with 7/ &#x3E; 0, sup ~ = ~0  oo. For 0  03BA  1, and any Mo satisfying
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0  Mo  oo, let J~ ~ [(/~ - 1 ) ~0 1, Mo ) . Then for A E J~, the function
Ca is invertible and (1+~oMo)~   1 /~. We define 7~ A E J~, by
Ha - C~ ~ 7:foC~~~. It is convenient to consider the family of operators
H03BB(z) == Ho - zC03BB. For 03B4 ~ Imz ~ 0, and A E J03BA, the operator Ha ( z ) is
invertible. The injectivity of this family is easily seen from the estimate

which holds for all 03C6 E D(H«). An analogous estimate holds for 
We set ~(~)’B 0. The boundedness of the inverse
follows from the estimate,

Note that we have

Below, a dot will denote differentiation with respect to A.

LEMMA 4.1. - For E &#x3E; 0 and 03B4 &#x3E; 0, define

Co &#x3E; 0, independent of 8, such that foY any real positive ’ g E C5 ( J ~)
and E 7-l,

The constant Co depends only on r~ g ~~&#x3E; ~ ~ 1, p = 0,1, and 2.

Proof.
1. Let z = E + We compute the first two A derivatives of Ha(z).
These are

and

From (4.4) and (4.6), we obtain,
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We compute a lower bound

where

By the Schwarz inequality and (4.9), we obtain

Similarly, one establishes the inequalities,

so an estimate similar to (4.11) holds for K*.

2. We define for g &#x3E; 0 and g E C20(J03BA), and for all 03C6 E 7-l, with ~ 03C6 11== 1,

From (4.11 ), we have the a priori estimate

Our goal is to obtain an a priori estimate on E)/dE. To this end, we
calculate two derivatives

and

since, by (4.7), the second derivative of Ha with respect to A vanishes.

This shows that can be replaced by Using this result and

differentiating F(b, E), we obtain

After integrating by parts in (4.17), we obtain
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Using the estimate (4.11 ), this gives

We integrate this inequality to obtain

Recalling that ~F(l,b)~ I  c2E-~, we get

where Ci are independent of E, E, and 8. Note that this improves (4.14).
3. To iterate this procedure once more, we need an estimate similar to
(4. 21 ) for F(~6) defined by

Repeating the derivations above, we arrive at (4.17) with g replaced by g’.
Consequently, we get as above

Integrating this inequality results in the bound

4. Finally, we use estimate (4.23) in the right side of (4.18) to obtain

Integrating this inequality, we find that Beo &#x3E; 0 depending only on
= 0,1,2. so that

Taking E --+ 0 and applying the Lebesgue Dominated Convergence Theorem
yields the result. 0
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Remark. - We note the differential inequality method used in the proof
applies to more general families of multiplicatively perturbed operators of
the form ~ = cr E IR, than treated here. For the family of
operators R~(~) described above, the dependence on A is linear. In this

case, the method of Simon and Wolff [36] can also be used (see also [8]).
Next, we obtain a version of Kotani’ s trick from Lemma 4.1. Let ~(’)

be the spectral family for N~.

COROLLARY 4.1. - In addition to the assumptions of Lemma 4.1, assume
that cyclic for H03BB in the sense E and

~ E dense in each ~ E J~. Then for any Borel subset L c R+
with ILl = 0, one has E03BB(L) = 0 Lebesgue a.e. 03BB E J03BA.

Proof - It follows from Stone’s formula that for any Borel set I~ C R~
and for all 03C6 E H,

Then for any g &#x3E; 0, g E C20(J03BA), Fubini’ s Theorem and (4.24) imply that

By Lemma 4.1, the integral over J03BA is uniformly bounded in 03B4 so

where c(K) depends inf K, and Co as in Lemma 4.1. Finally
using the positivity of g, if L c R+ L ~ = 0, then from (4.25) and
the cyclicity assumption,

for Lebesgue a.e. A E J~. Since CB is invertible, the result follows. D
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5. PERTURBATION OF SINGULAR SPECTRA

We continue our study of multiplicatively perturbed operators of the
form Ha, ~ E J~ on the Hilbert space ~C, as in section 4. We keep all
notation of that section, so

and

for some non-negative, bounded function ~ and for A E J~. We introduce
a bounded operator 1 - Ca 1, and note that by (5.2)

As in section 4, we define Ra ( z ) - ( Ho - which exists for

0, and we write Ra ( z ) _ ( Ha - z ) -1, whenever it exists. As in [8],
we consider two a priori assumptions on Ro (z) relative to an interval

I C l~+ disjoint from zero.

(AI) is compact for all z E (C, Imz &#x3E; 0.

