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Global properties of vacuum states in de Sitter space

H. J. BORCHERS and D. BUCHHOLZ

Institut fur Theoretische Physik, Universitat Gottingen,
D-37073 Gottingen, Germany

Ann. Poincaré,

Vol. 70, n° 1, 1999, Physique ’ theorique ’

ABSTRACT. - Starting from the assumption that vacuum states in de Sitter
space look for any geodesic observer like equilibrium states with some a
priori arbitrary temperature, an analysis of their global properties is carried
out in the algebraic framework of local quantum physics. It is shown that
these states have the Reeh-Schlieder property and that any primary vacuum
state is also pure and weakly mixing. Moreover, the geodesic temperature
of vacuum states has to be equal to the Gibbons-Hawking temperature and
this fact is closely related to the existence of a discrete PCT-like symmetry.
It is also shown that the global algebras of observables in vacuum sectors
have the same structure as their counterparts in Minkowski space theories.
(c) Elsevier, Paris

RESUME. - Partant de l’hypothèse que les etats de vide dans un espace
de De Sitter sont pergus par tout observateur geodesique comme des etats
d’ equilibre ayant à priori une temperature quelconque, nous analysons leurs
proprietes globales dans Ie cadre algebrique de la physique quantique locale.
Nous montrons que ces etats possedent la propriete de Reeh-Schlieder et
que tout etat de vide primitif est pur et faiblement melangeant. De plus,
la temperature geodesique d’un etat de vide doit obligatoirement coïncider
avec celle de Gibbons-Hawking, propriete reliee etroitement a Fexterieur
d’une symetrie discrete du type PCT. Nous montrons enfin que les algebres
d’ observables globales dans les secteurs de vide ont la meme structure que
leurs analogues dans les theories d’ espace de Minkowski. (c) Elsevier, Paris
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24 H. J. BORCHERS AND D. BUCHHOLZ

1. INTRODUCTION

It is a well established fact that the most elementary states in de
Sitter space, corresponding to vacuum states in Minkowski space, look
for any geodesic observer like thermal states with a certain specific
temperature which depends on the radius of the space. This universal

(model independent) feature can be traced back to the Unruh effect [ 1 ],
the thermalizing effects of event horizons [2,3,4,5] or to stability properties
of the elementary states which manifest themselves in the form of specific
analyticity properties [6,7].

In the present article we take this characteristic feature of elementary
states (called vacuum states in the following) as input in a general analysis of
their global properties. These properties were recently also discussed in [7].
In the present analysis, which is carried out in the algebraic framework of
local quantum physics [8], we reproduce the results in [7] under slightly less
restrictive assumptions and exhibit further interesting properties of vacuum
states in de Sitter space which closely resemble those of their counterparts
in Minkowski space.

Following is a brief outline of our results: In Sec. 2 we collect some
basic properties of de Sitter space, the de Sitter group and of the unitary
representations of this group. After these preparations we state in Sec. 3 our
assumptions and establish a Reeh-Schlieder theorem for vacuum states. In
Sec. 4 we show that the global algebras of observables are, in any vacuum
sector, of type I according to the classification of Murray and von Neumann
and have an abelian commutant. In particular, any primary vacuum state
is also pure and weakly mixing. Invariant means of local observables with
respect to certain specific one-parameter subgroups of the de Sitter group
and their relation to the center of the global algebras are discussed in
Sec. 5. Finally, we establish in Sec. 6 a PCT theorem in de Sitter space
and present an argument showing that the temperature of de Sitter space
has to be equal to the Gibbons-Hawking temperature. The article concludes
with a brief summary.

2. DE SITTER SPACE AND DE SITTER GROUP

For the convenience of the reader we compile here some relevant

properties of the de Sitter space and the de Sitter group as well as some
information on the continuous unitary representations of this group. (For
an extensive list of references on this subject cf. [9].)

