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On the geometry and dynamics
of crystalline continua

Demetrios CHRISTODOULOU

Princeton University

Henri 

Vol. 69, n° 3, 1998,] Physique theorique

ABSTRACT. - We introduce in continuum mechanics the concept of a

material manifold. To describe, in the continuum limit, a crystalline solid
containing an arbitrary distribution of dislocations, we endow the material
manifold with a structure a ~ in to that of a Lie group. Starting with a state
function defined on the space of local thermodynamic equilibrium states,
we formulate the dynamics of crystalline continua in accordance with the
least action principle, within the framework of general relativity, in terms
of a mapping of the space time manifold into the material manifold. We
include in our formulation electromagnetic effects. @ Elsevier, Paris

wards: Continuum mechanics; crystalline solids; dislocations

RESUME. - Nous introduisons Ie concept de variete materielle dans

Ie cadre de la mecanique des milieux continus. Pour decrire, dans la

limite continue, un solide cristallin contenant une distribution arbitraire

de dislocations, nous dotons la variete materielle d’ une structure similaire
a celle d’un groupe de Lie. En partant d’une fonction d’état definie sur

l’espace des etats d’equilibre thermodynamique local, nous formulons la
dynamique des milieux cristallins eontinus conformement avec Ie principe
de moindre action, dans Ie cadre de la relativite generale, en termes d’une
application de la variete spatio-temporelle dans la variete materielle. Notre
formulation comprend aussi des effets electromagnetiques. @ Elsevier, Paris
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336 D. CHRISTODOULOU

1. INTRODUCTION

This paper formulates the dynamics of crystalline solids, in the
continuum limit, when arbitrary distributions of elementary dislocations
are present in the crystal lattice. The interactions with the gravitational and
electromagnetic fields are included in the formulation.

Crystal dislocations have been treated extensively in the litterature, both
at the atomic level as well as in the continuum limit. The book by F.R.N.
Nabarro [N 1] is a standard reference on the subject as a whole, that by E.
Kroner [K] on the continuum theory in particular. Also, the collections of
articles in [B-K-P] and [N2], containing more recent contributions, should
give the reader an impression of the state of the art in this actively pursued
subject.
The present paper represents a departure from previous continuum

mechanical formulations. Our approach is based on the concept of the
material manifold, which represents the material continuum with those of
its properties which are intrinsic to it, being independent of its relation to the
spacetime continuum. In the case of a fluid, the material manifold is simply
an oriented differentiable manifold with a volume form, whose integral on a
material domain represents the number of particles contained in the domain.
In the case of a crystalline solid however, the material manifold is endowed
with a richer structure which we call crystalline (section 2). A material
manifold with a crystalline structure is a generalization of the notion of a
Lie group, reducing to the latter in the case where the dislocation density
is constant. The crystalline structure itself corresponds to the Lie algebra.
Uniform distributions of the two basic kinds of elementary dislocations
in a crystal lattice give rise, in the continuum limit, to the two simplest
non-Abelian Lie groups.

The thermodynamic state space (section 3) is an open set in a tensor space
defined on the crystalline structure, which represents the set of possible local
thermodynamic states of the material. On this space is defined the state

function which determines the laws governing the dynamics.
The dynamics is described by a mapping of the spacetime manifold into

the material manifold (section 4). The spacetime manifold is that of the
general theory of relativity. The equations of motion are generated from a
Lagrangian, constructed, through the mapping, from the state function. The
energy-momentum-stress tensor is defined, in accordance with the principles
of general relativity, by considering the response of the action of matter
to variations of the spacetime metric. The equations of motion are then a
consequence of the field equations of gravitation.

