Annales de l'I. H. P., section A

James S. Howland

 Floquet operators with singular spectrum. III

 Floquet operators with singular spectrum. III}

Annales de l'I. H. P., section A, tome 69, nº 2 (1998), p. 265-273
<http://www.numdam.org/item? id=AIHPA_1998__69_2_265_0>
© Gauthier-Villars, 1998, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section A » implique l'accord avec les conditions générales d'utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Floquet operators with singular spectrum, III

by
James S. HOWLAND ${ }^{1}$
Department of Mathematics, University of Virginia, Charlottesville, VA22903.
E-mail: jsh2a@weyl.math.virginia.EDU

Abstract. - The quasienergy for the time-periodic Hamiltonian

$$
|p|^{\alpha}+v(\theta, t)
$$

on $L_{2}[0,2 \pi]$ has no absolutely continuous spectrum if $0<\alpha<1$ and $v(\theta, t)$ is C^{∞}, although the gap between successive eigenvalues of $|p|^{\alpha}$ is decreasing. © Elsevier, Paris

Key words: Singular spectrum, Floquet theory, quasienergy, quantum stability, gap theorem.
RÉSumé. - L'opérateur de quasi-énergie correspondant au Hamiltonien dépendant du temps

$$
|p|^{\alpha}+v(\theta, t)
$$

sur $L_{2}[0,2 \pi]$ n'a pas de spectre absolument continu si $0<\alpha<1$ et $v(\theta, t)$ est C^{∞}, bien que l'écart entre valeurs propres de $|p|^{\alpha}$ soit décroissant. (c) Elsevier, Paris

1. INTRODUCTION

Let H be a positive discrete self-adjoint operator on a separable Hilbert space \mathcal{H}, with non-degenerate eigenvalues

$$
\lambda_{1}<\lambda_{2}<\lambda_{3}<\cdots,
$$

[^0]and define the gap between eigenvalues
$$
\Delta \lambda_{n}=\lambda_{n+1}-\lambda_{n}
$$

If $V(t)$ is a bounded strongly continuous perturbation of $H, 2 \pi$-periodic in time, then the behavior of the system under the time-dependent Hamiltonian

$$
H(t)=H+V(t)
$$

is governed by the quasienergy

$$
K=D+H+V(t)
$$

on $\mathcal{H} \otimes L_{2}[0,2 \pi]$, where $D=-i \frac{d}{d t}$ with periodic boundary condition $u(0)=u(2 \pi)$ in t.

In [3], the author proved the following result.
Gap Theorem. If $V(t)$ is strongly C^{∞}, and

$$
\Delta \lambda_{n} \geq c n^{\alpha}
$$

for some $\alpha>0$, then K has no absolutely continuous component.
This result was extended to degenerate eigenvalues by the author [4], Nenciu [6, 7] and Joye [5].

The question naturally arises as to how essential the increasing gap condition is to this result. Hagedorn, Loss, and Slawny [2] show by explicit computation that the forced harmonic oscillator

$$
\begin{equation*}
-\frac{1}{2} \frac{d^{2}}{d x^{2}}+\frac{\omega_{0}^{2}}{2} x^{2}+f x \sin (\omega t) \tag{1.1}
\end{equation*}
$$

has a quasienergy with absolutely continuous spectrum in the resonant case $\omega=\omega_{0}$. Here, of course, $\Delta \lambda_{n}=\omega_{0}$ is constant. On the other hand, numerical experiments with the operator

$$
\begin{equation*}
|p|^{\frac{1}{2}}+v(\theta, t) \tag{1.2}
\end{equation*}
$$

where $p=-i d / d \theta$ on L_{2} of the circle, showed no evidence of absolutely continuous spectrum, although $\Delta \lambda_{n} \sim n^{-\frac{1}{2}}$ [1].

In fact, we shall prove the following theorem.