de l’Institut Henri Poincaré - Physique theorique



25GLOBAL PROPERTIES OF VACUUM STATES

The n-dimensional de Sitter space ?" can conveniently be described
in the n + 1-dimensional ambient Minkowski space Assuming that
n &#x3E; 1, it corresponds to a one-sheeted hyperboloid which, in proper

coordinates, is given by

The metric and causal structure on ?~ are induced by the Minkowskian
metric on Accordingly, the isometry group of Sn is the group 0(1, n),
called the de Sitter group. Its action on ?" is given by the familiar action
of the Lorentz group in the ambient space. We restrict attention here to the

identity component of 0(1, n) which is usually denoted by n) .
In the following we deal with certain distinguished subregions W C sn,

called wedges. These wedges are defined as the causal completions of
timelike geodesics in ~. Thus they are those parts of de Sitter space which
are both, visible and accessible for observers moving along the respective
geodesics. Each wedge W can be represented as intersection of de Sitter

space Sn with a wedge shaped region in the ambient space, such as

We note that any wedge W c sn is obtained from a fixed one, say

W1, by the action of some element of SOo ( 1, n) . Moreover, the spacelike
complement W 

‘ of a wedge W is again a wedge.
Given a wedge W there is a unique one-parameter subgroup of n)

which leaves W invariant and induces a future directed Killing vector field
in that region. We denote this group by E R, and call it the group
of boosts associated with W. It describes the time evolution for the geodesic
observer in W. The causal complement W 

I of W is also invariant under

the action of A~(~), ~ E R, but the corresponding Killing vector field is
past directed in that region. Hence there holds 1~~, ~ (t) == 11~, (-t), t E R.

Let us now turn to a discussion of the continuous unitary representations
of Given any such representation U on some Hilbert space
~-C we denote the corresponding selfadjoint generators with respect to the
chosen coordinate system by = 0,1, ... n. They satisfy on a
canonical domain of analytic vectors [ 10] the Lie-algebra relations

where is the metric tensor of the ambient Minkowski space. The

operators Mo~ generate the action of the boosts associated with the

wedges 

and the = 1,... n, are the generators of spatial rotations.

Vol. 70, n° 1-1999.



26 H. J. BORCHERS AND D. BUCHHOLZ

For fixed ~ 7~ ~ the operators MOj, Mo~ and form a Lie sub-algebra
and there holds for s, t E IR

These relations are repeatedly used in the proofs of the following results.

LEMMA 2.1. - Let .J~ C be any open neighborhood of the
unit element in ,S’Oo ( 1, n) and let E R, be the boosts associated
with a given wedge W. Then the strong closure of the group generated by
the unitary operators with t E R, A E .1~, coincides with

Proof. - Because of the de Sitter invariance of the problem we can
assume without loss of generality that W is the wedge The statement
can then be established by the following computation. Let be the closed

unitary group generated by with t E R and A E .V. It
follows from (2.5) that for sufficiently small |s| and any t E R there holds

UN for j = 2, ... n. Keeping s ~ 0 fixed one
sees by an application of the Trotter product formula [11] ] to the product
of the one-parameter groups and that
the rotations E = 2, ... n, belong to UN. Relation (2.6)
then implies that also eitM0j ~ UN for t E == 1, ... n. Since these
operators generate there holds UN = proving
the statement..

LEMMA 2.2. - E ~L be invariant under the action E

R, where E the group of boosts associated given wedge
W. Then 03A8 is invariant under the action 

Proof. - As in the proof of the preceding lemma we may assume without
restriction of generality that W is the wedge Wl . Putting t = 2re-|s| in
relation (2.5) it follows from the continuity of the representation U that in
the sense of strong operator convergence on H

for j = 2,... n. On the other hand, since ~ is invariant under the action of
the unitary operators E R, and since converges to 1
in the strong operator topology for s and fixed r, we get

Annales de l’Institut Henri Poincaré - Physique theorique



27GLOBAL PROPERTIES OF VACUUM STATES

Combining these relations we obtain

By a similar argument as in the proof of the preceding lemma it then

follows that !7(A)~ = ~ for any A E ~). *!
We conclude this section by recalling a result of Nelson [ 10] on the

existence of analytic vectors for generators of unitary representations of
Lie-groups. We state this result in a form which is convenient for the

subsequent applications.

LEMMA 2.3. - Let C be a sufficiently small neighborhood of the origin in
C. There exists a dense set of vectors ~ E ~l such that

for E C and = 1,...?~. Phrased differently, the vectors ~ are
analytic for the respective generators with a uniform radius 

Proof. - The statement follows from Theorem 3 in [ 10] by taking also
into account the quantitative estimates in Corollary 3.1 and Lemma 6.2 of
that reference. []

3. REEH-SCHLIEDER PROPERTY OF VACUUM STATES

Before we turn now to the analysis of vacuum states in de Sitter space we
briefly list our assumptions, establish our notation and add a few comments.