Annales de l’Institut Henri Poincaré - Physique theorique



337ON THE GEOMETRY AND DYNAMICS OF CRYSTALLINE CONTINUA

It should be noted that apart from the gain in geometric and physical
insight, the general relativistic formulation of the theory finds application
in the description of the crust and core of neutron stars.
The electromagnetic interactions of crystalline solids are the subject of

the last section (section 5). The case of perfect insulators is considered first.
The theory contains in this case the low frequency limit of nonlinear crystal
optics. The paper ends with the treatment of the case of perfect conductors.

In order to make the mathematical concepts stand out as clearly as

possible, the material manifold is taken to be of dimension r~, throughout.
The physical case is, of course, n = 3.

2. THE CRYSTALLINE STRUCTURE

Let be a differentiable manifold of dimension n which is oriented. In

what is to follow shall be the material manifold, each point y of which
represents a material particle. Let be the space of vectorfields on

For each y ~ N we denote by ~y the evaluation map ~ TyN by:

DEFINITION. - A crystalline structure on J1~ is a distinguished linear

subspace v such that the evaluation map restricted to V,
--7 is an isomorphism for each y ~ N.

The orientation of induces an orientation in V which makes ~y
orientation preserving at each y ~ N.

PROPOSITION 2.1. - admits a crystalline structure if and only 
parallelizable.

Proof - Let 1&#x3E; be a crystalline structure on A/B Pick a point y* E N and
let (E1*, ..., En* ) be a frame at ~. Define E~ E v by: Ea = 
a = 1, ... , n. Then ( E1, ..., ~r,, ) is a global frame field for Otherwise
there would be a point y ~ N such that the vectors ..., En(y) are
linearly dependent, i.e. there are constants cB..., not all zero, such that

Consider the vectorfield

Vol. 69, n° 3-1998.



338 D. CHRISTODOULOU

We have = O. is an isomorphism. It follows that
X = 0 everywhere. This yields a contradiction at ~. Conversely, let J1~ be
parallelizable and let (Ei,..., En) be a global frame field for J1~. Define V
to be the linear span of ... , En . Then V is a crystalline structure. For,
given X ~ 03BD there is a unique element (c1, ..., cn) of such that

The map z : (c~ ...~) 1---+ X is an isomorphism of ~n onto V. Consider
an arbitrary Then jy : ~n --* by:

is an isomorphism of ~ onto Therefore ~~ o i-1 is an

isomorphism of V onto 
Given a crystalline structure v on J1I there is an isomorphism i of

onto the space of functions on Ji~ with values in V which takes the
vectorfield X to the function given by:

at each The image by 2, of V c is the subspace of constant
V - valued functions on N.

If f is a function on JV with values in any space of tensors on

V, then df , the differential of f , is a 1-form on N with values in T(V).
The differential of f corresponds to b f , a function on N with values in
,C(V;T(V)), defined by:

We call a crystalline structure V on a manifold complete if each is

a complete vectorfield on .A/B If V is complete, each element of 03BD generates
a 1-parameter group of diffeomorphisms of J’~l. These groups represent
physically the continuum limit of the groups of translations of a crystal
lattice. The parametrization of the group orbits, integral curves of elements
of V, is to be thought of as proportional to the number of atoms traversed.

Given a crystalline structure V on JI~ we can define a mapping

Annales de l’Institut Henri Poincare - Physique " theorique "



339ON THE GEOMETRY AND DYNAMICS OF CRYSTALLINE CONTINUA

by:

We call A dislocation density. Suppose that X, Y E V generate the 1-

parameter groups ?}, E R} of diffeomorphisms of N,
respectively. Then for a given the curve

coincides to order t2, as t 2014~ 0, with the curve t ~~2 , where

{03C8t : t E ?} is the 1-parameter group of diffeomorphisms of N generated
by E V.

The dislocation density is a concept that arises in the continuum limit
when one considers a distribution of elementary dislocations in a crystal
lattice. An elementary lattice dislocation has the property that if we start at
an atom and move according to one group of lattice translations a certain
number of atoms p, then move according to a different group of translations
a number of atoms q, then according to the first -p and finally according to
the second -q, then on completing the circuit we arrive at an atom which
does not coincide with the atom from which we started, but, provided
that the circuit encloses a single elementary dislocation, is arrived at in a
single step corresponding to a third lattice translation. The lattice vector
corresponding to this step is called Burgers vector.