(A2) ~7o c 7, 1101 == such that for all E E Io,

In the Maxwell case, the operator Ho in condition (Al) is replaced by
Let EE E E and denote by ~

the restriction of ~ to this cyclic subspace.

THEOREM 5.1. - Assume (Al )-(A2). Then n I = ~ VA E J~, and
~(~) n I c 10 and is pure point for a.e. ~ E J~.
Proof - We first derive the analog of the Aronszajn-Donoghue formula.

For z E ([), &#x3E; 0,

Multiplying this formula on the right by ~ and re-arranging it, we find
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In the Maxwell case, the resolvent Ro (z) in (5.4) is written as Ro (z) ==

+ For 1.B1  1, the term (1 + on the

right side of (5.4), has norm less than one. (This can be assumed, without
loss of generality, by adjusting the parameter g, if necessary.) Hence, this
term, which is independent of z, is invertible. After inverting this term, the
term containing f~- is compact and invertible for almost all values of E, as
described below. Condition (Al) implies that is compact
for 0. It follows that 1 - is invertible by the
Fredholm Theorem. For, if it is not invertible at some z with 0,
it follows that 1 - has an eigenvalue 0. It is easy to

see that this implies that Ha would have an eigenvalue z. Furthermore, for
E E 10, condition (A2) implies that

exists and that this non-trivial operator is compact. Applying Fredholm
theory and the Bounded Inverse Theorem, we see that this limit is boundedly
invertible if and only if there is no non-trivial, -valued solution of

for E E 7o. We show that when (5.5) holds, E is an eigenvalue of ~.
We sketch the proof as it follows the same lines as [8]. Let us define
a vector ’l/JE,&#x3E;. == + i E ) Ba C~ ~ 2 ~ . It follow s from the above that

w - lim~~0 1/;E,&#x3E;. == 1/;&#x3E;. exists in ?-C. For any 03C6 E ,

so 1/;&#x3E;. / 0 since 03BE ~ 0 and 03C6 E is arbitrary. It follows that

Replacing ~ in both equations (5.6)-(5.7) by C~~2~, we obtain

By the identity (1 + = CB, it now follows from (5.8) that
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so Ca~2~~ is an eigenfunction of with eigenvalue E. Since the set of
eigenvalues of Ha is countable, there exists a set 7~ c I of full measure
for which

exists The resolvent formula (5.4), condition (A.2), and this
result imply that 

for some finite constant C(E). This now implies that ~ I = 03C6,
E J~. By the theorem of de la Vallee-Poussin, these results also imply

that n 1 c 1 B 10, which has measure zero. As 1 C I~+ is disjoint
from zero, it now follows from Corollary 4.1 that n 1 = (~ a.e.
A E J~. This proves the theorem. D

We apply Theorem 5.1 to families of multiplicatively perturbed
operators ( 1.13)-( 1.16) as follows. Fix the parameter and consider
variations of 03C9 of the form w ---+ (D with

and

Dropping the frozen subscript 03C9’, we have

where Yw(x) _ ~ Let C&#x3E;. == (1-f-gYw)(1-f-gYw)-1,
iE~d

in analogy with the multiplier C&#x3E;. introduced above. To see the connection,
let us define a parameter 03BB ~ 03BB0() - 03BB0(03C9). Because of the supph, we
have 03BB E Ào(w), M - Ào(w)]. By definition, we have
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so that

gu(1 + and note that yy &#x3E; 0. We observe that CB so
defined is invertible for A E ~-m - Ao(~), M - Ao(~)]. Consequently, the
results of Lemma 4.1, Corollary 4.1, and Theorem 5.1 hold for

with w frozen and for A in the interval specified above.
We must also clarify the cyclicity assumption of Theorem 5.1 when

applied to our models. For the acoustic model, the Hilbert space is

actually equal to the entire Hilbert space Because of the

reduction described above, it suffices to show that E

is dense in for any w. Due to the invertibility of 
this result is implied by the density of {f(Ho - 
for some real Eo in the resolvent set of In the case that H~ _ -0+Y~,
it is shown in Appendix 2 of [8] that for and for any bounded,

open, non-empty subset A c the span of the set 

and f E is dense in The demonstration of this is based

on a theorem of F. H. Lin [33] concerning unique continuation for the
parabolic equation associated with No.

