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ABSTRACT. - We analyze the diffusion of a particle in R3 subject to
N point interactions moving on preassigned non intersecting paths. For
any regular motion of the sources, we give an existence and uniqueness
result for the corresponding parabolic evolution equation, together with a
rather explicit representation of the solution. We exemplify our approach
for N = 1 in the case of uniform motion on a straight line, exhibiting the
complete solution of the problem. @ Elsevier, Paris
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RESUME. - On considere la diffusion d’une particule de .1~3 interagissant
avec N obstacles ponctuels se déplaçant selon des trajectoires preassignees
ne se croisant pas. Pour toute trajectoire reguliere sans croisement, on
demontre 1’ existence et Funicite de la solution de 1’ equation parabolique
associee, et on donne une representation explicite. On illustre cette approche
en donnant la solution complete dans le cas N = 1 en mouvement uniforme.
© Elsevier, Paris
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1. INTRODUCTION AND RESULT

We consider the diffusion of a particle in presence of N point interactions
of fixed strengths placed at points in R3 moving on given smooth paths. The
problem is then described by a parabolic evolution equation with generator
depending explicitely on time.

This model is of interest in the study of diffusion in fluids. It can also

be viewed as a first step in the study of non linear models, in which the
paths depend on the solution itself.

~,From the mathematical point of view, the problem is non trivial since
the strong time-dependence of the generator prevents the application of
known general results in the theory of non autonomous parabolic equations
(see e.g. [1],[2]).
We shall prove an existence and uniqueness theorem, exploiting the

detailed knowledge of the domain and of the action of the generator.
Let us describe the model.

Let a = (c~l, ... , ~x~), R, j = 1,..., N, and let Y (t) =
(~1 (t), ... , t E [0, T~, T &#x3E; 0, ~ dt, be a collection of
N given curves in R3, of class C1, which do not intersect at equal times.

For any t E [0, T], let -039403B1,Y(t) be the Schrödinger operator in L2(R3)
with point interactions of strengths aj placed at Y ( t) .

For the construction and the main properties we refer to the

monograph [3]. The operator 2014A~y~) is self-adjoint and bounded from
below, with domain and action given by

We have introduced the following notation

Hn (~3 ~ is the standard Sobolev space of order n. It is clear from ( 1.1 ) that
the operator domain consists of functions with a regular part ø,B ( t) plus
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the "potential" of "point charges" qj ( t). The limit in (1.1) is regarded as
a boundary condition satisfied by u at Y (t) . We shall study the evolution

problem

In previous papers ([4],[5],[6]) problems of this type were considered,
where the location of the point sources is fixed and their strengths depend
on time. These problems are less singular than the one treated here, since
the generator has the same form domain at all times. Our main result is

THEOREM 1. - ~2~1~t~, ... , are N curves in R3 of class

C1 such that

than there exists a unique u E C1~~0, ~’~, L2(R3)) n C’([0, T], D~~a,Y~.~))
which solves problem (1.4 ),(1.5 ). Moreover u(t) is given by

where Pt is the integral operator defined by the heat kernel

and the charges qj (t) satisfy the system of Volterra integral equations

Vol. 69. n ° 4-1998.
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where Bj (t, s) denotes derivative with respect to the second argument.
The result described in theorem 1 can be easily generalized to the case

in which also the strengths depend on time. Following the line of [6], one
can further consider the limit N - oo and its relation with diffusion in

presence of a time-dependent potential.
A slight modification of the proof should also give the corresponding

existence and uniqueness result for the Schrodinger or the wave equation.
This will be of interest in the study of quantum mechanical scattering
from moving particles and as an approach to the problem of classical
electrodynamics in presence of charged point particles ([7]).
The paper is organized as follows.
In Section 2 we briefly analyze equation ( 1.8) and prove that its solution

has some useful regularity properties.
Using this result, in Section 3 we prove that (1.6) is in fact the unique

solution of the evolution problem ( 1.4),( 1.5).
As an example, in Section 4 we consider the case N = 1 with y(t) = vt,

v E R3, and we give the explicit solution of the evolution problem.

’ 

2. THE INTEGRAL EQUATION

In this Section we consider the system of Volterra integral equations
(1.8). We prove

Annales de l’Institut Henri Poincaré - Physique théorique
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LEMMA 1. - For any T &#x3E; 0, (1.8) has a unique solution 

j = 1, ... , N, satisfying

Proof - As a consequence of the regularity assumption on the curves
one can easily check that, in (1.10), the integral kernel Cj(t, s) is a

continuous function and s) is of class C1. Denoting by fi the Fourier
transform of ~, we can decompose u0 as

where ~~ E Lfoc(R3) and E L2(R3). Then an explicit
computation gives

(see e.g. [8] pag. 73). From (1.9),(2.3) we conclude that f E C°([0, T])
and there exists a unique solution qj E C~([0,T]) of (1.8) (see e.g. [9]).
To establish the required regularity properties of the solution it is

convenient to write the corresponding equation for = qj (t) - qj (0).
A simple computation shows the w; satisfies the same equation (1.8) but
with a different datum gj(t) given by

