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ABSTRACT. - The quasienergy for the time-periodic Hamiltonian

on L2[0,27r] has no absolutely continuous spectrum if 0  a  1 and

v(0, t) is C° , although the gap between successive eigenvalues of is

decreasing. © Elsevier, Paris
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RESUME. - L’ operateur de quasi-energie correspondant au Hamiltonien
dependant du temps

sur L2 ~0, 2~r~ n’ a pas de spectre absolument continu si 0  a  1 et 

est C°, bien que I’ écart entre valeurs propres de soit decroissant.

@Elsevier, Paris

1. INTRODUCTION

Let H be a positive discrete self-adjoint operator on a separable Hilbert
space ~C, with non-degenerate eigenvalues

1 Supported by NSF Contract MDS-9002357
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266 J. S. HOWLAND

and define the gap between eigenvalues

If V(t) is a bounded strongly continuous perturbation of H, 27r-periodic in
time, then the behavior of the system under the time-dependent Hamiltonian

is governed by the quasienergy

on H (g) £2[0, 27r], where ~ _ - 2 -it with periodic boundary condition
~c(0) _ in t.

In [3], the author proved the following result.

Gap Theorem. If V (t) is strongly C°°, and

for some a &#x3E; 0, then K has no absolutely continuous component.
This result was extended to degenerate eigenvalues by the author [4],

Nenciu [6, 7] and Joye [5].
The question naturally arises as to how essential the increasing gap

condition is to this result. Hagedorn, Loss, and Slawny [2] show by explicit
computation that the forced harmonic oscillator

has a quasienergy with absolutely continuous spectrum in the resonant
case cv = 03C90. Here, of course, AAn = cvo is constant. On the other hand,
numerical experiments with the operator

where p = on Z/2 of the. circle, showed no evidence of absolutely
continuous spectrum, although n -! [ 1 ].

In fact, we shall prove the following theorem.
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THEOREM B. - Let t) be C°° and 203C0-periodic in t, and satisfy

has no absolutely continuous component.
The proof is a variant of the operator gauge transformation method of

[3JI]. Transformation of K by leads, up to first-order terms in G
and V, to the operator

In [3,11], G(t) was chosen so that the first two terms in the braces cancel,
effectively replacing by G(t). In the present paper, the last two terms
are made to cancel, effectively replacing V ( t) by z[~,G(~)]. Iteration

eventually leads to the case that V (t) is trace class, and the result follows
from scattering theory.
The author thanks Alain Joye and Jean Bellissard for useful comments.

2. MAIN THEOREM

Let H be a positive discrete Hamiltonian with eigenvalues

Assume that

We shall write operators as matrices in the representation in which H
is diagonal. For p &#x3E; 1 and a &#x3E; 0, define X (p, a) to be the space of all
infinite matrices

Vol. 69, n° 2-1998.
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satisfying

X(p, a) is a Banach space under the norm

For a = 0, A defines a bounded operator on ~2. since ~n~ -P is summable.
For a &#x3E; 0, every A E :B:’(0, a) can be written as

where A is the diagonal matrix with

and Ao E The operators A in X(p, a) are therefore compact for
a &#x3E; 0, and, in fact,

for 2aq ~ 1, where Zv is the Shatten class. In particular, A E X(p, a) is

trace class if a &#x3E; ~.
Define X(a) to be the space of all A such that A E X(p, a) for all

p &#x3E; 1. Again, A E X(a) is trace class if a &#x3E; ~.