1. (Locality) There is an inclusion preserving mapping

from the set of open, bounded, contractible regions 0 c to von Neumann

algebras .A(C~) on some Hilbert space 7~. We interpret each A(C~) as the
algebra generated by all observables which can be measured in (9. For any
wedge W c the corresponding algebra A(W) is defined as the von

Neumann algebra generated by the local algebras A(C~) with (9 c W, and
A denotes the von Neumann algebra generated by all local algebras A(C~).
The local algebras are supposed to satisfy the condition of locality, i.e.

Vol. 70,n" 1-1999.



28 H. J. BORCHERS AND D. BUCHHOLZ

where 0/ denotes the spacelike complement of 0 in Sn and .4((9/ the
commutant of ,,4 ( C~ ) in 

2. (Covariance) On ~L there is a continuous unitary representation U
of the de Sitter group which induces automorphisms a of
,l3(~-C) acting covariantly on the local algebras. More concretely, putting
0152A( .) =: ~/(A) - A E there holds for each region
o c ?"

3. (de Sitter vacuum) There is a unit vector H E H, describing the
vacuum, which is invariant under the action of and cyclic
for the global algebra ~1. The corresponding vector state cv on ~4, given by

has the following geodesic KMS-property suggested by the results of

Gibbons and Hawking [2] : For every wedge W the restriction (partial state)
úJ satisfies the KMS-condition at some inverse temperature (3 &#x3E; 0

with respect to the time evolution (boosts) E ~, associated with
1N. In other words, for any pair of operators A, B E there exists an

analytic function F in the strip {z G C : 0  Imz  /3} with continuous
boundary values at Imz = 0 and Imz = (3, which are given respectively
(for t E by

In order to cover also the case of degenerate vacuum states we do not
assume here that the vacuum vector 0 is (up to a phase) unique.
The inverse temperature /3 in the preceding condition has to be the same

for all wedges 1N because of the invariance of H under the action of the de
Sitter group. Its actual value has been determined by several authors in a
general setting by starting from various assumptions, such as the condition
of local stability [ 12,5], the weak spectral condition [7] or the condition of
modular covariance on lightlike hyper-surfaces [ 13 ] . As we shall see, the

present assumptions already fix the value of /3.
Our last condition expresses the idea that all observables are built from

strictly local ones. It is a standard assumption in the case of Minkowski
space theories.

4. (Weak additivity) For each open region (9 c sn there holds

Annales de l’Institut Henri Poincaré - Physique theorique



29GLOBAL PROPERTIES OF VACUUM STATES

Note that, for n &#x3E; l, ~11C~ : A E SOo(l, n) ~ defines a covering of S’~
since SOo ( 1, n) acts transitively on that space. So the condition is clearly
satisfied if the local algebras are generated by Wightman fields.
We turn now to the analysis of the cyclicity properties of n with respect

to the local algebras ,,4.( C~ ) .
DEFINITION 3.1. - Let 0 C Sn be any open region. The *-algebra 

is defined as the set o, f ’ operators B E A(0) for which there exists some
neighborhood N C ,S‘Oo ( l, n) of the unit element in 800(1, n) (depending
on B) such that

It is apparent that B(0) is indeed a *-algebra and that C 

for any region 0o whose closure satisfies Oo C 0.
In the subsequent lemmas we establish some technical properties of the

orthogonal complements of the spaces S((9)H in 7~. (Cf. [14] for a similar
discussion in case of Minkowski space theories.) It suffices for our purposes
to consider regions (9 c ~Sn which are so small that there exists a wedge
W and an open neighborhood .N C of the unit element in

SOo(l, ~a) such that A -10 C W for all A E JV. Then, if E tR, is
the one-parameter group of boosts associated with W, there holds

where t C ~, are the boosts associated with the wedge 

LEMMA 3.2. - Let 0 C sn be a sufficiently small region (in the sense
described above) and let W E ~C be a vector with the property that

Then the vectors U(11) ~, A E have the same property.

Proof. - Let B E ~8(0) and A E with as in relation (3.8). It follows
from the definition of B(0) and the continuity of the boosts that there is
an c &#x3E; 0 such that for It I  é and consequently

On the other hand, since ~ W, there holds

for t E IR. So the geodesic KMS-property
of Q implies that

Vol. 70, n ° 1-1999.