In the Maxwell case, we consider vectors of the form where

(~ E LZ(11~3,l1;3). The Maxwell operator has the form

as described in section 1. We need to prove density in the orthogonal
complement of ker Q. It is easy to check that

Since the coefficient (1 + Ew) is boundedly invertible, it suffices to examine
the states of the form for 03C8 in some dense set. The matrix

0394I3 is diagonal. It follows as above that then set of vectors of the form

is dense in L2 (IR3, ~G’3). Since the projector II is onto the subspace
~L2 (~3’ ~3 ~ ~ the image of the dense set is dense. Finally, it follows

from the coments on the kernel of Q that the set of vectors of the form

( 1 + is dense on the orthogonal complement of ker Q, and
the result follows.
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6. PROOF OF LOCALIZATION

The proof of localization near the unperturbed spectral gaps follows as
in [4, 8], given the Wegner estimate, Theorem 2.1, and the initial decay
estimate [H1]( 70, lo) as established in Proposition 3.3. A multiscale analysis
is used to prove the uniform boundedness estimate, assumption (Al) of
section 5, needed in the proof of Theorem 5.1. With regard to the multiscale
analysis as presented in Appendix 1 of [8], we mention the modifications
necessary in the present case. If A c IRd is a bounded region, we define
the local operator H~ - A~ 1 ~ 2 Ho A~ 1 ~ 2 , as above, on in the
acoustic case, and on L~(2R~(F~) in the Maxwell case. The geometric
resolvent equation (GRE) takes the following form. Suppose A c A’ are
two bounded regions and xn is a smoothed characteristic function on A
such that is localized near the boundary of A. In the Maxwell case,
we write x~ for the diagonal matrix The GRE equation is

The commutator is a first-order differential operator (a matrix operator in
the Maxwell case) with support on We let

where Ho is given by

With this definition, the GRE assumes its usual form

Although now depends on w, the dependence is not important due
to the uniform boundedness of .

Next, we recall an equality of Agmon ( [ 1 ], pg. 20, eqn. 1.16), which is
useful for bounding the product of a gradient and the resolvent:

which is valid for all suitable u E H1(IRd) and smooth 1/;. (We mention
that this identity was incorrectly stated on page 175 of [8], although the
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inequality (A.11) is correct.) In the acoustic case, the operator WA,W has
the form,

We apply the Agmon identity (6.5) to the second term on the right side
of (6.6). Because of the boundedness of the coefficient we take

~u on the left side of (6.5) to be of the form ~~ u, with 1/;j = and

u = + for any normalized ~. In computing
the right side of (6.5), we use the fact that x1~~3 = O. To obtain an

estimate on we note that

Setting l~ = j and summing over this index, we find that there exist

constants C1 &#x3E; 0 and C2 &#x3E; 0, depending on for

a multi-index lal ( = 0,1, and 2, such that

as in [8], (A.11 ). A similar calculation in the Maxwell case leads to the

analog of (6.7).
With these modifications, the proof of (Al) using the multiscale analysis

proceeds as in [8]. The probabilistic part of the argument is the same as
in [8].

These results suffice to prove Theorem 1.1 in the manner as given in [8].

APPENDIX 1

Properties of multiplicatively perturbed, periodic families

We summarize the situation when the background operator Ho is invariant
with respect to the group of translations on IRd, with d = 3 in the Maxwell
case. For example, suppose the unperturbed dielectric function ( 1 + 60)
in ( 1.10), or the unperturbed sound speed Co and density p in ( 1.6), are

r-periodic functions, where r is a d-dimensional subgroup of Then,
due to the nature of the Anderson-type perturbation ( 1.12), the perturbed
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families ( 1.16) will be r-periodic. We would like to verify the conditions
necessary so that the family of random operators ( 1.16) has a deterministic
spectrum, as discussed after condition (H7) in section 1.

As in section 1, the families of random operators have the form

for X = A or X = M, the acoustic or Maxwell case, respectively. The
random coefficients are given in ( 1.12)-( 1.16). It is clear that under
these conditions these operators are self-adjoint on H2 (IRd) for X = A,
and on H2(IR3,~G’3) for X = M.

LEMMA 7.1. - The family of random operators defined in (7.1 ) is
measurable.

Proof - We establish the measurability of the function E

S2 ~ It suffices (cf., [ 12] ) to prove that the resolvent

~,~(~) = (Hw W, - z)-1 is weakly measurable. Under assumptions on the
random variables, the potential u, and the coupling constant g, it is clear that

for some constant 0  Co  oo, and for all (~,a/) E H X fV. The
bounded multiplication operator ~J~ is measurable. Let p : R~ 2014~
[0,1] be compactly supported and such that p &#x3E; 0, p![0,l] = 1.

