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Hilbert spaces for massless

particles with nonvanishing helicities

Andrzej KARPIO
Institute of Physics, University in Bialystok,
15-424 Bialystok, ul. Lipowa 41, Poland
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ABSTRACT. - The paper contains a complete description of the phase
spaces for massless particles with different helicities. Explicit formulae for
reproducing kernels for investigated Hilbert spaces are given. The author
demonstrates a full symmetry between scalar products and reproducing
kernels which are strictly related to the twistor propagator. O Elsevier,
Paris
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RESUME. - L’ article fournit la description complete des espaces de phase
pour les particules sans masses, avec differentes helicites. Nous donnons
une formule explicite pour les noyaux reproduisants des espaces d’ Hilbert
en question. Nous exhibons une symetrie entre produits scalaires et noyaux
reproduisants directement reliee au propagateur des twisteurs. @ Elsevier,
Paris

1. INTRODUCTION

Many works have been written about twistors (see for example [21 ] )
since Penrose introduced them in 1967 [ 17] . That is why I don’t want to

say how important they were and are for mathematical physics. I will give
only brief motivation that inspired me to write this paper.
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296 A. KARPIO

First of all anybody who is interested in massless particles must encounter
twistors. Twistors are very natural objects for describing systems with
conformal symmetry [ 13, 14]. Many authors have approached them from
more mathematical rather than physical point of view. But a quantisation
of classical objects as a procedure which is of special interest to physicists,
requires many fundamental objects to be defined like Hilbert spaces, like
scalar products, orthonormal bases and reproducing kernels. These objects
are investigated in the present work. So, the next chapter recalls well
known realizations of the representations of the group 5~(2,2) [12] and
introduces notation and suitable definitions which will be necessary later.
In chapter 3, by means of Lerner’s version of the inverse Penrose transform
[ 15], the orthonormal basis from the space of square integrable functions
on C2 to the first cohomology group on is transformed. Hilbert

space for massless particles with nonvanishing helicity is defined by means
of a special choice of twistors which define a covering of by two
open subsets. Chapter 4 generalizes this results. Hilbert spaces of massless
particles are described together with explicit formulas for scalar products.
The objects which define scalar products can be treated as reproducing
kernels as well and that fact is investigated in detail in chapter 5. Theorem
2 which is formulated there gives a complete description of the Hilbert
spaces for massless particles with different helicities and frequences, as
well as a description of scalar products and reproducing kernels.

I have found that the twistor propagator described in [6, 8, 9] has many
common features with reproducing kernels. As I shaw it turns out that they
give the same cohomology classes. Some remarks about this are included in
the last chapter. My formulas seem more suitable for calculations than those
given in [6, 8, 9]. Ginsberg and Eastwood needed a special construction
to find scalar products for positive helicities, but in my approach it is not
necessary. There is a full symmetry between the cases of positive and
negative helicities.

The present paper is concerned with the mathematical background of
quantisation of massless particles which are classically described by 
spaces [ 13] . The next paper, which will appear soon, will show the

applications of the obtained results to physics.

2. THE RECOLLECTION

Twistor space T is the pair ( C4, , » where C4 is linear space of

4-tuples of complex numbers and , &#x3E; denotes an Hermitian form of

signature (+,+,-,-). The group of automorphisms of T is SU(2, 2)
l’ Institut Henri Poincaré - Physique theorique
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which preserves the twistor form , &#x3E;. Among its homogeneous spaces
there are some which play crucial role in this work, namely:
M++, M-- - the space of 2 dimensional linear subspaces in T which

are positive (negative) with respect to the twistor form.
PT+, the spaces of 1 dimensional linear subspaces positive

(negative) with respect to , &#x3E;.

F+’++, F-,-- - flag manifolds of lines inside 2-planes with positive
lines and 2-planes or negative, respectively.

For the above objects, there are natural double fibrations [ 16] :

where 0152:i:, /3:i: are projections on the first and the second component of the
pairs belonging to the flag manifolds.
M++ and M-- have common Silov boundary which is the real

Minkowski space In the approach presented here MOO is the space
of 2 dimensional subspaces in T such that the restriction of the twistor
form to them equals zero.