30 H. J. BORCHERS AND D. BUCHHOLZ

extends analytically to some vector-valued function in the strip {z
0  Imz  /3/2} [15]. Combining these two informations it follows that

for all t E IR and B E ~3 ( C~ ) . Since A E .J~ was arbitrary, we conclude
by repetition of the preceding argument that for any 1, ... Ak E N and
tl, ... t~ E f

As U(,S’Oo ( l, n) ) is generated by products of the boost operators
with A E .J~, t E IR, cf. Lemma 2. l, the assertion

follows.

LEMMA 3.3. - Let C7 C sn and 03A8 E H be as in the preceding lemma.
There holds for E N and B1, ... Bk E 

Proof - As B(0) is a *-algebra we see from the preceding lemma that
is orthogonal to H for any B E and A E SOo(l, n).

So the statement follows by induction..
We are now in a position to establish the Reeh-Schlieder property of 03A9,

i.e. the fact that H is a cyclic vector for all local algebras.

THEOREM 3.4. - For any open region 0 C ?~ there holds

Proof - We may assume that 0 is so small that the preceding lemma
can be applied. Now if ~ E ~L is orthogonal to ,A(C~) S2 it is also

orthogonal to 13(C~) S2 and consequently to 

As C if Co c 0 there holds

where in the last equality we made use of weak additivity. Since n is cyclic
for ,,4. it follows that ~ = 0, completing the proof..

Annales de l’Institut Henri Poincare - Physique theorique



31GLOBAL PROPERTIES OF VACUUM STATES

4. TYPE OF THE GLOBAL ALGEBRA ,,4

We turn now to the analysis of the global algebra ,A, where we will
make use of modular theory, cf. for example [ 15 ] . The geodesic KMS-

property implies that R. is (apart from a rescaling of the

parameter t by /3) the group of modular automorphisms associated with the

pair {.4(V~),H} for any wedge W c ?". Hence, by the basic results of
modular theory, E R, is the modular group of {~(W)~ H}. This
fact will be used at various points in the subsequent investigation.
We begin our discussion with two preparatory propositions which are of

interest in their own right.

PROPOSITION 4.1. - The commutant A’ of A is pointwise invariant under
the adjoint action 9y!7(A), A E the representation U of the
de Sitter group is contained in the global algebra of observables A

Proof - We fix a wedge Wand consider the corresponding
automorphisms E R. As 1N is invariant under the boosts 

the algebras ,,4(1N)’ and ,,4.(W)’ are invariant under the action of

these automorphisms. Both algebras contain ,A(1N’) and thus have 0 as .

a cyclic vector.

If X E ,,4’ c .4(W/ and A E ,,4(~N)’ n A it follows from modular

theory that the function t ~ extends to a bounded

analytic function F in the strip {z e C : 0 &#x3E; Imz &#x3E; - {3}. Moreover,
the boundary value of F at Imz == -/3 is given by F(t - z,~) ==

(SZ, cx~~, ~t~ (X )A S2) _ where in the second equality
we have used the commutativity of ,,4’ and ,A(V1~)’ n ,A. Hence F can be
extended by periodicity to a bounded analytic function on C and thus is
constant. Since A E .4(W/ f1,,4 is arbitrary and H is cyclic for ,A(1N)’ f1,A
and separating for ,,4.’ we conclude that X = Le. X commutes

with the unitaries U(11~, (t) ) for t E R and every wedge W. As these
unitaries generate the group the proof is complete..

PROPOSITION 4.2. - Let 0 C ?" be any open region and let Eo be the

projection onto the space 9/’!7(6’0o(l, vectors in 7~. Then the

von Neumann algebra generated by Eo and ,,4(C~) coincides with A

Proof - Given 0 c sn we pick another open region Co such that
for some neigbourhood .J~ of the unit element of there holds

O0 c C for A E A/’. Now let C E {A(O), Eo}’. Then there holds for

Vol. 70, n° 1-1999.



32 H. J. BORCHERS AND D. BUCHHOLZ

Since 0 is cyclic for ,,4(C~o) it follows that U(A)-1CU(11) = C for
A E .JU and therefore for A E Hence C commutes also with

where we have used weak additivity, and
consequently c ~Eo, ,,4~’. But Eo E U(SOo(l,n))" C A,
where the inclusion follows from the preceding proposition. Hence
.,4 c as claimed..

With this information we can now establish the following theorem.