Vol. 69, n° 4-1998.
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where we have used the boundary condition at The last four terms
in the r.h.s. of (2.4) belong to C~([0,T]). The derivative of the first term
in (2.4) can only be singular in t = 0.
An integration by parts ([9]), the regularity of ~o and Schwartz’s

inequality give

where c denotes a generic positive constant. 
’

Then the datum gj satisfies the regularity assumptions (2.1). The integral
equation ( 1. 8) can be solved by iteration. In fact, the smoothing properties of
the Abel operator provide at step N a coefficient (N!)-1 which guarantees
uniform convergence of the series ([9]).
One easily sees that the solution qj also satisfies (2.1 ), concluding the

proof of lemma 1. D

3. EXISTENCE AND UNIQUENESS

Using the result of lemma 1, we give here the proof of theorem 1.

Proof of theorem 1. Let qj be the solution of ( 1.8), satisfying (2.1 ),
and define .

Annales de l’lnstitut Henri Poincaré - Physique théorique
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It is obviously true that (3.1 ) satisfies the initial condition (1.5).
We show next that u(t) E ð.a,17(t). The Fourier transform of u(t) reads

Observe that for any A &#x3E; 0 an integration by parts yields

Since

we conclude

The first three terms in (3.5) are easily seen to be in ~2(1~3). For the fourth
term in (3.5) an explicit computation gives

Vol. 69, n° 4-1998.
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where

In (3.6) the computation of the integral has been done using a system of
spherical coordinates such that k = (r, (), 1», yl(s) - yl(s’) = (|yl(s) -
yl(s’)|,0,0), §1 ( s ) - §i ( s’ ) = and the formula

where 03BEi = (1, ()i, 1&#x3E;i), i = 1 , 2. Using the boundedness of the function h
and the regularity of the curves, one easily sees that (3.6) is bounded for
any t E [0,T]. It is thus proved that ~(t)a E for any t E [0, T] .

It remains to verify the boundary condition at Proceeding as in
(3.5), one has

Annales de l’Institut Henri Poincaré - Physique théorique
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where the integral in the fourth line of (3.9) can be computed as in (3.6)
and Aj(t, s), Bj(t, s) are given by ( 1.11 ), ( 1.12).
Note that Bj(t,.) E ~’1 (~0, t]), Bj(t, t) == (4~3I2)-1 and Aj(t, s) is a

continuous function.

The integral containing qj in (3.9) can be transformed. An integration
by parts, Abel’s inversion formula ([9]) and a change of the order of

integration give

From (3.9),(3.10) and the equation satisfied by qj it is seen that the

boundary condition at is also satisfied. We have thus shown that

u(t) E 
From ( 1.2) and the expression (3.5) for the Fourier transform of u we have

On the other hand the time derivative of (3.5), by a straightforward
computation, is easily seen to be equal to the r.h.s. of (3.11).

This means that u(t) given by (3.1 ) solves our evolution problem.
The proof of uniqueness proceeds exactly as in the case of o; varying on

time ([6]). Suppose that ~cl and U2 are two solutions with the same initial

Vol. 69, n° 4-1998.
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datum, so that v = ui - U2 is a solution with initial datum zero. Since

v(t) E we know that v(t) has a regular part ~a(t) E H2(R~)
and continuous charges g~ (t), which are obviously zero for t = 0. Then in
the sense of distributions v(t) satisfies

The unique solution of (3.12) is

Moreover (3.13) must satisfy the boundary condition at By a

straightforward computation, this implies that ifj is the solution in the
sense of distributions of the system (1.8) with datum fj = 0. Then ifj = 0
and also v(t) = 0.

This concludes the proof of theorem 1. D

4. THE CASE OF UNIFORM MOTION FOR N=1

- In this Section we give the explicit solution of the equation for the
charge q(t), and then of the evolution problem (1.4), (1.5), in the special
case N = 1 and y(t) = vt, v e R3. This is possible because the integral
kernels A(t, s), B(t, s) now depends only on the difference t - sand
then the equation can be solved using the convolution properties of the
Laplace transform.
From ( 1.11 ), ( 1.12) we easily compute

Denoting by  the Laplace transform of q and

Annales de l’lnstitut Henri Poincaré - Physique théorique
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we have (see e.g. [8])

Imposing the boundary condition at vt, using (3.9), (4.4), (4.5) and

evaluating an inverse Laplace transform ([8]), we find

where Erfc(.) is the complementary error function ([10]).
From (3.1 ) and (4.6), (4.7) one also obtains an explicit formula for the

solution of the evolution problem.
Note that this solution can be equivalently found via a change of

coordinates.

If one defines = vt) as a unitary operator in LZ(1~3), one
easily finds that the evolution problem for u is equivalent to the following
evolution problem for ( = V-1u

where the point source is fixed at the origin and a new drift term appears.
Of course, using Fourier transform and the knowledge of domain and action
of one can also solve equation (4.8) directly.
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