Theorem B. - Let $v(\theta, t)$ be C^{∞} and 2π-periodic in θ and t, and satisfy

$$
\begin{equation*}
\int_{0}^{2 \pi} v(\theta, t) d t=0 \tag{1.3}
\end{equation*}
$$

If $0<\alpha<1$, then the quasienergy for

$$
|p|^{\alpha}+v(\theta, t)
$$

has no absolutely continuous component.
The proof is a variant of the operator gauge transformation method of [3,II]. Transformation of K by $e^{i G(t)}$ leads, up to first-order terms in G and V, to the operator

$$
D+H+\{i[H, G(t)]+V(t)-\dot{G}(t)\}+\cdots
$$

In [3,II], $G(t)$ was chosen so that the first two terms in the braces cancel, effectively replacing $V(t)$ by $\dot{G}(t)$. In the present paper, the last two terms are made to cancel, effectively replacing $V(t)$ by $i[H, G(t)]$. Iteration eventually leads to the case that $V(t)$ is trace class, and the result follows from scattering theory.

The author thanks Alain Joye and Jean Bellissard for useful comments.

2. MAIN THEOREM

Let H be a positive discrete Hamiltonian with eigenvalues

$$
\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots
$$

Assume that

$$
\begin{equation*}
\left|\lambda_{n}-\lambda_{m}\right| \leq C|n-m|(n m)^{-\gamma}, \tag{2.1}
\end{equation*}
$$

where $\gamma>0$.
Define

$$
\langle n\rangle= \begin{cases}|n| & \text { if } n \neq 0 \\ 1 & \text { if } n=0\end{cases}
$$

We shall write operators as matrices in the representation in which H is diagonal. For $p>1$ and $\alpha \geq 0$, define $\mathcal{X}(p, \alpha)$ to be the space of all infinite matrices

$$
A=\left\{A_{n m}: n, m \geq 1\right\}
$$

Vol. 69, \mathbf{n}° 2-1998.
satisfying

$$
\begin{equation*}
\left|A_{n m}\right| \leq C(n m)^{-\alpha}\langle n-m\rangle^{-p} \tag{2.2}
\end{equation*}
$$

$\mathcal{X}(p, \alpha)$ is a Banach space under the norm

$$
\|A\|_{p, \alpha}=\sup \left\{(n m)^{\alpha}\langle n-m\rangle^{p}\left|A_{n, m}\right|: n, m \geq 1\right\}
$$

For $\alpha=0, A$ defines a bounded operator on ℓ_{2}, since $\langle n\rangle^{-p}$ is summable. For $\alpha>0$, every $A \in \mathcal{X}(0, \alpha)$ can be written as

$$
A=\Lambda^{\alpha} A_{0} \Lambda^{\alpha}
$$

where Λ is the diagonal matrix with

$$
\Lambda_{n m}=\frac{1}{n} \delta_{n m}
$$

and $A_{0} \in \mathcal{X}(p, 0)$. The operators A in $\mathcal{X}(p, \alpha)$ are therefore compact for $\alpha>0$, and, in fact,

$$
\mathcal{X}(p, \alpha) \subset \mathcal{I}_{q}
$$

for $2 \alpha q>1$, where \mathcal{I}_{q} is the Shatten class. In particular, $A \in \mathcal{X}(p, \alpha)$ is trace class if $\alpha>\frac{1}{2}$.

Define $\mathcal{X}(\alpha)$ to be the space of all A such that $A \in \mathcal{X}(p, \alpha)$ for all $p>1$. Again, $A \in \mathcal{X}(\alpha)$ is trace class if $\alpha>\frac{1}{2}$.

Lemma 1. - If $A \in \mathcal{X}(p, \alpha)$ and $B \in \mathcal{X}(p, \beta)$, then the product $A B$ is in $\mathcal{X}(r, \alpha+\beta)$ if

$$
1<r<\min \{p-1 / 2-(\alpha+\beta) / 2, p-\alpha, p-\beta\}
$$

Proof. - We note in preparation the two elementary inequalities

$$
\begin{equation*}
2 j\langle m-j\rangle \geq m \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle n-m\rangle \leq 2\langle n-j\rangle\langle m-j\rangle \tag{2.4}
\end{equation*}
$$

which hold for $n, m, j \geq 1$. These follow from the triangle inequality and the fact that $a+b \leq 2 a b$ if $a, b \geq 1$.