THEOREM 4.3. - In the vacuum sector Sitter theory there holds:
(a) The commutant ,,4.’ is abelian (i. e. and A’ is the

center of ,,4.).
(b) The projection Eo onto the space of all U(SOo(1, n))-invariant

vectors in an abelian projection in A with central support 1.

Proof - Let W be any wedge and let X1,X2 E ,A’ c ,A( 1N)’,
A E .,4(1N)’ n .,4. As in the proof or Proposition 4.1 we make use

of the modular theory for {.4(~/,~} and consider the function t 2014~

It extends to an analytic function F in the strip
~z E C : 0 &#x3E; Imz &#x3E; -,~~ whose boundary value at Imz = -,~ is given
by F(t - Z,Q) == (Q, H). On the other hand, the pointwise
invariance of ,,4’ under the action of cf. Proposition 4.1, implies
that F is constant. Combining these two facts we get

where in the second equality we made use of the commutativity of A and
X2. The cyclicity of H for .4(~/ implies [Xl, = 0. Since H is

separating for ,,4’ it follows that ~X1, X2~ = 0. So ,,4’ is abelian, proving
the first part of the statement.

For the proof of the second part we pick a wedge Wand choose
A E A(W) and B E ,A(1N’). By the mean ergodic theorem (see e.g. [16])
there holds in the sense of strong operator convergence

where Fo denotes the projection onto the subspace of vectors in 7~ which are
invariant under the action of the unitaries E R. Hence, making

Annales de l’Institut Henri Poincaré - Physique theorique



33GLOBAL PROPERTIES OF VACUUM STATES

use of locality and the invariance of Eo under left and right multiplication
with we get

According to Lemma 2.2 Fo coincides with Eo and hence

This shows that the algebras {E0A(W)E0  E0H}" and {E0A(W’)E0 f
commute. By Proposition 4.2 both algebras coincide with E0AE0,

hence relation (4.5) holds for all A, B E .A, proving that Eo is an abelian

projection.
Finally, let E be any projection in the center of A which dominates

Eo, i.e. EEo = Eo. Then there holds in particular EH and since

H is separating for the center it follows that E = 1. So Eo has central

support 1.

COROLLARY 4.4. - The following statements are equivalent for any vacuum
state a;.’

primary state

pure state

weakly mixing with respect to the action of boosts.

Proof - If cv is primary ,A has a trivial center. But according to part (a)
of the preceding theorem the center of ,A is equal to .4 ~ and consequently
A’ = C1. Hence 03C9 is a pure state.

In the latter case there holds ,,4 = which implies EoAEo =

According to part (b) of the preceding theorem the algebra
Eo,AEo is abelian, so Eo must be a one-dimensional projection. Thus by
the mean ergodic theorem, 2.2

for any A, B E ,A which shows that 03C9 is weakly mixing.
Conversely, relation (4.6) implies that the projection Eo E ,A is one-

dimensional. Hence if X E ,A’ I there holds X 03A9 = E0 X 03A9 =
Since H is separating for 

I it follows that .4~= C 1. So the state úJ is

pure and a fo rtio ri primary..

Vol. 70, n° 1-1999.



34 H. J. BORCHERS AND D. BUCHHOLZ

5. INVARIANT MEANS AND THE CENTER OF A

We analyze now the properties of the invariant means on which
are induced by the adjoint action of the boost operators E R,
associated with arbitrary wedges 1N c Since IR is amenable such means
exist in the space of linear mappings on ,~3(?-iC) as limit points of the nets

in the so-called point-weak-open topology. We denote the respective limits
by M~, and note that they are, for given )4~ in general neither unique nor
normal. Therefore the following result is of some interest.

PROPOSITION 5.1. - Let W be any wedge and let MW be a corresponding
mean on B(H). The restriction MWA(W) is unique, normal, and its range
lies in and coincides with the center A

Proof - Let A E .4(V~). From the invariance of under the

adjoint action of E !R, it follows that belongs to

and commutes with the unitary operators U(Aw(t)), t E !R. So
Lemma 2.2 implies that E Now let .J~ C 
be a neighbourhood of the unit element of the de Sitter group such
that AvV U W has an open spacelike complement for A E .JU. Then,
because of locality and the Reeh-Schlieder property, H is separating
for Moreover, by the mean ergodic theorem and
Lemma 2.2, E0Aa03A9 = MW(A)03A9. So there
holds = for A E .J~ and consequently for all
A E As the operators E ,(W), commute with
,,4(1N’) it follows that they also commute with 
and thus belong to the center of ,A. by Theorem 4.3.
Because of the fact that 03A9 is separating for the center and the relation

= E0A03A9 it is then clear that MW  A(W) is unique and normal.
The preceding results imply that is contained in A(W) and

a subset of the center of ~4. As the elements of the center are pointwise
invariant under the action of M~, it is also clear that is a von
Neumann algebra. Its restriction to Eo H has H as a cyclic vector by the
Reeh-Schlieder property. So it is maximally abelian in E0H and therefore
contains the restriction of the center of ,A to that space. But the center of
,A is faithfully represented on so the assertion follows..

