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ABSTRACT. - We prove semi-classical Egorov estimates for the

quantized Baker and sawthooth maps. Those are uniformly hyperbolic, but
discontinuous, area preserving maps on the torus. Due to the discontinuities,
the usual semi-classical Egorov Theorem breaks down. The estimates shown
here are still strong enough to prove that a density one sequence of
eigenfunctions of the quantized maps equidistribute in the classical limit.
@ Elsevier, Paris
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RESUME. - Nous démontrons des estimations d’Egorov semi-classiques
pour les applications "dents de scie" quantifiees ainsi que pour l’application
du boulanger quantifiee. Ces applications du tore préservent les aires et
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2 S. DE BIEVRE AND M. DEGLI ESPOSTI

elles sont uniformément hyperboliques, mais discontinues. Par consequent,
le Théorème d’Egorov usuel n’est plus valable. Les estimations que
nous obtenons permettent encore de montrer 1’ existence d’une suite de
fonctions propres des applications quantifiees, de densité égale a un, et qui
équidistribue dans la limite classique. © Elsevier, Paris

1. INTRODUCTION

When the classical limit of a quantum dynamical system is a Hamiltonian
dynamical system which is ergodic with respect to the Liouville measure,
it is expected that in the classical limit (most of) the eigenfunctions of
the quantum system become equidistributed with respect to the Liouville
measure . Made precise (see below) this is a statement about the diagonal
matrix elements of quantized observables between eigenstates and is

commonly referred to as the Schnirelman Theorem. It has been proven
in many cases [30, 7, 17, 14, 32, 33, 11, 26, 3, 34]. If the system is in
addition mixing, more can be inferred: in that case (most) off-diagonal
matrix elements tend to zero [31, 8].
We will be interested here in the classical limit of quantized,

discontinuous, ergodic or mixing symplectic transformations of the two-
torus. The main examples are the Baker transformation and the sawtooth
maps. Combining ideas of [33] and [34] with the approach of [3], we will
show (Theorem 2) that, in this case, the equipartition result will follow
provided one has a suitable version of the semi-classical Egorov Theorem
(Definition 1 ). The problem is therefore reduced to proving this latter result.
The semi-classical Egorov Theorem states that quantization and evolution

commute up to terms of order at most ~. It can take on several forms (see
e.g. [24], Theorem 4.10 and Theorem 4.30, [5], [13]). We will show Egorov
estimates in the sense of Definition 1 below for the quantized sawtooth and
Baker maps and derive equipartition results from it.

The sawtooth and Baker maps are prototypical discontinuous uniformly
hyperbolic systems. The Baker is easily seen and well known to be a
Bernoulli system (see e.g. [27] and references therein). The dynamical
properties of the sawtooth maps are much harder to derive and have

been studied extensively in recent years. They are globally hyperbolic
discontinous systems and have been proven to be exponentially mixing
and hence in particular ergodic [6, 22, 29, 21]. Their periodic orbits and
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3EIGENFUNCTION EQUIPARTITION FOR QUANTIZED MAPS

various other dynamical properties have also been studied in detail (see
[29] for further references).

Those maps have attracted considerable attention in the context of

"quantum chaos". The quantized sawtooth maps are analysed numerically
in [20], and we refer to [27] for a recent review and further references
to the quantized Baker transformation. There are several reasons for such
sharp interest in those maps.

First, there are very few explicit classical symplectic dynamical systems
known to be hyperbolic, mixing, or even simply ergodic. In discrete time,
there are the hyperbolic automorphisms of the torus (and their perturbations),
as well as the aforementioned discontinuous maps. Much of the behaviour

of the toral automorphisms is determined by special number theoretic
properties and therefore not expected to be generic [15, 18, 19, 25]. This
has been a major motivation for analyzing systems with singularities. Much
attention has been paid to chaotic maps on the torus, even though they seem
rather unrealistic as models for physical systems despite a recent attempt
to realize the quantum Baker map as a physically realistic system through
the use of an optical analogy [16]. It seems to be generally believed (or at
least hoped) that the quantized sawtooth and Baker maps display "typical"
behaviour of quantized chaotic systems [20, 27, 23].
A second reason for the interest in those maps is that the discrete time