LEMMA 1. - If A E X(p, a) and B E X(p, then the product AB is
in X (r, a + (3) if

Proof. - We note in preparation the two elementary inequalities

and

which hold for n, 1. These follow from the triangle inequality and
the fact that a + b  2ab if a, b &#x3E; 1.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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We have

Since the exponents in the sum are negative, it follows by Holder’s
inequality that the sum is uniformly bounded if

that is, if

COROLLARY I . - If A E X(a), and B E x ~,C3~, then the product AB is
in + {3).
LEMMA 2. - If A E x(p, a) and H satisfies (2.1), then the commutator

[H, A] is in x (p - 1, cx + q).
Proof - We have

COROLLARY 2. - If A E X(a) and H satisfies (2.1 ), then the commutator
[H, A] is in X (a + q).
Let V (t) be a 203C0-periodic operator-valued function of t. We say that V (t)

is in a Banach space x uniformly is a bounded function of t.
We say that is in X(a) uniformly iff V(t) is in x(p, a) uniformly
for all p &#x3E; 1.

LEMMA 3. - Let H satisfy (2.1 ). Let W E and be 203C0-periodic,
strongly continuous, and in uniformly, where ~y &#x3E; 0. Then

Vol. 69, n° 2-1998.
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is unitarily equivalent to

where Wl E ~(03B3), Y1 (t) is 203C0-periodic, strongly continuous and uniformly
in + 1’), crnd is uniformly in trace class.

Proof. - Let

where

Define

so that G(t) is 203C0-periodic, and

Note that V is in X(a) and G(t) is in X(a) uniformly.
If

then

But

is in X(a) uniformly by hypothesis, while [G(t), H] is in + ’"Y)
uniformly by Corollary 2, and

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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is in + ~y) uniformly by Corollary 1. It follows from Corollaries 1
and 2 that every term in (2.8) is in + ~), except for

Moreover, the terms of the series are all in trace class if na &#x3E; 2. Hence,
(2.8) is equal to

with W1 = W + V E E + q), and in trace
class uniformly. Trace norm convergence of the series presents no problem
because of the factor n!. D

THEOREM B. - Let H satisfy (2.1 ) for some 03B3 &#x3E; 0, and suppose that
for some 03B1 &#x3E; 0, W(t) is 203C0-periodic, strongly continuous, and in 
uniformly. Then

has no absolutely continuous component.

Proof - If (2.1 ) holds for some positive then it holds for any smaller
positive number q’. Since also c if a  /3, it follows that
we may assume for simplicity that a = ~. By Lemma 3, K is therefore
unitarily equivalent to

with Wi E and E X(2)’), and T1(t) in trace class uniformly.
From scattering theory, and hence also K, have the same absolutely
continuous component as

But [(1 satisfies the hypotheses of Theorem A with ae = 2~y. Continuing
this process, we find that K has the same absolutely continuous component
as an operator

with WN E VN(t) E 1)’r). But if (N + &#x3E; ~, then VN(t)
is trace class, so that and hence also K have the same absolutely
continuous component as D + H + WN which is pure point. D

VoL 69, no 2-1998.
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3. PROOF OF THEOREM B

Theorem B follows from Theorem A. The operator H = has

eigenvalues

where

Matrices are taken in the basis 1, ... in which H is diagonal.
We shall show that H satisfies (2.1 ), with ~ = ( 1 - a) /2. We have,

for j &#x3E; k,

by the mean value theorem and convexity of ~a . If ~n - = j a - ka,
then n - m &#x3E; (2~ + 1) - 2k &#x3E; j - k, and so

By (1.3), we may write

for some y(A; t,) in C°°. Since is C°° in ~ the operators v(B, t)
and g(B, t,) are in X (0, p) for all p. The operator K is therefore unitarily
equivalent to

where

The operator Ko will satisfy the conditions of Theorem A with a = ~

provided we show that V(t) is uniformly in 

Write

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Now g and are C° and hence in x(0~, so [g, by
Corollary 2. By Corollary 1, the right side of (3.1 ) is in uniformly
in t and s. Regarding (3.1) as a differential equation in the Banach space
x(p, ~y~, we find that V(t) = W (1, t) is in uniformly for all p. 0

Remark. - Actually, it is clear from the proof that differentiability in t
is not actually required. Moreover, only a finite degree of differentiability
in 0 is required, depending although it did not seem worthwhile to
quantify this.
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