We mention as an aside that it follows from this proposition that every
wedge algebra is of type III1 according to the classification of

de l’Institut Henri Poincaré - Physique theorique



35GLOBAL PROPERTIES OF VACUUM STATES

Connes. For it implies that the centralizer of 03C9 in coincides with the

center. By central decomposition one may therefore restrict attention to the
case where the wedge algebras are factors and the centralizers are trivial.

Making also use of the fact that the modular groups !7(A~;(~)), ~ E IR,
cannot be cyclic because of the group structure of (unless the

representation U is trivial) the assertion then follows from the well-known
results of Connes in [ 17] .

It is neither clear what can be said about the action of My~ on algebras
of arbitrary (even bounded) regions, nor how these means depend on the
choice of the wedge W. Nevertheless it is possible to define a universal
invariant mean M of the operators in the set-theoretic union of algebras

Uw~sn A(W) with values in the center of ,,4.. (Note that this union is

neither an algebra nor a vector space.) We define M by setting for any
wedge W

For the proof that this definition is consistent, let Wl, W2 be wedges and
let A E .4(Wi) fl.A(W2). Then are elements of the

center of A and there holds (A) S2 = E0A03A9 = (A) Sl. As S2 is
separating for the center, this implies = Mi,~,, (A), proving the
consistency.

Since for A E A(W) and A E there holds 

one obtains = = E0A03A9 = M(A) n. It follows

that == M(A) for A E E A(W) and any wedge
W. So we have established the following proposition.

PROPOSITION 5.2. - There unique map

which is invariant under the right and left action of 0152A, A E r~), and
whose restriction to .,4.(1N) coincides with the corresponding mean MW,
W C csn.

It is probably not meaningful to extend M to operators which are

localized in regions larger than wedges.

6. PCT AND THE TEMPERATURE OF DE SITTER SPACE

We finally discuss the implications of the geodesic KMS-property of
vacuum states for the modular conjugations ~IW associated with the wedge

Vol. 70, nO 1-1999..



36 H. J. BORCHERS AND D. BUCHHOLZ

algebras and ’ the vacuum vector H. The following proposition is an
easy consequence 

’ of standard results in modular theory.

PROPOSITION 6.1. - There ’ holds wedge duality for any wedge W C Sn,

Proof - The first equality in the statement is a basic result of modular
theory. For the proof of the second equality it suffices to note that (i)
.,4(W’) c .,4(W)’ because of locality, (ii) Q is cyclic for ,~t,(1N’) by the
Reeh-Schlieder property and (iii) ,,4(W’) is stable under the action of the
modular group E R, associated with the pair {.4(W/, !1}. It then
follows from a well known result in modular theory [ 15, Theorem 9.2.36]

We will show next that the existence of the modular conjugations J~,
fixes the inverse temperature ,~. Moreover, the specific form of the adjoint
action of these conjugations on the unitary group can be

computed.
For the proof we consider the wedge cf. (2.2), and the corresponding

modular group IR, and conjugation JW1 associated with 
and Q. We also pick a region 0 C Wl such that c WI for all A in
some neighborhood of the unit element in n) . Thus, for sufficiently
small s E R, there holds

where eisM0j are the boost operators associated with the wedges =

1,...n.

Making use of relation (2.5) we get for A E ,~4(C~) and j = 2, ... n

According to the geodesic KMS-property of the vacuum and modular
theory [ 15], the vector-valued functions

can be analytically continued into the strip {z e C : 0 &#x3E; Imz &#x3E; -~3~2}
and have continuous boundary values at z = -i/~/2, given by

de l’Institut Henri Poincaré - Physique theorique



37GLOBAL PROPERTIES OF VACUUM STATES

Moreover, for given -y &#x3E; /?/2 and sufficiently small s, the vector-valued
function

where  is any element of the dense set of analytic vectors described
in Lemma 2.3, can be analytically continued into the complex circle

{~GC:~~/}. The continuation is given by

where the exponential function is defined in the sense of power series.