variable and the finiteness of the quantum Hilbert spaces associated to
the torus constitute a clear advantage for numerical - and to some extent
theoretical - studies. Nevertheless, as has been pointed out elsewhere [27],
not much is known about them in terms of a rigorous semiclassical analysis.
The problems encountered have two sources: the singularities in the maps
and the fact that the finite dimensionality of the quantum Hilbert spaces also
has a drawback since it replaces oscillating integrals by oscillating sums,
for which a sufficiently complete and powerful stationary phase method
is not available [27]. With respect to this problem, it was shown in [3]
that the standard Weyl calculus is easily adapted to the torus and with
it all "kinematic" semiclassical estimates, i.e. those that do not involve

any particular dynamics. In addition, the Egorov Theorem for quantized
smooth Hamiltonian flows and for quantized toral automorphisms (and their
Hamiltonian perturbations) passes effortlessly to the torus [3]. Recall that
this is in turn sufficient for a proof of the Schnirelman Theorem which
only depends on the ergodicity and not on more refined properties of
the underlying dynamics. In fact, semiclassical estimates depending in a
more refined way on the dynamics, such as trace formulas, do not come
quite so easily. In this context, the use of Toeplitz quantization, advocated
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4 S. DE BIEVRE AND M. DEGLI ESPOSTI

in [32, 33], might prove more powerful in the future. It should be noted,
however, that singularities in the classical maps introduce new problems
making even the Egorov Theorem a non-trivial matter. We shall indeed
prove that both for the sawtooth maps and the Baker transformation, the
Egorov theorem does not hold in its usual form.

It seems therefore a good idea to start by establishing the Schnirelman
theorem for discontinuous ergodic systems. Indeed, even if a suitable trace
formula, on which most of the literature in the subject has concentrated,
but which is very hard to establish rigorously, will imply this result, it can
be proven much more simply provided one has a suitable Egorov Theorem
at one’s disposal. For ergodic billards, this is the strategy of the proof in
[34]. We will adapt the strategy of [34] here for the quantized sawtooth and
Baker maps, and therefore our main task is to establish a suitable version
of the Egorov Theorem.

It is generally expected that standard semiclassical analysis breaks down
in the presence of singularities due to diffraction effects (whether the
system is chaotic or not). Some work has been done to analyse in which
manner this breakdown occurs for the quantized Baker transformation
[27]. By comparing the matrix elements of the exact quantum propagator
with those of its semiclassical approximation, the authors of [27] show
that - as expected - the breakdown occurs "close to" the singularities
of the classical map. This is a way of saying that the Egorov Theorem
breaks down at these sites. Presumably this phenomenon survives in other
quantized discontinuous maps, although it was not observed in the quantized
sawtooth maps [20].

Conversely, it seems reasonable to expect that, "away from" the

singularities, the usual semi-classical analysis continues to hold. This should
be all the more true in these particular models, since they are linear away
from the singularities. It is this latter expectation that our work helps
to confirm. Indeed, the Egorov Theorems we will prove roughly state

that quantization and time evolution continue to commute up to terms
of order Vn E J1~ provided two conditions are satisfied: both the

classical observable and the quantum state should be supported away from
the singularities of the classical map. This will be a sufficiently strong
statement to still allow us to show the Schnirelman theorem.

Let us now be more precise. As we will recall in detail below, it is possible
to associate to some symplectic maps T on the two-torus a corresponding
quantum operator VT. This operator acts on a suitable Hilbert space ~C~r
of dimension N E N, where N is related to the Planck constant via

203C0hN = 1. We will not indicate the N dependence of VT.

Annales de l’Institut Henri Poincaré - Physique théorique



5EIGENFUNCTION EQUIPARTITION FOR QUANTIZED MAPS

Given a function f E C°° ~T 2 ~, we are interested in the behaviour of the
following operator, Vk &#x3E; 1, and N - oo :

where is the operator on given by the (Weyl) quantization of
f (see section 2) and where we have assumed that f oTk E C~°(Tz). The
operators measure the amount to which quantization and evolution do
not commute. For future purposes, note that a simple induction procedure
gives: (f o Tl E C~(T2), 0  l  k),

To put our results in a general setting, we give the following definition.