Let us consider solutions of the zero rest mass equations on MOO [ 16,
18, 21]:

where A,A1,A’1,..., are spinor indices and ~AA’ means differentiation
with respect to spinor coordinates on 
The solutions of the above equations are zero rest mass fields with

helicities respectively: ~==~,~=0,~=2014~. Fourier analysis splits
every solution into two parts one positive and one negative: 03C6 = 03C6+ + cp-
(analogously for n ~ 0) where extend as holomorphic functions to
M++ and M-- respectively, by means of the Laplace transform Lap.
The corresponding linear spaces of solutions, which split into positive and
negative parts, are denoted as follows:

Z~(M++) positive frequency solutions with helicities s == ~.
~(M"’) negative frequency solutions with helicities s = ~.

and analogously: ~(M++) , ~(M2014) , ~o(M++) , ~o(M2014). When
holomorphic objects are considered the operator is = 

Vol. 70, n 3-1999.



298 A. KARPIO

where the complex matrices are coordinates of points from M++,
M--.

The spaces .~n and .~n can be equipped with the structure of Hilbert
space. Let us consider the spaces [12] L~(9r~) and L~(9r~) defined in
the following way: r::!: are upper and lower parts of a null-cone respectively.
Ln (~r~ ) and are Hilbert spaces whose elements are the sections
of the bundles ~n ( C2 )’ 20142014 or 2014 8r:f: satisfying the
conditions:

where K is the hermitian matrix such that:

det = 0 and TrK &#x3E; 0 for K E and

detK = 0 and TrK  0 for K E ar-
Every such matrix can be described by the spinor ç (given up to the phase
factor) which appears in the above conditions. The scalar product is:

where

 /i(~),/2(~) &#x3E; is the scalar product in or in 0"(C’/
induced from the canonical scalar product on C2.

mean SL(2, C) invariant measures on respectively.
The Hilbert spaces and carry an irreducible

representation of the group 5~(2,2), so called "ladder representation"
[ 12] . Their images under the Laplace transform Lap are the spaces
~-Cn (M~~ ) C .~~ (M~~ ) and C where the

equivalent representation acts. Scalar products in and 7~ are given by
definition by formulas 6 this means that if ~pl = Lap( f 1 ) and cp2 == Lap(/2)
then  &#x3E;~ fl, f2 &#x3E;.

Let us return to the double fibrations 1, 2 which give connections not only
between the manifolds PT:!: and M:I::!: but also between objects defined
on them. The transformation I am referring to is the Penrose transform P
that realizes the isomorphisms [ 16, 18, 20, 21 ] :
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where ~(X,(9(&#x26;)) is the first cohomology group of a manifold X with
values in the sheaf of germs of holomorphic sections of the k tensor power
of the universal bundle.

Here I wish to make a remark, namely : is a cohomology
group but it has also structure of a linear space [4, 5] and this structure
will be important in further considerations.
The main goal of this paper is a description of the images of the Hilbert

spaces 7~ and ?~ under the inverse Penrose transform. Because we will be
dealing with the manifolds as well, so I will recall some elementary
facts about them. They can be identified with coadjoint orbits of the group
S U ( 2 , 2 ) [ 12, 21 ], and thereby equipped with the symplectic structure.

From the physical point of view are phase spaces of classical massless

particles with nonvanishing helicities [3, 13, 19]. The standard geometrical
quantisation procedure fails in these cases [3, 19]. So quantum states of
massless particles can not be described by global sections. The first step to
overcome this difficulty is to consider the first cohomology groups as the
candidates for Hilbert spaces of quantum states.

By describing the images of the Hilbert spaces and 7~ under the
inverse Penrose transform we will solve the problem of quantisation of
classical massless particles with nonvanishing helicities. Some physical
aspects of this will be published later.

3. THE PRELIMINARY OBSERVATIONS

I did not mention a still another realization of the "ladder representation"
because here it plays an auxiliary role.

Let us consider square integrable functions on C 2 with respect to

Lebesgue measure. It is the well known Hilbert space L(C2, under the

action of the group S U ( 2, 2 ) it splits into an infinite direct sum of Hilbert

spaces defined by the homogeneity conditions [ 12] :

where 0152 E R (real numbers) and ç E C 2 .