Taking scalar products of the vectors in equation 6.3 with 03A6 we therefore
obtain for sufficiently small s by analytic continuation in t the equality

for z in ~z e C : ~z~ I  ’Y} n ~z e C : 0 &#x3E; Imz &#x3E; -/3/2}. Proceeding to
the boundary point z = -i,~/2 and making use of relations (6.2) and (6.5)
we arrive at

Since the operators JW1 and eisM0j are (anti-)unitary and the vectors 03A6
and A* H are arbitrary elements of two dense sets in ?-~ we conclude that

has to be unitary. this is only possible
if ,~ is an integer multiple of 27r. As a matter of fact there holds ,~ = 27r
as we will show next.

If ,~ &#x3E; 41r then 21r  /?/2 and hence the vectors in H are in

the domain of Now from (6.8) we see that for A E .4(0) and
sufficiently small s, t such that eisM0jeitM01 Ae-itM01e-isM0j ~ A(W1)
there holds

By multiplication of this equation with the spectral projections of

M01, where A c R is compact, we proceed to

Since e-7rM01P(ð.) is a bounded operator the vector-valued functions on
both sides of this equality can be analytically continued in t into the strip
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~ z e C : 0  Imz  7r}. Therefore the equality holds for all t E IR and

consequently

As is dense in ?-~ we get 
spectral subspaces of M01. So by

left multiplication of this equation with we conclude that

P(a) and commute. Since A was arbitrary, it follows
that and eisM0j commute for j = 2, ... n which is only possible if
U is the trivial representation. So we have proved:

THEOREM 6.2. - The geodesic temperature has the Gibbons-Hawking
value, ,Q = 27T.

With the help of relation (6.9) we will now compute the adjoint action
of the modular conjugation JW1 on U(SOo(1, n)). As 03B2 == 27r we obtain
from (6.9) for small s

and it is then apparent that this relation holds for arbitrary s E IR. The

modular theory, on the other hand, implies that

Since the boost operators = 1,... n, generate n) ), the
adjoint action of on this group can be read off from these relations.

After a moments reflection one sees that JW1 is an anti-unitary representer
of the element TPl E 0(1,7~), where T denotes time reflection and Pl
the reflection along the spatial 1-direction in the chosen coordinate system.
Moreover, from Proposition 6.1, applied to ~h,y~l , and the preceding two
equalities one obtains

Summarizing these results, we have established the following version of a
PCT-Theorem in de Sitter space.

THEOREM 6.3. - The modular conjugation associated with the wedge
WI is an anti-unitary representer of the reflection TPl E O ( 1, n) which
induces the corresponding action on U(,S’Oo ( 1, n) ) and on the wedge
algebras.

An analogous result for wedges other than vVl is obtained by de Sitter
covariance.

Annales de l’Institut Henri Poincaré - Physique theorique



39GLOBAL PROPERTIES OF VACUUM STATES

7. CONCLUSIONS

Starting from the physically meaningful assumption that vacuum states
in de Sitter space look like equilibrium states for all geodesic observers
with an a priori arbitrary temperature, we have analysed in a general setting
the global structure of these states. It turned out that they have essentially
the same properties as vacuum states in Minkowski space except that they
are not ground states.

For mixed vacuum states it follows from the results of Sec. 4 that the

respective sub-ensembles belong to different superselection sectors (phases)
which can be distinguished by elements of the center of the algebra of 

’

observables. By central decomposition one can always proceed to pure
vacuum states which are weakly mixing. It of interest in this context that
this central decomposition can be performed by any geodesic observer. As
has been shown in Sec. 5, the relevant macroscopic order parameters can be
constructed in every wedge by suitable "time averages" of local observables.

The geodesic temperature has the value predicted by Gibbons and
Hawking also in the present general setting. This result could be established
without any further "stability assumptions" by making use of the analytic
structure of the de Sitter group, which was also essential in the proof of an

analogue of the PCT-Theorem in de Sitter space.
Our results provide evidence to the effect that the vacuum states, as

defined in the present investigation, indeed describe the envisaged physical
situation. It would therefore be of interest to clarify the relation between
our setting and the apparently more restrictive framework of maximal

analyticity, proposed in [7] to characterize vacuum states in de Sitter space.
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