DEFINITION 1. - Let T be a Nnap on the torus and VT its quantization. We
say (T, VT) satisfies an Egorov estimate up to time K if the following holds:

I . there exists a closed set £K of measure zero so that, if f E 000(72)
is supported away from £ K, then f 0 Tl E 000(72), Vf ::; K;

2, for each family of orthonormal bases {03C8(N)j }j=1,...,N, there exists

a family of index sets ~(K) (N) C ( 1 , 2, ... , N) satisfying
SK&#x3E; (N) /N - 1 so that VO ::; 1 ::; K

The set ~ K should be thought of as the union of the set of singularities for
T with its image under T,..., T ~ . As K - oo, it tends to "fill" the torus,
in the sense that it cuts the torus into disconnected pieces of increasingly
small area, becoming eventually smaller than the elementary area The
first condition in the definition states that the classical observable must

stay away from those. Since we need control for arbitrarily large K, this
might look worrysome, since it seems to impose untenable restrictions on
f. Fortunately, in the proof of the Schnirelman Theorem, one always takes
~ 2014~ 0 before taking K - oo, avoiding this difficulty. In particular, we have
nothing to say on the existence or absence of the so-called log 1i barrier [23].
The fact that (3) does not hold for all basis vectors is a reflection of the fact
that they (meaning, roughly speaking, their Husimi or Wigner distributions)
should also stay away from the singularities. This will become clearer in the
proofs below, but has the following intuitive basis. Since the singularities
are of zero measure, there is a subspace of the quantum Hilbert space of
dimension N - NE (with E as small as desired) consisting of vectors that

Vol. 69, n° 1-1998.



6 S. DE BIEVRE AND M. DEGLI ESPOSTI

essentially do not "touch" the singularities. For them, an Egorov theorem
is expected to hold since they only "feel" the smooth part of the dynamics
(up to time K). This is indeed what we prove in the various examples that
we treat (see also the Remarks after Theorem 4).
We then have:

THEOREM 2. - Suppose T is ergodic and (T, VT) satisfies an Egorov
estimate for all times K. Denote by ~p~N~ a normalized basis of eigenvectors
of VT and let f E 000(72). Then

which is equivalent to the following statement.
There exists ~(11T~ C {i,..., ~v} with ~(N)/N ~ 1 so thatVjN E 

V f E 000(72)

For any normalized p E one can construct a probability measure
on [0, 1] by defining, for all intervals I C [0, 1] :

Here the ek, k = 0,..., N - 1, are the usual "position eigenvectors" (see
Section 2 for the precise definition). Theorem 2 has now the following
main corollary, which is the usual statement of the equidistribution of the
eigenfunctions in the position variables [7, 25, 30].

COROLLARY 3. - Under the assumptions of Theorem 2:

The paper is organized as follows. In section 2 we briefly recall the basic
elements of quantization on the torus. In section 3 we prove an Egorov
estimate for quantized translations: this allows us to illustrate the strategy
of the proof, used again in the following sections, in a simple setting .
The sawtooth maps are treated in section 4. The crucial estimate there

is Proposition 15, which implies that the quantized sawtooth maps satisfy

Annales de l’Institut Henri Poincaré - Physique théorique
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an Egorov estimate, so that Theorem 2 holds for them. In section 5 we
deal with the Baker map B and its quantization VB . In that case, we prove
Theorem 2 for functions f E C°° (~2 ~, depending on q alone. This is of
course sufficient for Corollary 3 to hold as well. The key ingredient is the
following Egorov estimate for such functions :

THEOREM 4. - Let 0  s  ~. Let ~~~~ be a family~ 
,j=1,...,~V

of orthonormal bases for HN. Then there exists a family (in N ) of subsets

~~~&#x3E; (N~ C {1, 2,..., ~V~ such that, for all f E 000(72) of the form
fn there exists C(k, s, f) so that: .~  k,

E ~t~~ (lV),

Moreover

The proof of Theorem 4 will show in addition that for k ~ N fixed,
for all s &#x3E; 0 and 0  E  1, there exists a "good" subspace of of

dimension at least N - NE so that for all 1/J belonging to this subspace
and for all 0  ~  k,

This is a reflection of the fact that, away from the singularities, the Baker
map is linear. Indeed, for linear maps, there is no error in the Egorov
Theorem, whereas here the error can be made arbitrarily small on as large
a subspace as one wishes. We also show that there exists a small subspace
on which the Egorov estimate breaks down, and this despite the fact that
smooth functions of q alone remain smooth under the classical evolution.
For general smooth observables, the situation is technically considerably
more complicated and we will not deal with it here.

Going back to (6) , note that the error there is at best of order In

addition, as s - 1/2 in (6), the estimate in (7) gets worse. This is due to
the fact that we assume nothing about the projection of the basis vectors

~~~~ onto the "good" subspace. On the other hand, one can optimize the
estimate in (7) by taking s - 0, thereby sacrificing the estimate in (6).