Define p~ (x) - p(x/~) for A &#x3E; 0. For any non-negative, self-adjoint
operator A, (1 - /~(~4)) ---+ 0 strongly as A ---+ oo. We define the resolvent
of a cut-off Ho by

By the resolvent formula, we obtain,

The right side converges strongly to zero since 
is bounded (recall that is bounded). Now the operator

A~,1~2(Ho is measurable. To see this, recall that if

{~ ~ ~ e ~} is an orthonormal basis, !~)(~!} is the
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set of corresponding rank-one projections, then Ei -+ 1 strongly.
Consequently, we have

and each term on the right side is measurable. Consequently, ~) is
measurable and by the strong convergence of (7.4), we get the measurability
of 0

PROPOSITION 7.1. - The family of random operators defined in f7.7~ with
the coefficients satisfying hypotheses and (H7) has a deterministic

spectrum. That is, there exists a closed subset ~ c IR such that cr(7:f~~~) = ~
for almost every 

Proof - This follows now by standard results ([12], Chapter 5) given the

measurability of the family, the ergodicity of the translation subgroup r,
and the invariance of the operators under the action of F. Note that in the

acoustic case, the two coefficients Eo and p of Ho must both be invariant
with respect to the subgroup F. D

We now turn to some examples of periodic background operators Ho for
which there exists a gap in the spectrum as demanded in hypothesis (H2).
Materials with periodic dielectric properties, for which the periodicity
matches optical wavelengths, are called Photonic Crystals. The classical
wave spectrum of such materials will consist of band structure, which can

be established using standard Floquet theory (cf. [32]). The main question is
whether there are materials with open gaps in the spectrum. The presence of

an open gap implies that electromagnetic waves at certain frequencies will
not propagate in the material. The existence of open gaps in the spectrum of

periodic acoustic and Maxwell operators has been studied for certain models

by Figotin and Kuchment [22, 23]. They prove the existence of open gaps
for two-component media with high dielectric contrast. These materials
consist of host medium with a dielectric constant Eh &#x3E; 1 into which are

embedded "atoms" modeled by cubic regions of dielectric constant Ea = 1.
The "atomic cubes" are nonoverlapping and centered on the lattice. The
host material fills the corridor regions between the cubes and it is assumed
that the diameter 8 « 1 of these corridors is small. Kuchment and

Figotin prove the existence of gaps in the spectrum of the periodic acoustic

operator in d = 2, 3 dimensions, and the periodic Maxwell equations in
d = 2 dimensions when, roughly speaking, Eh is sufficiently large and 03B4

is sufficiently small.
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A refinement of this modeling of the atoms is given by replacing
the regions where Ea = 1 by a more realistic approximation allowing
radiative transitions. This type of periodic media is called an optical atomic
lattice. Physically, these lattices are composed of periodic arrays of atoms
held together by the interference patterns created by crossed laser beams..
The band structure of a dipolar lattice was computed in [39]. This band
structure is characterized by two dimensionless parameters. The authors
found conditions on these parameters for which there always exists an open
gap in the optical spectrum. They also confirmed the presence of open gaps
for certain values of these parameters in the scalar wave approximation
(acoustic waves). These materials are of interest because radiation from
atoms in the material, whose frequency lies in the optical band gap, will
be suppressed.

APPENDIX 2

A summary of certain trace ideal estimates

In this appendix, we summarize the trace ideal estimates needed in
the proof of the Wegner estimate, Theorem 2.1. Recall that the pair of
multi-indexed operators = 1,2, are defined in (2.22) and (2.23),
respectively. The following lemma is a direct consequence of the trace ideal
assumption (H3) and the Holder inequality for trace ideals:

for nonnegative numbers r, s, q satisfying 1 /r = ( 1 /p) -f- ( 1 /q) (cf. [35]).

LEMMA 8.1. - Assume (Hl )-(H3) and (H7). Then is a trace class

operator where, for j = 1, the is a q-tuple, and for j = 2, the set
{i} is a q -+- 1-tuple. There exists a finite constant CEo &#x3E;_0, depending only
on Eo)-1 and d 2 1, such that 111 ~ G’Eo.
The main result of this appendix is the following proposition which

establishes (2.30).

PROPOSITION 8.1. - Under the assumptions of Lemma 8.1, for any Eo E
( B_ , constant CEo&#x3E; 0, depending only on Eo ) -1
and d 2:: l, such that

l’Institut Henri Poincaré - Physique theorique



419BAND EDGE LOCALIZATION FOR RANDOM MEDIA

For the sake of completeness, we will sketch the outline of the proof of

Proposition 8.1 in this appendix, and refer the reader to [4] for the details.
The following calculations concern only the unperturbed Hamiltonians Ho,
as given in ( 1.6) and ( 1.10). We assume the existence of a spectral gap
for Ho and fix Eo C ( B _ , B+ ) C p(Ho). To simplify the notation, we
write I~o _ ( Ho - Eo ) -1.
The first step in the proof of Proposition 8.1 is a variant of the Combes-

Thomas result (see Appendix 3) on the decay of the localized resolvent.
The proof follows that of Lemma 7.3 in [4] .