We have

$$
\begin{aligned}
& \left|\sum_{j} A_{n j} B_{j m}\right| \leq C n^{-\alpha} m^{-\beta} \sum_{j} j^{-(\alpha+\beta)}\langle n-j\rangle^{-p}\langle j-m\rangle^{-p} \\
& =C(n m)^{-(\alpha+\beta)}\langle n-m\rangle^{-r} \sum_{j}\left(\frac{m}{j}\right)^{\alpha}\left(\frac{n}{j}\right)^{\beta} \\
& \quad \times\left[\frac{\langle n-m\rangle}{\langle n-j\rangle\langle j-m\rangle}\right]^{r}[\langle n-j\rangle\langle j-m\rangle]^{r-p} \\
& \leq C 2^{\alpha+\beta+r}(n m)^{-(\alpha+\beta)}\langle n-m\rangle^{-r} \sum_{j}\langle n-j\rangle^{\alpha+r-p}\langle j-m\rangle^{\beta+r-p}
\end{aligned}
$$

Since the exponents in the sum are negative, it follows by Holder's inequality that the sum is uniformly bounded if

$$
(p-r-\alpha)+(p-r-\beta)>1
$$

that is, if

$$
r<p-1 / 2-(\alpha+\beta) / 2
$$

Corollary 1. - If $A \in \mathcal{X}(\alpha)$, and $B \in \mathcal{X}(\beta)$, then the product $A B$ is in $\mathcal{X}(\alpha+\beta)$.

Lemma 2. - If $A \in \mathcal{X}(p, \alpha)$ and H satisfies (2.1), then the commutator $[H, A]$ is in $\mathcal{X}(p-1, \alpha+\gamma)$.

Proof. - We have

$$
\left|\left(\lambda_{n}-\lambda_{k}\right) A_{n k}\right| \leq C\langle n-k\rangle(n k)^{-\gamma}(n k)^{-\alpha}\langle n-k\rangle^{-p}
$$

Corollary 2. - If $A \in \mathcal{X}(\alpha)$ and H satisfies (2.1), then the commutator $[H, A]$ is in $\mathcal{X}(\alpha+\gamma)$.

Let $V(t)$ be a 2π-periodic operator-valued function of t. We say that $V(t)$ is in a Banach space \mathcal{X} uniformly iff $\|V(t)\|_{\mathcal{X}}$ is a bounded function of t. We say that $V(t)$ is in $\mathcal{X}(\alpha)$ uniformly iff $V(t)$ is in $\mathcal{X}(p, \alpha)$ uniformly for all $p>1$.

Lemma 3. - Let H satisfy (2.1). Let $W \in \mathcal{X}(\gamma)$ and $V(t)$ be 2π-periodic, strongly continuous, and in $\mathcal{X}(\alpha)$ uniformly, where $\alpha \geq \gamma>0$. Then

$$
K=D+H+W+V(t)
$$

Vol. $69, n^{\circ}$ 2-1998.
is unitarily equivalent to

$$
K_{1}=D+H+W_{1}+V_{1}(t)+T_{1}(t)
$$

where $W_{1} \in \mathcal{X}(\gamma), V_{1}(t)$ is 2π-periodic, strongly continuous and uniformly in $\mathcal{X}(\alpha+\gamma)$, and $T_{1}(t)$ is uniformly in trace class.

Proof. - Let

$$
V(t)=\bar{V}+\tilde{V}(t)
$$

where

$$
\begin{equation*}
\int_{0}^{2 \pi} \tilde{V}(t) d t=0 \tag{2.5}
\end{equation*}
$$

Define

$$
\begin{equation*}
G(t)=\int_{0}^{t} \tilde{V}(s) d s \tag{2.6}
\end{equation*}
$$

so that $G(t)$ is 2π-periodic, and

$$
\dot{G}(t)=\tilde{V}(t)
$$

Note that \bar{V} is in $\mathcal{X}(\alpha)$ and $G(t)$ is in $\mathcal{X}(\alpha)$ uniformly.
If

$$
\operatorname{adG}(H)=[G, H]
$$

then

$$
\begin{aligned}
e^{i G(t)} K e^{-i G(t)}= & e^{i G(t)}(D+H+W+V(t)) e^{-i G(t)} \\
= & \sum_{n=0}^{\infty} \frac{i^{n}}{n!}[a d G(t)]^{n}(D+H+W+V(t)) \\
= & D+H+W+V(t) \\
& +\sum_{n=1}^{\infty} \frac{i^{n}}{n!}\left\{[a d G(t)]^{n-1}([G(t), D]+[G(t), H])\right. \\
& \left.\quad+[a d G(t)]^{n}(W+V(t))\right\}
\end{aligned}
$$