Finally, section 6 contains the proof of Theorem 2.

Aeknowledgments: The authors would like to thank Prof. M. Saraceno and
Prof. S. Zelditch for most delightful and enlightening conversations during
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the semester "Chaos and Quantization" at the Institut H. Poincaré in the fall
of 1995. Stephan De Bievre has also benefited from helpful and stimulating
conversations with Prof. S. Tomsovic. Finally, Mirko Degli Esposti would
like to thank the Laboratoire de Physique Théorique et Mathématique
(Université Paris VII): most of this work has been developed thanks to its
hospitality and financial support.

2. QUANTIZATION: KINEMATICS AND DYNAMICS

The construction of the quantum Hilbert space associated to the two torus
T2 - and of the associated Weyl calculus is by now well known.
We give a brief account of the results, mainly to set the notations. Further
references to the original sources can be found in [3, 10].

First of all, the compactness of the torus imposes a Bohr-Sommerfeld
quantization condition:

for some N E .JI~. For each choice of N, the quantum Hilbert spaces ~C~ ~ 8 )
are indexed by 9 = (9i,?2) ~ [0, 1 [2. They are N-dimensional and carry
each an irreducible unitary representation of the discrete Weyl-Heisenberg
group with elements J~~), n,m e Z and § E R.

There exists in each ~-C~ (B) a suitable orthogonal basis ej(0, N),
j = 0, ... , (N - 1), representing a "state perfectly localized at qj (0, A~) ==
~ ~ ~ ". In this basis, the representation of the discrete Weyl-Heisenberg
group can be written as follows:

where

Here and in the following we use e3 ~8, N), defined for all j E Z via the
quasi-periodicity condition

Annales de l’lnstitut Henri Poincaré - Physique théorique
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The ek (0, N) are the natural basis of the "position representation". One
passes to the "momentum representation" via a discrete Fourier transform
(Vk E {0,...~-!}):

where

with

Note that

with f~~~r (9, N~ - f~ (8, N). From now on we will suppress the
explicit ((), N) dependence on the ej , fk and on U. We are now able to
define the Weyl-quantization OpWh f of a given function

as

We refer to [3, 11 ] for more details.

Turning to the dynamics, assume now that T is a symplectic map on
the torus. In certain cases, it is possible to define a corresponding quantum
operator VT on There is no general procedure available for doing
this. The cases for which it has been done are:

1. When T is obtained by solving Hamilton’s equations for some

Hamiltonian H E C°° (~2 ), or as a product of such transformations
as for kicked systems (T = In that case, one simply quantizes
H, using Weyl quantization and VT = (VT = YT1 o VT2).

2. For T E ~L(2, Z) [15, 10] and for Hamiltonian perturbations thereof
[3, 4].

3. For general contact transformations [33].
4. When T is a translation on the torus [3, 9].
5. For certain piecewise affine maps on the torus, such as the baker

transformation [2, 26], the sawtooth map [9, 20] and the D-map [28].

Vol. 69, n° 1-1998.



10 S. DE BIEVRE AND M. DEGLI ESPOSTI

In cases (1), (2) and (3) the Egorov Theorem is easy to establish [3, 33].
We will deal here with (4)-(5), proving a sufficiently strong version of the
Egorov Theorem (see Definition 1 ) to allow us to prove an equipartition
result.