LEMMA 8.2. - Assume (Hl )-(H3) and (H7). Suppose that xl, x2 E

C°° (IRd), with supp xl compact and such that supp x2 lies in a half-space
disjoint from supp r ~i ~~ = 1, dist(supp x 1, supp x2 ) 2:: a &#x3E; 0, for some
a &#x3E; 0. Then, the operator ~1R0~2 E .:11. Furthermore, there exist finite
constants D &#x3E; 0, a &#x3E; 0 such that

where D and a depend only on 

The main idea in the proof of Proposition 8.1 is to use the exponential
decay, as described in Lemma 8.2, to control the summations whenever two
sites im and i~ are sufficiently far apart. This is done as follows. We divide
the set of indices {i} c Aq’ into two sets, according to whether there is a
pair of successive indices far apart relative to the size of the support of u.

2diam suppu and choose any a &#x3E; 0 so that ~  a  Then,

in~ I &#x3E; a, we have dist(suppuin , suppuim) &#x3E; a/2. By Lemma 8.2,
this implies that decays exponentially. A q’-tuple {i} is in
7i C Aq’ &#x3E; = 2, 3, ... q’ . Let 12 be the complementary
set of indices. The sum over 7i is easily seen to be bounded above by

for a constant depending on suppu, the dimension d, and
the integer q. As for the sum over I2, we first sum over all i1 such

that there exists some q’ - 1-tuple (i2, ... , for which (i 1, ... , E ~2.
Whenever i211 I &#x3E; ~ we use Lemma 8.2 to evaluate the trace norm.
Whenever - i211 I  a, we simply bound the operator norm of u1R0u2
by the constant C ( a, d,1 ), which is independent of We continue in

this way until getting to the last pair of summation indices. Then, we use
the exponential decay when the points are separate or the fact that the
sum is independent of IAI when the points are close. We remark that 
can be evaluated exactly as in [4] if we first take the adjoint, or, we can
commute Ui1 1 through the first resolvent.
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The last facts that we need in section 2 are given in the following
proposition. The proof is given in [4) and follows the same lines as

sketched above.

PROPOSITION 8.2. - Let Ko - A1 ~2.RpY~A-1/2, then there exists a finite
constant Co, depending only on (dist(a- ( Ho ) , Eo ) ) - l, the dimension d, and q,
so that

APPENDIX 3

Combes-Thomas estimates on the resolvent

We summarize the major parts of the improved Combes-Thomas estimate
[ 13 ] given in [4] .

LEMMA 9.1. - Let A and B be two self-adjoint operators such that
d~ - n &#x3E; 0, and  1. Then,

(i) FoY ,~ E IF~ s.t. 1131  2 d+d_, one has 0 E p(A ~ 
(ii) For {3 E IR as in (i),

Proof - Let P~ be the spectral projectors for A corresponding to the
sets ~(~4) n respectively and define u~ - By the Schwarz
inequality one has

where we again used the Schwarz inequality to estimate the inner product.
It follows that

and since this is independent of the sign of ,~, the lemma follows. 0
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Remark. - We have assumed that both d~ are finite so that 0 belongs to
a spectral gap of A of finite width. If 0 is below the bottom of the spectrum
of A, the distance d_ is not defined. In this case, the usual Combes-Thomas

argument gives an exponential factor yId;..
PROPOSITION 9.1. - Let H be a semibounded self-adjoint operator with a

spectral gap G == (E_, E+) C p(H). Let W be a symmetric operator such
that D(W) ~ D((H_ + Co) 2 ) and Co) 2 W (H + CO)-211  1, .for
some Co such that H-~-~’o &#x3E; 1. For any E E G, let ð.~ == dist(E, E). Then,
we have

. (i) The energy E E p ( H -I- for all real (3 satisfying

(ii) for any real 13 and energy E as in (i),

Proof. - Let E E G and Co be as above. Define a self-adjoint operator
A - (H + E) and jB = (H + + C~)-z. By
hypothesis, the operator B is self-adjoint and satisfies  1. Note that

0 E and

~ = n ~, 0) = A±(E~ + &#x3E; 0 (9.2)

Applying Lemma 3.1 to these operators A and .B, we see that for ,~ as
in (i), 0 E p(A + z/3B) and that

Let Pt be as in the proof of Lemma 3.1. For any w E 

since &#x3E; 1. We now repeat estimate (3 .1 ) taking u == 
This gives
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Since and d~ are defined in (3.2), result (ii) follows
from (3.3) and Lemma 3.1. 0

We now sketch the application of these results to multiplicatively
perturbed operators of the form

where Ho has the form

Since the coefficients play no role in this discussion, let us define ~4 as
follows:

We define a smoothed distance function d(x) == (1 + IIxI12)1/2. Let cx E IR.
We compute the unitary conjugation of Ho by In either case, the

operator can be written in the form

where

and

Under the hypotheses of section 1, we show that admits
an extension to an analytic type-A family of operators in a strip

~z E ~G’ I  for any ao &#x3E; 0. Let Q(c~) _
-C~A-1 ~2Q1A-1~2 + C~2A-1Q2. Then it suffices to show that for some
z E 

It is easy to check that for any 0152O &#x3E; 0, we have the bound

for a constant depending on co. for 1131 = 1, 2.
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THEOREM 9.1. - Let Ho be given as in (l.17)-(l.18) satisfying (HI ),
and let A be a bounded, invertible multiplication operator satisfying
0  ( ~ A1, for two finite constants Ao and A1. Then the dilated
operator H(a) - 0152 E IR, admits an analytic continuation to a

type-A family on the strip S ( 0152O), for any 0152O &#x3E; 0. Suppose Ho satisfies (H2)
and that H has a spectral gap G == ( E_ , E+ ) C ( B_ , B+ ) ( E_ ~ E+ ).
For E E G, define 0394± ~ dist(E±, E). Then there exist finite constants Cl,
C2 &#x3E; 0, depending only on H~ and A, such that

(i) for any real {3 satisfying  min(0152o, C1 0+0_, Ao0+/2),
the energy E E p(H(i,~));

(ii) for any real (3 as in (i),

Proof - From the calculations above, we have,

where 0152 E IR and W = - A-1 ~ 2 Q 1 A-1 ~ 2 is symmetric. The existence of
the analytic extension in a to 5’(~o) is proved above. Taking 0152 = z,C~, ~3
real and 1131  we have

We apply Proposition 9.1 to this operator taking .Hj= H - /~2~~p~2. This
operator has a spectral gap which contains (E_, E+), where E_ = E-
and E+ = E+ - 03B22A-10. In order that 0+ - dist(E+, E) &#x3E; (ð,+/2),
we require 1!31  ~ToA~/2. (Note that Li- = ð,-). We can now apply
Proposition 9.2 to conclude E E p(H(i~3)) for 1!31  min { 0152O, 
~o~+/2} and that (9.4) holds. D

APPENDIX 4

Maxwell’s equations and the hamiltonian

We show how to reduce Maxwell’s equations to an operator of the

form (1.1). We set J-L = 1, so B = H, and write Maxwell’s equations for a
medium with dielectric function E and no sources as
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where D ~ EE. For this reduction and further details concerning Maxwell’s
equations, we refer to [ 15] . We introduce a six-component state vector F as

and note that Maxwell’ s equations ( 10.1 )-( 10.4) can be written in the form

where

is a 6 x 6 matrix, p - and E is the Levi-Civita tensor. With this

definition, the energy of the electromagnetic field is

so that on L2 (R3 , ~G’~ ), the time-evolution given by ( 10.6) is formally
unitary. The divergence free conditions ( 10.3)-( 10.4) imply that

Because of (!0.6), F satisfies the wave equation

where

Let Q - (E . . p)~-1/2, so Q* = -Cl/2(E . .p), and write F = 
Then the wave equation (10.10) becomes the pair of equations
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The two operators Q*Q and QQ* can be written as

and

where II is the orthogonal projection on L2 (I~3, ~C’3 ) defined as follows.
For g E L2(R3,3), let  be the Fourier transform. Then

where

The projection II has the following property. If g E L2(I~3,~G’3) has a
Fourier transform  of the form

for some ç E then

That is, the operator II projects onto states transverse to p. When

E = 1, it follows from ( 10.12)-( 10.15) that only transverse modes of the

electromagnetic field in free space propagate. The orthogonal complement
of Ran II consists of longitudinal modes.
The situation for nonconstant E is as follows. If the field vector

F = (03C61 03C62) satisfies ( 10.12)-( 10.13) and the divergence-free conditions

(10.3)-(10.4), then the component and is purely
transverse = B and  == 1), whereas 03C61 must satisfy

Both of these divergence-free conditions ( 10.3)-( 10.4) are preserved
under the time-evolution generated by K2, as follows from ( 10.1 )-
( 10.2). Consequently, the generator QQ* on L2 (IR3, 3) preserves the
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subspace and the generator Q* Q on L2 (1~3, ~G’3) preserves
the subspace determined by (10.20). Let PE be the projection onto this
invariant subspace. When E is a random variable, this projector selects a
random subspace of L2(IR3,~G’3). We are interested in computing 
almost surely. This can be obtained from a study of a. s. , since
the orthogonal complement of consists precisely of the null
space of Q* Q. The same is true for QQ* . Hence, we can consider either
equation ( 10.12) or ( 10.13) on L2 (IR3, ~G’3 ) . Furthermore, it follows from

general results (cf. [25 ] ) B {0} _ ~ ( Q * Q ) B {0}. Recall that
for multiplicative perturbations, localization only occurs at internal band

edges. Hence, the nature of the spectrum at zero will not concern us.