But

$$
[G(t), D]=i \dot{G}(t)=i \tilde{V}(t)
$$

is in $\mathcal{X}(\alpha)$ uniformly by hypothesis, while $[G(t), H]$ is in $\mathcal{X}(\alpha+\gamma)$ uniformly by Corollary 2, and

$$
[a d G(t)]^{n}(W+V(t))
$$

is in $\mathcal{X}(n \alpha+\gamma)$ uniformly by Corollary 1. It follows from Corollaries 1 and 2 that every term in (2.8) is in $\mathcal{X}(\alpha+\gamma)$, except for

$$
D+H+W+V(t)+i^{2} \dot{G}(t)=D+H+W+\bar{V} .
$$

Moreover, the terms of the series are all in trace class if $n \alpha>\frac{1}{2}$. Hence, (2.8) is equal to

$$
D+H+W_{1}+V_{1}(t)+T_{1}(t)
$$

with $W_{1}=W+\bar{V} \in \mathcal{X}(\gamma), V_{1}(t) \in \mathcal{X}(\alpha+\gamma)$, and $T_{1}(t)$ in trace class uniformly. Trace norm convergence of the series presents no problem because of the factor n !.

Theorem B. - Let H satisfy (2.1) for some $\gamma>0$, and suppose that for some $\alpha>0, W(t)$ is 2π-periodic, strongly continuous, and in $\mathcal{X}(\alpha)$ uniformly. Then

$$
K=D+H+W(t)
$$

has no absolutely continuous component.
Proof. - If (2.1) holds for some positive γ, then it holds for any smaller positive number γ^{\prime}. Since also $\mathcal{X}(\beta) \subset \mathcal{X}(\alpha)$ if $\alpha<\beta$, it follows that we may assume for simplicity that $\alpha=\gamma$. By Lemma 3, K is therefore unitarily equivalent to

$$
K_{1}=D+H+W_{1}+V_{1}(t)+T_{1}(t),
$$

with $W_{1} \in \mathcal{X}(\gamma)$, and $V_{1}(t) \in \mathcal{X}(2 \gamma)$, and $T_{1}(t)$ in trace class uniformly. From scattering theory, K_{1}, and hence also K, have the same absolutely continuous component as

$$
\tilde{K}_{1}=D+H+W_{1}+V_{1}(t) .
$$

But \tilde{K}_{1} satisfies the hypotheses of Theorem A with $\alpha=2 \gamma$. Continuing this process, we find that K has the same absolutely continuous component as an operator

$$
\tilde{K}_{N}=D+H+W_{N}+V_{N}(t),
$$

with $W_{N} \in \mathcal{X}(\gamma), V_{N}(t) \in \mathcal{X}((N+1) \gamma)$. But if $(N+1) \gamma>\frac{1}{2}$, then $V_{N}(t)$ is trace class, so that \tilde{K}_{N}, and hence also K have the same absolutely continuous component as $D+H+W_{N}$ which is pure point.

3. PROOF OF THEOREM B

Theorem B follows from Theorem A. The operator $H=|p|^{\alpha}$ has eigenvalues

$$
0=\lambda_{1}<\lambda_{2}=\lambda_{3}<\lambda_{4}=\lambda_{5}<\cdots
$$

where

$$
\lambda_{2 j}=\lambda_{2 j+1}=j^{\alpha}, \quad j=1,2, \ldots
$$

Matrices are taken in the basis $1, e^{i \theta}, e^{-i \theta}, e^{2 i \theta}, \ldots$ in which H is diagonal.
We shall show that H satisfies (2.1), with $\gamma=(1-\alpha) / 2$. We have, for $j>k$,

$$
\frac{j^{\alpha}-k^{\alpha}}{j-k}=\frac{\alpha}{\xi^{2 \gamma}} \leq \frac{2 \alpha}{j^{2 \gamma}+k^{2 \gamma}} \leq \alpha(j k)^{-\gamma}
$$