3. ERGODIC TRANSLATIONS

In this section we show that the translations on the torus satisfy an Egorov
estimate in the sense of Definition 1. A weaker result was already obtained
in [3]. The proof we give here already contains, in a simple setting, the
main ideas of the proofs in Sections 4 and 5. Given [0,1[, we denote
by ~’~~,~~ the corresponding translation

By considering T~~?,~~ as a composition of two commuting translations,

we are lead to define the following unitary operators [3, 9] = 1)

for j = 0, ... , (N -1). For simplicity, we will always assume 8 = 0 in this
section although the results hold for general 8. Similarly, the quantization

of is diagonal in the momentum representation and hence its
matrix in the position representation is given by

where

Finally, the quantization M~a,~~ of T(a,~~ is defined to be (see [3])

The choice of the phase ensures that = ~I ( ~ N ~ . Note that the
depend continuously on (a, ~~.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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This quantization, while reasonable, is not completely natural, as

explained also in [9]. Indeed, it suffices to note that

unless (3 = k / N. In other words, the quantization treats the "left" edge
(eo) and the "right" edge (eN) of the torus differently. In this sense the
smoothness of the classical map is broken at the quantum level and a kind

of "quantum discontinuity" is introduced. A similar phenomenon occurs
in the quantization of the sawtooth, where the "quantum discontinuity"
superimposes itself on the classical one.
We now turn to estimates, showing that the Egorov theorem in its usual

form fails in this case.

LEMMA 5. - Let (3 E [0, 1[ and (n, m) E Z x Z, (n, m~ ~ (0, 0). Then,
for N large enough:

and

Proof - Note that

so that we only have to control the terms

For that purpose, we can compute its matrix elements (0  h, l ~ N - 1 ~

The element (ek , is non vanishing if and only if f + n = k mod N,
namely k - f = n + sn ~1~, .~~ ~ N, where takes only the values 0,1
and -1, provided N is large enough. Hence,

Vol. 69, n° 1-1998.



12 S. DE BIEVRE AND M. DEGLI ESPOSTI

where 8~ 
1 

= 1 if a = b modN and 0 otherwise. Using E ~~ =
II E*E it is now easy to estimate the operator norm of E. We have:

Here sn = 0 if 0  k + n  N - 1, and I Sn = 1 otherwise. As a result,
E*E is diagonal and since it has at least one non zero matrix element
for each n ~ (0,0) E Z2, the proof is complete. The second statement
regarding Ml ( cx ) follows now in an analogous way, thanks to the unitarity
of the Fourier transform. D

Note that, if j3 then (14) shows that the Egorov theorem
holds exactly, without error terms, as expected. On the other hand, if j3 is a
fixed N-independent number, then lim supN~~ sin 203C0N03B2 |~ 0 and the
usual Egorov theorem does not hold in this case for M2, quantization of
~’~o,p~ . We now turn to the solution of this problem (Theorem 7).

First, for future purposes, let us define Vn, m E Z (see (1))

Note furthermore the following simple relation: V f E Coo (72),

Putting together this formula with the last lemma, we get
PROPOSITION 6. - Let ~/3 E [0,1[ and (n, m) E Z x 2. Then, for N

large enough

From (20) one sees, as in [3], that for (0152, (3) in a dense G 8 set there exists
a sequence oo so that ~ ET(03B1,03B2)(n,m) ~HNk - 0, Vm, n E Z. This
is a way to circumvent the above problem with Egorov. It is not very

satisfactory (see [3] for further comments) and Theorem 7 below gives a
much better result.

Let us go back to (17) and remark that for n fixed and N much larger
than I n I, the condition 0~+~(7V-l)is satisfied for many f:

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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hence Egorov is actually exact on a large subspace of It only breaks
down close to the "edges", i.e. when (, is close to zero or N. This is a

reflection of the quantum discontinuity we mentioned earlier. We will now
show how to use this remark to prove the following Egorov type result,
sufficient for our purposes. 

-

THEOREM 7. - Let a, 03B2 E [0, 1[, k ~ N and 0  s  2 . Let for each
N E an orthonormal basis ~1, ... , of be given. Then there
exists a family (in N) of subsets ~~~~ (~V ~ C ~ 1, 2,..., ~V~ such that, for
all f E C°°(~2~ there exists C(s, k, f) so that: d0  .~  k, VN E ,J1~
and V j E ~~~~ (N~,

Moreover

To prove this, we first introduce "good" subspaces of where Egorov
is exact on trigonometric polynomials.