Returning to the continuum description, the differential of A, dA, a
1-form on JI~ with values in corrresponds to a mapping

defined according to 2.2:

We then define a mapping

by :

Vol. 69, n° 3-1998.



340 D. CHRISTODOULOU

We can also define another mapping of the same type

by:

PROPOSITION 2.2. - We have:

Proof - Choose a basis (Ei,..., ~n) in v. Then there are unique constants
=: l, ..., n such that

By linearity the statement then reduces to:

Since (E1, ..., En ~ is a global frame field for there are functions 

on such that

According to the definition of the dislocation density, 2.3, we then have:

Consequently,

Annales de l’Institut Henri Physique theorique



341ON THE GEOMETRY AND DYNAMICS OF CRYSTALLINE CONTINUA

and:

We also have:

At each y ~ N, the second sum coincides with the vectorfield

evaluated at ?/, while the first sum coincides with the vectorfield

evaluated at ~/. Therefore, at each by the Jacobi identity,

In view of the fact that --7 is an isomorphism, the proposition
follows.

If the dislocation density is constant on then for any X , Y E 1~ there
is a Z E ~ such that [X,F] = Z, thus v constitutes in this case a Lie
algebra. We then have 7=0 hence J = 0. By the fundamental theorems
of Lie group theory ,JU can then be given the structure of a Lie group, upon
choosing an identity element e E so that 1&#x3E; is the space of vectorfields
on JI~ which generate the right action of the group on itself; 1~ is then at
the same time the space of vectorfields on Ji~ which are invariant under
left group multiplications.
At the atomic level two basic kinds of elementary dislocations are found.

The first kind is called edge dislocation. It appears in a 2- dimensional
lattice in which an extra half-line of atoms has been inserted along the
negative 1 st axis. A circuit of translations in the directions of the 1 st and
2nd axes, alternately, which encloses the origin, ends at an atom which is
reached in a single step by a translation in the direction of the 2nd axis. On
the other hand, circuits not enclosing the origin close. A uniform distribution

Vol. 69, n° 3-1998.



342 D. CHRISTODOULOU

of edge dislocations gives rise in the continuum limit to the affine group.
The group manifold N is sJR2 and the group multiplication is given by:

It is the group of affine transformations on the real line:

The generators of right multiplications are the vectorfields

The Lie algebra V is the linear span of (El, E2) and we have the

commutation relation:

The second basic kind of elementary dislocation is called a screw

dislocation. It appears in a 3-dimensional lattice in the following way. A
circuit of translations in the directions of the 1 st and 2nd axes, alternately,
which encloses the 3rd axis, ends at an atom which is reached in a single
step by a translation in the direction of the 3rd axis, while circuits not
enclosing the 3rd axis close. A uniform distribution of screw dislocations
gives rise in the continuum limit to the Heisenberg group. The group
manifold .h~ is ~3 with the group multiplication:

It acts as a unitary transformation group on the space of square-integrable
complex valued functions 03C8 on the real line by:

where :

The generators of right multiplications are the vectorfields :
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the Lie algebra V is the linear span of (El, E2, E3) and we have the
commutation relations:

A complete crystalline structure V on JI~ defines an exponential map

as follows. is the point at parameter value 1 along the integral
curve of X initiating at. For each E let

be the map:

We have:

Thus dExp (0) is an isomorphism, for each By the implicit function
theorem it follows that, for each y ~ N there is a neighborhood Lly of
the zero vector in 03BD such that Expy restricted to uy is a diffeomorphism
onto its image in JI~.