by the mean value theorem and convexity of ξ^{α}. If $\lambda_{n}-\lambda_{m}=j^{\alpha}-k^{\alpha}$, then $n-m \geq(2 j+1)-2 k \geq j-k$, and so

$$
\frac{\lambda_{n}-\lambda_{m}}{n-m} \leq \frac{j^{\alpha}-k^{\alpha}}{j-k} \leq \alpha(j k)^{-\gamma} \leq \alpha 2^{-\gamma}(n m)^{-\gamma}
$$

By (1.3), we may write

$$
v(\theta, t)=\dot{g}(\theta, t)=\frac{\partial}{\partial t} g(\theta, t)
$$

for some $g(\theta, t)$ in C^{∞}. Since $v(\theta, t)$ is C^{∞} in θ, the operators $v(\theta, t)$ and $g(\theta, t)$ are in $\mathcal{X}(0, p)$ for all p. The operator K is therefore unitarily equivalent to

$$
\begin{align*}
K_{0} & =e^{i g(\theta, t)}(D+H+v(t, \theta)) e^{-i g(\theta, t)} \tag{3.1}\\
& =D-\dot{g}(\theta, t)+v(t, \theta)+e^{i g(\theta, t)} H e^{-i g(\theta, t)} \\
& =D+H+V(t) \tag{3.2}
\end{align*}
$$

where

$$
V(t)=e^{i g(\theta, t)} H e^{-i g(\theta, t)}-H
$$

The operator K_{0} will satisfy the conditions of Theorem A with $\alpha=\gamma$, provided we show that $V(t)$ is uniformly in $\mathcal{X}(\gamma)$.

Write

$$
W(s, t)=e^{i s g(\theta, t)} H e^{-i s g(\theta, t)}-H
$$

Then $W(0, t)=0$ and

$$
\begin{equation*}
\frac{\partial W}{\partial s}=i e^{i s g(\theta, t)}[g, H] e^{-i s g(\theta, t)} \tag{3.3}
\end{equation*}
$$

Now g and $e^{ \pm i s g(\theta, t)}$ are C^{∞} and hence in $\mathcal{X}(0)$, so $[g, H] \in \mathcal{X}(\gamma)$ by Corollary 2. By Corollary 1, the right side of (3.1) is in $\mathcal{X}(p, \gamma)$ uniformly in t and s. Regarding (3.1) as a differential equation in the Banach space $\mathcal{X}(p, \gamma)$, we find that $V(t)=W(1, t)$ is in $\mathcal{X}(p, \gamma)$ uniformly for all p.

Remark. - Actually, it is clear from the proof that differentiability in t is not actually required. Moreover, only a finite degree of differentiability in θ is required, depending on γ, although it did not seem worthwhile to quantify this.

REFERENCES

[1] J. Bellissard, Private communication, 1987.
[2] G. Hagedorn, M. Loss, and J. Sawnyl. Non-stochasticity of time-dependent Hamiltonians and the spectra of canonical transformations, J. Phys. A, Vol. 19, 1986, pp. 521-531.
[3] J. S. Howland, Floquet operators with singular spectrum, Ann. Inst. H. Poincare, Vol. 50, 1989, I, pp. 309-323; II, pp. 325-334.
[4] J. S. Howland, Quantum stability in "Schrödinger Operators: The Quantum Mechanical Many Body Problem," Lecture Notes in Physics, Vol. 403, pp. 100-122. Springer Verlag, New York, 1992.
[5] A. Joye, Absence of absolutely continuous spectrum of Floquet operators, J. Stat. Phys., Vol. 75, 1994, pp. 929-952.
[6] G. Nenciu, Floquet operators without absolutely continuous spectrum, Ann. Inst. H. Poincare, Vol. 59, 1993, pp. 91-97.
[7] G. Nenciu, Adiabatic theory: Stability of systems with increasing gaps. Preprint 1995.
(Manuscript received May 14th, 1996;
Revised version received July 22, 1997.)

[^0]: ${ }^{1}$ Supported by NSF Contract MDS-9002357