DEFINITION 8. - Let 03B1,03B2 E [0, 1[ and 0  ~N  N. Then, Vk &#x3E; 1

We then immediately have (9~(a,/3) = ~~ ~~ ~ a , ~3 ~ )
LEMMA 9. - Let a, fl E [0, 1[ and 0  r~~  N as before. Then, Vk &#x3E; 1

1. dim 0q_~ (0, /3) &#x3E; N - 2~; dim ~~~ a0 ~ ~V - 
2. dim~(o’,/3) ~ ~ - 4~~~
3. &#x3E; N - 

Proof of Lemma 9. - The first statement follows immediately from ( 16)
and the comments following it. Now write, as in (19)

It follows immediately that M2(-/3)[~(~0)]ri~(0~) C ~(c~/3).
The codimension of this intersection can not be bigger than 4~, because of
the unitarity of M2. It is now easy to prove the last statement inductively,
using the invariance of the characters under translations. Indeed, since

exp + a) - n(p + = exp exp 27ri(mq - np) ,
Vol. 69, n° 1-1998.



14 S. DE BIEVRE AND M. DEGLI ESPOSTI

we have,

So if

then ,~&#x3E; (n, m)~ = 0 and hence ~ E 0/~)~ ( 0152, {3), which proves the result.
We can now decompose into a "good" and a "bad" subspace as

follows:

We write and for the corresponding projections. The last
~~ ~~v

ingredient needed for the proof of Theorem 7 is this:

PROPOSITION 10. - Let ~ [0, 1[, 03C81,..., WN E HN as in the statement
of Theorem 7. Let 0  N, 6 &#x3E; 0 and introduce Vk &#x3E; 1

Then

V

Proof of Proposition 10. - First of all, note that

From this we get, using Lemma 9

which concludes the proof. D

Proof of Theorem 7. - Choose sequences N1/2-s, ~~ - 
N E Define (see (24)) ?~(~) = ~~~j (b~r~, then (25) implies (22).
To prove (21), write first

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Hence, for j E (N), VI  k

Since = 0 and hence ~,f 0 _

R~N ( f) o Tl(03B1,03B2), the fast decrease of the fmn guarantees that ~0 ~ l  k

and for all E 7~~, there exists so that

On the other hand

so that (23) and (24) imply

Inserting (29) and (27) into (26), (21 ) follows upon choosing s’ =
~1/2-~)-~ a

Remark 11. - To prove the equivalent of (8) note that, for 03C8 ~ G(k)~N(03B1, 03B2),
the r.h.s. of (28) is identically zero. Hence (26)-(27) imply, V0  ~  k,
VW e ~(a~/3),

Theorem 7 shows that (T~a,~~ , M(0152,{3)) satisfies an Egorov estimate in
the sense of Definition 1. Hence, if T(0152,{3) is ergodic E Q, E

7~ B Q), Theorem 2 applies. Note that in this case the "singular set" E~
can be taken to be empty for all K. Finally, observe that the analog of
Theorem 7 for the Baker map is Theorem 4, proven in section 6 and that
the remarks following Theorem 4 apply here as well.

Vol. 69, n° 1-1998.



16 S. DE BIEVRE AND M. DEGLI ESPOSTI

4. THE SAWTOOTH MAP

Given a, b E R, we consider the following discontinuous maps (for
a, b E R B Z) A1, A2 on the torus:

and we set A = A(a, b) = Al o A2.
For the classical properties of these maps, we refer to [6, 22, 21] and

[29]. As showed in [9], we have the corresponding quantum operators
in the position representation:

where

and,

Finally, we set

We take from now on 0 = (0,0), but all the proofs and the results still

hold in the general case.
We first consider the case of Y2. The proof and even the formulation of

the appropriate Egorov theorem are complicated by the following problem,
which adds on to the difficulties encountered already for the translations.
When f E 000(72), one does not in general have f o A2 E Coo(72). This
means that o A2 ) might not make sense, since typically, f o A2
will not even be continuous so that nothing guarantees the convergence of
the series in (13). One could try to avoid this

problem as follows. For f E 000(72), define

Annales de I’ lnstitut Henri Poincaré - Physique théorique



17EIGENFUNCTION EQUIPARTITION FOR QUANTIZED MAPS

But now x(n, m) o A2 - which is not continuous if

b ~ Z. As a result, the Fourier series

with

converges conditionally and not absolutely. Moreover the convergence is not
uniform on ]0,1[. In addition the equality in (31 ) holds only for q E 7~ B Z,
not for q E Z. Nevertheless, in this case, if we try to define, following ( 13),

then the series on the right hand side does actually converge, as is readily
verified. So this would give a meaning to (30), but a problem still remains.
Suppose indeed f E C°° (~2 ) is such that f o A2 E C°° (T 2 ) as well.