In this way one obtains the series of harmonic representation of SU(2, 2).
For example, by identification of ç E C2 with primed indices spinors we

have an isomorphism I : /~-~L~(9r+):

Vol. 70, n ° 3-1999.
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where bar means complex conjugation. The other splitting operators can
be obtained in a similar way.
The following remarks summarize the construction of orthonormal bases

for the spaces L::f::n. It is well known that Hermite’s functions H~ form a
basis for square integrable functions on the space of real numbers R. From
the isomorphism R x R ~ C one can easily find a basis for the square
integrable functions on C :

In the same way one can construct an orthonormal basis for square integrable
functions on C 2 ^_J C x C. The elements of the basis have the form:

This construction leads to the following j statement:

STATEMENT 1. - The square integrable functions on C2:

whe re

and

where

1~1 = 0,1,... ~; 1~2 = O,l,...,n-~-l; l = 0,1,...,00.
form orthonormal bases for the Hilbert spaces ,Cn and respectively.

Proof. - It is trivial because if we require the satisfying homogeneity
conditions 9, 10 we obtain some restrictions on the numbers &#x26;i, ~2. ll, l2
and the final result is given above.

l’Institut Henri Poincaré - Physique theorique
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Performing transformation 11 on the basis functions given in statement
1 we find bases for the spaces L~(9r~) and L~(~r~). Next, applying
the Laplace transformation Lap one obtains basis elements for the Hilbert

spaces 7~ by definition. Let us write the appropriate expression as

an example for L~~~(M++):

where the collection { ~i -~ ~2 ~ ,~-0,1, . , ,, n can be identified with the value
n

of the section of the bundle ()(C2)’ 2014~ at the point çç+ E 9r+,
where ç+ means Hermitian conjugation.
The matrix Z E M2 x 2 ( C ) describes a point from M++. It satisfies some

additional conditions depending on the realization of the twistor form.

Lerner [15] used similiar expressions to realize the inverse Penrose

transform noticing that is R+ (positive real numbers) bundle over P 1 C
and performing integration over sheaves of this bundle. Applying Lerner’s
idea to the expression 16 we obtain a closed (0,1) - form on F+’++ which
is the pullback of some form on PT+ representing an element from the first

cohomology group on P T+ . Finding its Cech’s representative we obtain a

cocycle from 2)) characterized by :

where

The matrix of the twistor form is where E = ( ~ i )
Vol. 70, n° 3-1999.
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The above elements are defined on the intersection of two open subsets:

so each of them represents an element of the first cohomology group of the
covering of PT+ by two open subsets We have an affirmative answer
to the inverse question: Is every element from the first cohomology group
of the covering of PT+ by two subsets U1,U2 spanned by ,~31~i ~2 ? It is easy
to prove this by expanding an arbitrary element defined on U1 n U2 around
the origin of the coordinate system defined by the twistors A, 73 , A* , B *
[4, 5]. Let us denote such cohomology group by (9(-~ - 2)).
We can repeat similar considerations for 2014~ ?~(M") and
7~(9r~) 2014~ ~‘~Cn (M~~ ) and the corresponding cohomology groups will
be denoted by 2)), 2)) and

2)). Above considerations can be formulated in the
statement:

STATEMENT 2. - Let us take four B , A*, B* as in 17. They
form a basis ofC4, orthonormal with respect to the twistor form represented
by matrix i(0 E E . Open subsets U1 and U2 as in 18 and

form covering ofPT+ and PT- respectively. Using the notation introduced
just before the statement we have the following isomorphisms:

HAB (PT+, C~(-n - 2)) is spanned by cocycles represented by the
sections 17, they are by definition orthonormal.

orhonormal basis is represented by sections:

Annales de l’Institut Henri Poincare - Physique " theorique "
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and the ’ orthonormal basis:

with orthonormal basis:

1~1 = O,l,...,1; 1~2 = 0,1,..., ~ + ~; L = 0,1, ... ,00.

Proof. - It is completed by performing computations described for the
first isomorphism and taking into account that the Penrose transform is an
isomorphism [ 16] .

Remark 1. - All the elements belonging to the first cohomology group of
the covering of PT:!: by two open subsets are extendible to the boundary

It follows from the construction and the fact that the elements of

7~ and 7~ come from fields defined on real Minkowski space MOO [6, 8,
18]. So we will be considering PT± = PT:!: U PT° and the coverings
by closed subsets Ui, U2, U1, tT2 to prove many facts appearing in the
further considerations.