We now choose a totally antisymmetric n-linear form 03C9 on v which is
positive when evaluated on a positive basis. Any other choice w satisfying
this condition differs from úJ by a positive multiplicative constant. The form
cv defines a volume form on by:

The volume assigned by to a domain E c 

represents the number of particles contained 0 in f.

69, n 
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3. THE THERMODYNAMIC STATE SPACE

We consider the space of positive definite symmetric bilinear
forms on V. The thermodynamic state space is the space x 9~.
An element (~, (J") of the thermodynamic state space shall be referred to
as a thermodynamic state. The variables which specify a thermodynamic
state are 03B3 E thermodynamic configuration, and 03C3 ~ R+,

the thermodynamic entropy. Each element 03B3 E defines a totally
antisymmetric n- linear form 03C903B3 on 03BD by the condition that if (Ei,..., En)
is a positive basis for v which is orthonormal relative to then:

It follows that there is a positive function v on 5~(~) such that:

The positive real number v(~y) is the thermodynamic volume corresponding
to the thermodynamic configuration ~.
The thermodynamic state is a real valued function on the

space x ?+.

The thermodynamic stress corresponding to a thermodynamic state (03B3, cr)
is the element 7r(~7) of (~2(~))* defined by:

We have:

Here is the inverse of -y considered as an element of (S2(V))*:

with ’)1-1 . ’Y E given by:

In view of 3.3 we can express:

The thermodynamic temperature corresponding to a thermodynamic state

(1’, cr) is the real number ~9~-y, given by:

We require " that ’ 0 positive " and o tending £ to zero as cr 0 tends to zero.
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4. THE DYNAMICS

According to the general theory of relativity the spacetime manifold is a
n + 1-dimensional oriented differentiable manifold which is endowed

with a Lorentzian metric g, that is, a continuous assignment of g~, a

symmetric bilinear form of index 1 in at each x The Lorentzian

metric divides TxM into three subsets, 7p, Nx, the set of timelike, null,

spacelike vectors at x, according as to whether the quadratic form gx is

respectively negative, zero, or positive. The subset ~V~ is a double cone

null cone at x. The subset 7~. is the interior of this cone,
an open set consisting of two components I~ and 7j, the future and
past components respectively. The boundaries of these components are the
corresponding components of The subset ~‘~ is the exterior of the null
cone, a connected open set if n &#x3E; 1. A curve in Jtit is called causal if

its tangent vector at each point belongs to the set I ~ N corresponding
to that point. A curve is called timelike if its tangent vector at each point
belongs to I. We assume that is time oriented, that is a continuous
choice of future component of Ix at each x E can and has been made.

A timelike curve is then either future directed or past directed according
as to whether its tangent vector at a point belongs to the subset I+ or I -
corresponding to that point. A hypersurface H in M is called spacelike if
at each ~ E ~C the restriction of g~ to is positive definite. A spacelike
hyper surface in is called a Caychy hypersuiface if each causal curve
in intersects ~-C at one and only one point. We assume that ~.11~t, g)
posesses such a Cauchy hypersurface.
The motion of the material continuum is described by a mapping

f : the spacetime manifold into the material manifold. This
mapping tells us which material particle is at a given event in spacetime.
The mapping f is subject to the following requirements. First, the restriction
of f to a Caychy hypersurface must be one to one. Second, at each x E M,
df(x) must have a 1-dimensional kernel which is contained in I~. Then,
for each g E C N, is a timelike curve in .11~I . The material

velocity u is the corresponding future directed unit tangent vectorfield:

/(~)=?/; g~~? ~) = -1 (4.1)
The simultaneous space at x is the orthogonal complement of the linear
span of 