Then we should prove that the usual definition of o A2 ) from ( 13)
coincides with (30). That is clear from a formal manipulation, involving a
change of summation order in a conditionally convergent series. We will
carefully deal with this problem, avoiding the use of (30) and of (33), but
we point out that the results in this section can be obtained from obvious
formal manipulations using (33). In order to prove Proposition 13 below,
we will use the following lemma, the proof of which we will postpone
until after the proof of the proposition.

LEMMA 12. - Let g E C~([0, 1]) and denote by g also its extension to a
1 periodic function on R. Then, there exists a constant C so that b’E &#x3E; 0

and VMI , M2 E N, with min{M1, M2} &#x3E; 11 ~:

where gn = J~ dx.

As the proof will show, the term in ~-1 is absent if g ~ C~(S1). We will
apply the lemma to g(x) = exp2i03C0mbx, where this is of course not the
case (6 ~ Z). We then have,

Vol. 69, n° 1-1998.
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PROPOSITION 13. - Let f E C°°(T2), with f o A2, f o A1 E 000(72).
Let = 0  ~y  1. Define, for all 0 :::; j  ==

min{j, N - 1 - j).
Then, for all |j|N &#x3E; and for all s E R+, there exists Cs(f, 03B3) &#x3E; 0

such that

Similarly, for &#x3E; ~~ and for all s E R+, there exists 1) &#x3E; 0

such that

Remark 14. - (34) and (35) make a remark from the introduction clear.
The singularities of A2, for example, are the lines q = 0 and q = 1; (34)
states that an Egorov estimate holds with arbitrary precision, provided the
"position eigenvector" ej stays away from the edges (ljlN &#x3E; 

Proof. - We only prove (34), the proof of (35) is similar. It is easy
to see that

with ck (b, m) defined in (31-32). Note that this sum is absolutely convergent,
uniformly in m and .~. Thanks to the assumptions on f oA2, for any divergent
sequences .11~, (N E .11~) to be chosen later, we have

Here and below the notation 0 ( (qN + ~N)-~) , for qN , qN - + 00, means
as usual that Vs &#x3E; 0, there exists Cs so that

, n ,

Now introduce (36) into (37) and split the sum in n using a divergent
sequence ÇN E J1~ (to be chosen later) as follows:
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For the second term I~ in (38) we write, after changing the summation
order and remarking from (32) that I 1 1,

We now turn to the estimate of 11. We will assume from now on that
so that, if &#x3E; ,~~ and EN = we have

Now compute:

We will now apply Lemma 12 to the expression in the square bracket
with Mi = -n + M2 = ~ + g(x) = and E = This
will yield the following bound, provided ~v) &#x3E; 11. We take
henceforth ~ = so that:

Inserting (41) and (39) into (38) yields

where we used the fast decrease of the For given, we can choose
~y~ and, r~~  2,~~, which yields the result. D

Bbt.69,n°I-i998.
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Proof of Lemma 12. - We first consider the case where M1 = M2 = M
and since it is enough to get the estimate for the real and imaginary part of
g separately, we restrict to the case of a real function g. Then

where the Dirichlet kernel is given by

Introducing, for x E [e, 1 - E], (E &#x3E; #)

equation (42) can be rewritten as

For x E [E, 1- e], h(x, y) is a Coo, 1-periodic function of y, except at most
for a single finite jump discontinuity at y* = x, present only if 
It is then easy to see that ([12], pag.36):

Clearly, I

For the other terms of (44), we have the following simple estimate:
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Inserting (45) and (46) into (44) yields

Now, if Mi &#x3E; M2 we have

since I
We can now state the following,
PROPOSITION 15. - Let f o AJ o A1, , f o AJ E G’°° ~T 2 ), , for all 0  j  k,

Let s &#x3E; 0 and ,C~~ = 0  ~y  1. Then there exists

O(f, s, ~y,1~) &#x3E; 0 and an N - dimensional subspace ~N~~ (A~ 
so that

for all o ~ ~’  k, Va/ E ~N~~ (A~.
Proof - We first prove this for k = 1.