STATEMENT 3. - The .f’ollowing pairs of spaces are dual in the sense of
linear algebra (see for example [6, 8~):

Proof. - The dot product. gives the natural map [6, 8, 9] :

Vol. 70, n° 3-1999.
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which is induced by multiplication of Cech’s representatives. In our case
we have the sequence of maps [6, 8] (taking closures as in the remark):

The last map is induced by the Serre duality, which is just an integration
with the canonical Leray’s form:

where Z E PT. There is an analogous sequence for the second pair of
spaces.

I mentioned earlier that my intention is to describe the image of the
spaces and 7~ under the inverse Penrose transform. It has not been

done yet in a satisfactory way. The results we have obtained depend on a
very specific choice of the twistors A, B, ~4*, B*. In the next chapter I
will get rid of this restriction, not only in the definitions of the spaces H1
but also in the definitions of the orthonormal bases.

4. HILBERT SPACES FOR MASSLESS PARTICLES

The complex conjugation induces a linear isomorphism:

where mean dual spaces, so together with the spaces

~(PT~0(±~ - 2)) and we have to take

into consideration their images under the above isomorphism, namely:
2)) and 2)). It looks very

simple on basis elements because they depend on the twistors by the twistor
form only so the action of the linear isomorphism reduces to the change
C,D&#x3E;2014~D,C&#x3E; and taking complex conjugation for coefficients.
For further detailed considerations let us take the space

2)) as an example. Applying the isomorphism
26 to the elements 17 gives us:

Annales de l’Institut Henri Poincare - Physique théorique
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represented by the cocycles:

where

&#x26;i=:0,l,...,~+~; 1~2 = O,l,...,1; l = 0,1,... oo.

Imitating methods of classical complex analysis developed by Bergman
leads to the expression:

Here x is the cross-product known from the theory of cohomology.
By its definition, every term of the above sum is a cocycle from

x PT+, 0(-~ - 2, -n - 2)) (strictly speaking from the second
cohomology group of the covering) where x is the cartesian product of
the manifolds and (9(2014~2014 2, - n - 2) is the tensor product of sheaves
C~(-n - 2) over PT*+ and 0(-~ - 2) over PT+.

Performing the above summation is just a technical task so, omitting
details, the final result is given by the following expression for the

representative from H2:

where

?/ == W,B &#x3E; B,Z &#x3E;.

The twistors A, B are the same as in the previous section. From such
construction and from the final result we conclude the following properties

1. it depends only on the twistors A and B which define the covering
of PT+,

2. it does not depend on the auxiliary twistors A* , B*,
3. dependence on twistors is by the twistor form only, so its particular

realization does not matter,
4. it does not have any singularity when 03BB ~ 0, which can be seen by

expanding logarithm arround the submanifold A = 0.

Vol. 70, n° 3-1999.



306 A. KARPIO

Let us introduce notation:

with A, as in 29. For futher purposes let us introduce such an expression:

W, Z E PT-, a =  W, Z &#x3E;,

x*=W,A* &#x3E;A*,Z&#x3E;,~=W,B* &#x3E;B*,Z&#x3E;.
with A*,B* as in the previous chapter.

For the remaining cases of the spaces H1 we can find similar elements of
the second cohomology groups with analogous properties. Their significance
for our considerations is summarized in the theorem:

THEOREM 1. - Let us choose four twistors orthonormal with respect to
the twistor form such that:

A, B E PT+ and B~ E M++,

A*, B* E PT- and E M--

ForW,Z E PT+ we define x, y as in 29andforW, Z E PT-, x*, y* as in
31. There exist cocyclesfrom the second cohomology groups represented by:

== &#x3E; 

The above cocycles define scalar products for the first cohomology groups
of the covering of the twistor spaces by two open subsets, namely:

Annales de l’Institut Henri Physique " theorique "



307HILBERT SPACES FOR MASSLESS PARTICLES

The examples of the orthonormal bases for the spaces being considered are
given by formulas 17, 20, 21, 22 respectively but twistors A, B, A*, B* are
defined at the beginning of the theorem.