We note that the restriction of g~ to ~~, is positive definite. Also, the
restriction of to E,c is an isomorphism of Ea. onto ,f ~x~ _ ~.
Vol. 69, n° 3-1998.
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The third and final requirement on f is that this isomorphism be orientation
preserving.
To include thermal effects we introduce the entropy function s, a positive

function on 

The equations of motion, a system of partial differential equations for the
mapping f and the entropy function s, are to be derived from a Lagrangian
L, a function on .Jl~, constructed from ,~ and s. The action in a domain
D C M is the integral:

where is the volume form of (A~~).
Any mapping f fulfilling the three requirements stated above, defines at

each x E M an orientation preserving isomorphism jf,x of the crystalline
structure V of J1~ onto E~ by:

The isomorphism jf,x induces an isomorphism j*f,x of the space of

p-linear forms on E~ into the space of p-linear forms on T~, taking
t~ E to E where:

The isomorphism j*f,x extends to a linear mapping

given by:

for any tx E Here denotes the restriction of tx to In

particular we have:

The volume " form of defines, at each x ~ M, through the

mapping £ f , a totally antisymmetric n- linear form on ~~, the restriction to

Annales de l’Institut Henri Physique - theorique -
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~x of the pullback If is the volume form induced by g on E~
then, according to the above, there is a positive function TV on M such that:

At each x E M, the positive real number represents the number of
particles per unit volume at ~. We have:

The Lagrangian function L is defined by:

where ~ is the thermodynamic state function on x J22+.

We note that L(x) depends on g only through gx. The energy tensor at
is the element Ty of the dual space defined by:

We have:

Here is the inverse of gx considered as an element of 

with gx E given by:

In view of 4.10, we can express:

PROPOSITION 4.1. - The energy tensor at x E given by:

Vol. 69, n° 3-1998.
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Proof - We first determine, for a given element Y E ~ and at a given
point x E M, the dependence on gx of the vector

According to the definition 4.4, X.p is the solution of

belonging to ~~, the gx- orthogonal complement of Thus if the

Lorentzian metric at x is changed from gx to gx, the vector X.c changes
to X~, which differs from X~ by an element of It follows

that there is a

such that:

In conjunction with the definition 4.5, this implies that, for any Y1, 

S~ are 
" 

gx- orthogonal to Therefore " the

above " reduces to:

In view of 4.13 and the definitions 4.11, 4.8 and 3.4 we obtain:

where:

We have:

Annales , de l’Institut Henri Poincare - Physique . theorique °
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Now, is an isomorphism of ~’2 (~~) onto ~‘2 ~v~ and the trace is

invariant under isomorphisms. Consequently,

Hence:

A~x is the restriction of A~ to ~~, and we have:

Relative to the gx- orthogonal decomposition

we can write:

where

Hence:

and:

In view of 4.14, 4.18, the proposition follows.
We can write:

where

is the density of mass-energy at x, and given by

is the stress tensor at x. Since can be viewed as

belonging to ~,s2 ( ~ ~ ~ ~ * .

Vol. 69, n° 3-1998.
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The energy tensorfield T is the assignment of Te at each x E a

symmetric 2-contra variant tensorfield on 
The temperature function is the function () on M given by:

The spacetime manifold (A~~) is endowed with a unique symmetric
connection r compatible with the metric g. The associated covariant

derivative operator, acting on sections of tensor bundles over we

denote by B7. The covariant derivative of the energy tensorfield T, VT,
is a tensorfield of type ~2 on .I1~I. Its trace is a vectorfield on .M, the
covariant divergence V - T of T.
The equations of motion of the material continuum are the differential

energy-momentum conservation laws:

These equations have n + 1 components, corresponding to the entropy
function s and to the n component functions which describe the mapping
f in terms of an atlas of local charts of 
The equations of motion 4.23 are a consequence of structure of the general

theory of relativity. The connection r represents, within the framework of
general relativity, the gravitational force. Let R be the corresponding
curvature and let us denote by Rzc the trace of R, the Ricci curvature, a
symmetric 2-covariant tensorfield on .It~ . Let us also denote by 5’ the scalar
curvature: S‘ = Then the Einstein equations for the spacetime
manifold ~.J1~, g~ read:

The left hand side satisfies the twice contracted Bianchi identities:

In view of these identities the equations of motion 4.23 are consequences
of the Einstein equations 4.24.
The Einstein equations are obtained by adding to the Lagrangian of

matter the Lagrangian of gravitation, -(1/4)5B and requiring that the

resulting total action in any domain D C M be stationary with respect to

arbitrary variations of the metric g supported in any subdomain D’ with

compact closure in D. The identities 4.25 can be viewed as resulting from

Annales ds l’Institut Henri Poincaré - Physique theorique
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the invariance of the action of gravitation in D under all diffeomorphisms
of .M which leave D invariant.

We shall now demonstrate the relationship between the equations of
motion 4.23 and the Euler-Lagrange equations obtained by varying the
action of matter with respect to the mapping f .

Let ~G(20141,1)} be a differentiable family of maps A~ 2014~ N,
satisfying the three requirements stated in the previous section, and agreeing
in M B D’ with f0 = f. Then for each x E M, t r-+ is a curve in N

through /(.c). be the tangent vector of this curve at /(~). Then f,
the variation of the map f , is the assignment of the vector E 

at each x E .M. Thus / is a section of the pullback bundle f*(TN), a
vector bundle over ~1~1. Consider the action of matter corresponding to it,
with the entropy function s and the Lorentzian metric g on .M fixed. Since
f has compact support in D, we can express:

where M is a section of the dual bundle /*(TT*./V). On the other hand,
~G(20141,1)} is a differentiable family of entropy functions

on .J1~, so = s, = ’9. and we consider the action of matter

corresponding to ~, with f and g fixed, we have, in view of 3.5, 4.7,
4.8, 4.22

Finally, ~ (20141,1)} is a differentiable family of Lorentzian
metrics on .JI~, go = g, = g, and we consider the action of
matter corresponding to gt, with ,~ and s fixed, we have, in view of 4.9,

Let X be a vectorfield on with support compact contained in P, and
i t E ~~ be the 1- parameter group of diffeomorphisms of .JL~

generated by X. Then, for each ~ E 9!, ~t restricts to a diffeomorphism of
7) onto itself. Let us set f ~ = = f o = = s o gt = 

for each t G (20141,1). Then we have:

Vol. 69, n° 3-1998.
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Now the action is invariant under the s~, gtJ == s, ~].
Thus, we have:

By 4.26, 4.27, 4.28, and 4.29,

Integrating by parts, the equations of motion 5.1 imply:

In fact the equations of motion are equivalent to 4.32 for all domains

D c and for all vectorfields X with compact support in D. From 4.32
in conjunction with 4.31 and 4.30 we then conclude that the equations of
motion 4.23 are equivalent to the equations:

Here is the 1- form on defined by:

If df is continuous at x, then evaluating 4.33 on ux yields, in view of the
fact that the adiabatic 

= 0 : at every point x of continuity of df (4.34)

5. ELECTROMAGNETIC EFFECTS

We now consider the interaction of a crystalline solid with the

electromagnetic field. The electromagnetic field is a differential 2-form

F on the spacetime manifold M which is exact, that is there exists a

differential 1-form A, the electromagnetic potential, such that

Annales de l’Institut Henri Poincaré - Physique " theorique "
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At each x E M, the antisymmetric bilinear form F’~ in decomposes
relative to the simultaneous space ~x into .Ex E ~~, the electric field at
x, given by

and B~ E A2(E~,), the magnetic field, the restriction of ~’~ to E~:

The electric and magnetic fields at x extend to TxM by:

Here II~ E is the operator of projection to E~.:

To include electromagnetic effects, the thermodynamic state space is

extended to:

To specify a thermodynamic state requires in addition to the variables

~~y, a~), the electromagnetic variables (c~/3), 0152 E v*, ,~ E 112~V). The
thermodynamic state function"" is a real valued function on the extended
thermodynamic state space and the thermodynamic stress and temperature
are defined as before. We now define, in addition,