The operator Ho, and its perturbations, does have an infinite-dimensional
subspace corresponding to the eigenvalue zero. The relative compactness
condition (H3) requires that we project out this subspace and work with the
reduced Hamiltonian. As this causes only minor changes in the argument,
we simply point out in the text where these modifications are required.
We will concentrate on (10.12) and Q*Q given in (10.14). As in section 1,

we will write Q * Q as

which is related to ( 10.14) by = We take as in section 1,
( 1.13)-( 1.15).

ACKNOWLEDGEMENTS

J.-M. Combes and P. D. Hislop would like to thank T. Hoffmann-Ostenhof
and W. Thirring for their hospitality at the E. Schrodinger Institute, Vienna,
Austria, where some of this work was done, and the organizers, B. Helffer,
A. Jensen and J. Sjostrand, of the special year 1992-93 at the Mittag-
Leffler Institute, Djursholm, Sweden, where much of this work was started.
We also thank J.-M. Barbaroux, A. Klein, and C. A. Shubin for several
discussions on this topic. P. D. Hislop acknowledges support from FOM for
visits to Amsterdam. A. Tip acknowledges support from DMS 93-07438
for visits to Lexington, KY.

[1] S. AGMON, Lectures on exponential decay of solutions of second-order elliptic equations,
Mathematical Notes 29, Princeton University Press, Princeton, NJ, 1982.

Annales de l’Institut Henri Poincare - Physique theorique



427BAND EDGE LOCALIZATION FOR RANDOM MEDIA

[2] M. AIZENMAN, Localization at weak disorder: some elementary bounds, Rev. Math. Phys.,
Vol. 6, N° 5a, 1994, pp. 1163-1182.

[3] J.-M. BARBAROUX, thèse, Université de Toulon et du Var 1997.

[4] J.-M. BARBAROUX, J. M. COMBES and P. D. HISLOP, Localization near band edges for
random Schr"odinger operators, Helv. Phys. Acta, Vol. 70, 1997, pp. 16-43.

[5] J.-M. BARBAROUX, J. M. COMBES and P. D. HISLOP, Landau Hamiltonians with unbounded
random potentials, Lett. Math. Phys., Vol. 40, 1997.

[6] D. BELITZ and T. R. KIRKPATRICK, the Anderson-Mott Transition, Rev. of Modern Phys.,
Vol. 66, 1994, p. 261.

[7] M. S. BIRMAN and M. Z. SOLOMJAK, Spectral Theory of Self-Adjoint Operators in Hilbert
Space, Dordrecht: D. Reidel Publishing Co, 1987.

[8] J.-M. COMBES and P. D. HISLOP, Localization for some continuous random Hamiltonians
in d-dimensions, J. Funct. Anal., Vol. 124, 1994, pp. 149-180.

[9] J.-M. COMBES and P. D. HISLOP, Localization Properties of Continuous Disordered Systems
in d-dimensions, Proc. of "Mathematical Quantum Theory", Vancouver, Canada, 1993.

[10] J.-M. COMBES, P. D. HISLOP and E. MOURRE, Spectral Averaging, Perturbation of Singular
Spectra, and Localization, Trans. Amer. Math. Soc., Vol. 348, 1996, pp. 4883-4894.

[11] J.-M. COMBES, P. D. HISLOP and E. MOURRE, Correlated Wegner Inequalities for Long-range
and Correlated Potentials, preprint 1997. 1997.

[12] R. CARMONA and J. LACROIX, Spectral theory of random Schrödinger operators, Birkhäuser,
Boston, 1990.

[13] J.-M. COMBES and L. THOMAS, Asymptotic behavior of eigenfunctions for multiparticle
Schrödinger operators, Commun. Math. Phys., Vol. 34, 1973, pp. 251-276.

[14] P. A. DEIFT and R. HEMPEL, On the existence of eigenvalues of the Schrödinger operator
H + 03BBW in a gap of 03C3(H), Commun. Math. Phys., Vol. 103, 1986, pp. 461-490.

[15] H. J. S. DORREN and A. TIP, Maxwell’s equations for non-smooth media; fractal-shaped
and pointlike objects, J. Math. Phys., Vol. 32, 1991, p. 3060.

[16] W. FARIS, Localization for a random discrete wave equation, in Random Media, IMA
Volume 7, G. Papanicolaou, ed., Springer-Verlag, New York, 1987.