Proof. - It will be outlined only for the space 2 ) ) ,
for the other ones it is very similar. The twistors A, B, A* , B * define a
coordinate system for P T~ , the condition 73} E M++ guarantees
that the subsets Uland U2 form a covering of PT+. The same considerations
as in the previous chapter show that the elements 17 form basis for

2)) with twistors as in the assumption. The scalar
product is given by the sequences of the cohomology groups and the maps
described below [6, 8]. Let us identify:

by means of the projection

and taking constant sheaf over PT . Then we have:

The first arrow means dot product ., the second the Kunneth formula and
the last one means the Serre duality applied to the second term in the tensor
product. The next sequence was described in the proof of statement 3. In
an explicit realisation scalar product is given by the integral [6, 8, 9] :

where DZ and D~V are defined in 25 and integration is along an appropriate
contour surrounding singularities. It is obvious that proof needs checking
the above formula for the basis elements only. In this case we have:

Vol. 70, n 3-1999.
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The integration can be easily accomplished after introducing new variables
defined by the twistors A, B, A*, B*. The contour has the topology of
S1  S1  S1  S1  S1  S1. Let me leave further details for patient reader
who should notice that the intricate definitions of I&#x3E; ~~+) do not

complicate integrations because only derivatives will occur.

Remark 2. - 1. If we consider the inductive limit of cohomology groups
of the covering of by two open subsets we see that the choice of the
particular twistors which define covering does not matter [ 18] .

2. Orthogonality of the twistors A, B, A*, B* is important only for the
construction of the orthonormal bases.

3. From 1 and the previous investigations we see that the images of
the Hilbert spaces 7~, ~Cn under the inverse Penrose transform are
the first cohomology groups of the covering by two open
subsets with scalar products given by I&#x3E;~++), 4&#x3E;~:+), I&#x3E;~--), (j)~~
for appropriate spaces.

5. THE REPRODUCING KERNELS
FOR HILBERT SPACES OF MASSLES PARTICLES

If we return to the construction of scalar products we see that the

reproducing kernels have been found as well. As usual let us restrict our
considerations to the space ~~(PT~C(-~-2)). Because we know
the example of an orthonormal basis we will deal with the basis elements

only. I claim that I&#x3E;~ ++) is the reproducing kernel for the Hilbert
space 0(-~ - 2)), where the scalar product is given by ~~.
To prove this one has to show that:

which means just the reproducing property of I&#x3E;~ ++). Explicitly we have:

performing the inmost integration leads to the expression:

Annales de l’Institut Henri Poincaré - Physique " theorique "
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which equals and proves the claim. All calculations are easy to

perform and the choice of the contour follows from the form of singularities
of the basis elements. Moreover, the inmost integration shows that bases

and ,~L~1 ~2 are dual to each other in the sense of linear algebra
which coincides with remark 1. The cohomological interpretation of the
above integration is described by the sequences analogous to the ones

given on page 10.

Let us introduce the notation: ~(PT+,0(-~ - 2)) for the image of
HAB ( P T+ , C~ ( - n - 2)) in the inductive limit of the covering of P T+

by two open subsets. For the remaining cohomology groups the mark "c"

will mean exactly the same. In this place we can summarize previous
considerations:

THEOREM 2. - The following gives a table of isomorphisms induced by
the Penrose transform

Proof. - It is obvious in the context of the previous considerations, where
all sufficient calculations were described.

The Hilbert spaces from the last column possess reproducing kernels
which were investigated in [ 12] . How to obtain them from the reproduction
kernels for the Hilbert spaces H~ by contour integration (or alternatively
by means of the Penrose transform) will be shown in a forthcoming

publication. There will be given some applications of the obtained results to
the quantisation of classical systems of massless particles. Some preliminary
suggestions may be found find in [ 14] .

6. CONCLUDING REMARKS

In the previous chapter I have described reproducing kernels for ~
spaces. Now it is time to compare them with twistor propagators which

Vol. 70, n° 3-1999.
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were investigated in [6, 8]. Their authors characterized them (up to a scale)
by equations:

where left and right sides are the representatives of the cohomology classes.
Do the reproducing kernels presented here satisfy the above conditions?
The answer is affirmative. Indeed, elementary calculation gives the result:

where A, given in 29 for A, B from theorem 1. The last two

terms are cohomologicaly trivial. For the remaining kernels calculations
are exactly the same. I have approached twistor propagators in a different
way and my motivation for finding them was different from that presented
in the quoted papers, so the representatives must be different as well. I

admit that, in order to achieve my goal I used the cohomologiacal methods
presented in [6, 8, 9].

I am grateful to prof. A. Odzijewicz for the idea of the presented
considerations and to dr W. Lisiecki for the critical glance at this work.
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