Then at a given thermodynamic state (03B3, 03C3, 0152, /3), 7? is an element of 03BD and

( is an element of (A2(1~))*.
The Lagrangian function L is given by:

The electric displacement at x is the element Dx E 03A3x given by:

Vol. 69,~3-1998.
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The magnetic displacement at x is the element Hx E (^2(03A3))* given by:

In view of the definitions 5.6 we have:

The electromagnetic displacement at x is the element Gx of (^2(TxM))*
given by:

From 5.2, 5.3, 5.8, 5.9 we obtain:

The electromagnetic displacement ~ is the assignment of G~ at each

~ 6.M, an antisymmetric 2-contravariant tensorfield on M.
The energy tensor at x is defined as before, by 4.9. However, we now

have:

PROPOSITION 5.1. - The energy tensor at x E M has 

Here, p(x), the density of mass-energy at x, is given by:

Px E 03A3x is the electromagnetic momenrum density at x, given by:

with

Finally, ,~x E ~~‘2 ~~~ ) ~’~, the stress tensor at x, is given by:

Proof. - We must determine ’ the dependence 
’ 

on 9x of Ex, We consider

Ex, Ex extended to according § to 5.4. We first determine 
’ the partial

Annales de l’Institut Henri Poincaré - Physique theorique
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derivatives with respect to g~ of ~~ and IL. Now the linear span of ~~ is

independent of It follows that there is E such that:

Differentiating the normalization condition

with respect to g~ and substituting 5.14 yields:

Hence :

Differentiating 5.5 with respect to gx and using 5.14, 5.15 we then obtain:

where ~ E is given by:

Since = we can consider to belong to

~~. From the first of 5.4, by 5.14 we deduce:

while from the second of 5.4, by 5.16 we deduce:

It then follows that:

and:

69, nO 3-1998.
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According to the expression 4.11 and in view of the definitions 5.6, in the
presence of electromagnetic effects the following additional contributions
to are obtained:

By 5.20, 5.15 and 5.10,

while by 5 . 21, 5.17 and 5.11,

The proposition thus follows.
The equations of motion are, as before, the differential energy-momentum

conservation laws 4.23. These are the equations for the mapping f and the
entropy function s, while the equations for the electromagnetic field F

are the Maxwell equations which consist of the condition that F is exact,
together with the equations:

These equations are obtained by requiring that the action in any domain
D c be stationary with respect to variations of the electromagnetic
potential A supported in any subdomain D’ with compact closure in D.
For, E (20141,1)} is a differentiable family of electromagnetic
potentials on M, Ao = ~ (~A~ ~o~t~ t-o = ~ and we consider the action
corresponding to At with fixed, we have, in view of 5.12,

(The second entry of G is traced in defining the divergence). The argument
of the previous section then shows that, modulo the Maxwell equations,
the equations of motion are again equivalent to the equations 4.33. The
adiabatic condition 4.34 then follows, as before.
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What we have been describing above is the interaction of the

electromagnetic field with a crystalline solid which is a perfect insulator.
The electric current J, which constitutes the right hand side of the general
form of the Maxwell equations:

vanishes in perfect insulators.
On the other hand, in perfect conductors it is the electric field which

vanishes. This together with the condition that F is exact implies that
= 0, hence there is an exact 2-form $ on the material manifold .J1~

such that:

The electromagnetic field thus ceases to be an independent dynamical
variable, its dynamics being determined by the mapping f . The vanishing
of the electric field reduces the thermodynamic state space to the subspace

corresponding to rx = 0, and the Lagrangian function is given by:

where z* ~ is the mapping

by:

The energy tensor at x is then given by Prop 5.1 with 0 and

Bx = that is:

with:

and:

The equations of motion 4.23 then constitute a complete system and the
electric current is simply defined by 5.27.
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