[17] W. FARIS, A localization principle for multiplicative perturbations, J. Funct. Anal., Vol. 67,
1986, pp. 105-114.

[18] A. FIGOTIN and A. KLEIN, Localization phenomenon in gaps of the spectrum of random
lattice operators, J. Stat. Phys., Vol. 75, 1994, pp. 997-1021.

[19] A. FIGOTIN and A. KLEIN, Localization of Electromagnetic and Acoustic Waves in Random
Media: Lattice Models, J. Stat. Phys., Vol. 76, 1994, pp. 985-1003.

[20] A. FIGOTIN and A. KLEIN, Localization of Classical Waves I: Acoustic Waves, Commun.
Math. Phys., Vol. 180, 1996, pp. 439-482.

[21] A. FIGOTIN and A. KLEIN, Localization of Classical Waves II: Electromagnetic Waves,
Commun. Math. Phys., Vol. 184, 1997, pp. 411-441.

[22] A. FIGOTIN and P. KUCHMENT, Band-Gap structure of spectra of periodic dielectric and
acoustic media. I. scalar Model, SIAM J. Appl. Math., Vol. 56, No. 1, 1996, pp. 68-88.

[23] A. FIGOTIN and P. KUCHMENT, Band-Gap structure of spectra of periodic dielectric and
acoustic media. II. 2D Photonic Crystals, SIAM J. Appl. Math., Vol. 56, No. 6, 1996,
pp. 1561-1620.

[24] J. FRÖLICH and T. SPENCER, Absence of diffusion in the Anderson tight binding model for
large disorder or low energy, Commun. Math. Phys., Vol. 88, 1983, pp. 151-184.

[25] F. GESZTESY, Some applications of commutation methods, in Schrödinger operators: Proc.
of the Nordic Summer School in Mathematics held at Sandbjerg Slot, Sonderborg,
Denmark, 1988, Lecture Notes in Physics No. 345, H. Holden and A. Jensen, eds.,
Berlin: Springer-Verlag 1989.

[26] J. HOWLAND, Perturbation theory of dense point spectra, J. Funct. Anal., Vol. 74, 1987,
pp. 52-80.

[27] S. JOHN, The localization of light and other classical waves in disordered media, Comments
Cond. Mat. Phys., Vol. 14, 1988, pp. 193-230.

Vol. 70, n ° 4-1999.



428 J. M. COMBES, P. D. HISLOP AND A. TIP

[28] W. KIRSCH and F. MARTINELLI, On the spectrum of Schrödinger operators with a random
potential, Commun. Math. Phys., Vol. 85, 1982, pp. 329-350.

[29] W. KIRSCH, P. STOLLNIAN and G. STOLTZ, Localization for random perturbations ofperiodic
Schrödinger operators, preprint 1996.

[30] F. KLOPP, Internal Lifshits tails for random perturbations of periodic Schrödinger operators,
preprint 1997.

[31] S. KOTANI and B. SIMON, Localization in general one-dimensional systems. II, Commun.
Math. Phys., Vol. 112, 1987, pp. 103-120.

[32] P. KUCHMENT, Floquet Theory for Partial Differential Equations, Basel: Birkhäuser Verlag
1993.

[33] F. H. LIN, A uniqueness equation for parabolic equations, Comm. Pure Appl. Math.,
Vol. 43, 1990, pp. 127-136.

[34] L. PASTUR and A. FIGOTIN, Spectra of random and almost-periodic operators, Berlin:
Springer-Verlag 1992.

[35] B. SIMON, Trace ideals and their applications, Cambridge: Cambridge University Press
1979.

[36] B. SINION and T. WOLFF, Singular continuous spectrum under rank one perturbation
and localization for random Hamiltonians, Comm. Pure Appl. Math., Vol. 39, 1986,
pp. 75-90.

[37] T. SPENCER, Localization for random and quasi-periodic potentials, J. Stat. Phys., Vol. 51,
1988, pp. 1009-1019.

[38] P. STOLLMANN, Localization for random perturbations of anisotropic periodic media, to
appear in Israel Journal of Mathematics 1997.

[39] D. V. Van COEVORDEN, R. SPRIK, A. TIP and A. LAGENDIJK, Photonic Bandstructure of
Atomic Lattices, Phys. Rev. Letters, Vol. 77, 1996, p. 2412.

[40] H. von DREIFUS and A. KLEIN, A new proof of localization in the Anderson tight binding
model, Commun. Math. Phys., Vol. 124, 1989, pp. 285-299.

(Manuscript received February ll, 1998;
Revised version received February 25, 1998.)

Annales de l’Institut Henri Poincaré - Physique theorique