Let 03C8 E HN so that  03C8, ej &#x3E;= fk, V21/J &#x3E; = 0, for 

Those 03C8 form an at least (N - 403B2N)-dimensional vector space. Now
compute, for such ~:

The result for k = 1 then follows immediately from Proposition 13. For
k &#x3E; 1, we then proceed by induction:

So if 1/J E 0N(A) n then (47) follows. Since

the proof is completed. D

It is now easy to prove analogs of Proposition 10 and of Theorem 7,
with f as in Proposition 15. This implies that (A, VA) satisfies an Egorov
estimate as in Definition 1, and hence Theorem 2 and Corollary 3 apply.
Vol. 69, n° 1-1998.
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5. AN EGOROV THEOREM FOR
THE BAKER TRANSFORMATION

In this section we prove Theorem 4. We start by introducing the model
and fixing some notations. Let

The Baker map is a discontinuous map B on the torus, defined as follows:

~-(~P)6 T~)

We refer to [ 1 ] for the ergodic and topological properties of the map
B. For what concerns the action of the classical maps on the characters

follows from the definition that (Vn, r E Z)

With the usual assumption N = 0 mod 2, the quantization of the Baker
map B is then given by the following unitary operator in the basis ek,
l~ = 0,..., N - 1 [2, 9, 26, 27]

VB(B) acts on 7~(6’) = ~-IN,R(9). Here, with ZN ==

{0,...,~-1}U{~,...,7V-1’}~LU~:’

We will now assume 0 = (0, 0), which is the case considered in [2]. All
the results, in particular the asymptotic ones, can easily be generalized to
the more natural case e = (1 /2, 1 /2) [26]. With this convention, writing

= and ~72(0) = 
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Given f E ZN, let the "strip" Se of £ be defined = L = R) if
.~ E L (.~ E R). Then Vl, k E ZN

It is now easy to prove the following formula: Vf E ZN and Vm, n E Z

This follows from a simple calculation using

where is defined as in ( 10)-( 11 ):

We are now turning to the proof of a suitable Egorov estimate (Theorem 4).
Suppose that f E C°°(T2) does only depend on the q-coordinate, that is
f(q, p) = LnEZ fn x(7z, 0). As in the previous sections, we want to study
the operator

We consider k = 1 first, and prove the following crucial formula:
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where

and

with 03C3l = i if £ ~ L and 03C3l = -i if £ E R. To prove (61), we split for
each f E ZN the strip Sg in two (n-dependent) disjoint pieces:

Here(~-~)

Then, (58) implies

and this proves (61).

Equation (61) implies that the usual Egorov Theorem does not hold in this
case. Indeed, taking n = 1 it is easy to check that ~ EB(~(1,0))eN-1 ~=
ý2, VN E N.
The following result is then the basic ingredient for the proof of

equidistribution of smooth observables in configuration space.
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PROPOSITION 16. - Let ~N  N/2 be given, then

2. There exists a subspace c HN, such that dim &#x3E; N - 2~N
and E ~~~, v

Proof. - Because of the assumptions, #Sy &#x3E; ~V/2 2014 ~ and  ~7v

(see (62)), that is I  This immediately implies

which proves the first assertion. To prove the second result, we introduce
the space:

In view of (61), (65) holds on ~~~ . We will now show that the dimension
of this space is in fact bigger than N - To see this we compute the
kernel of Fn  It is easy to see that

For 03C6 = 03A3N-1 l=0 ce el = 03A3N-1k=0 dk fk, we have

Hence the kernel of Fn is (N - 2|n|)-dimensional and the result easily
follows. D

As an immediate consequence of this proposition, we can state the

following
COROLLARY 17. - Let r~~  N/2 and k &#x3E; 0 be given, such that  N.

Then there exists a subs pace ~~~~ C such that

Using this corollary and a natural adaptation of Proposition 10, one now
readily proves Theorem 4, along the lines of the proof of Theorem 7.
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6. PROOF OF THEOREM 2

For f E we write f = dqdp. We will denote the

time-average of f and of by

and write

for any f E C°° (T 2 ) (see [34]). For any fixed K and E to be chosen later,
introduce a smooth characteristic function of with the property
that (Supp ~~, K)  E, where p denotes the Lebesgue measure. Then, for
any f E 000(72)

We shall write fE,K == f(1 - 

Clearly (see 68)

We control first. Note that, since (T, VT) satisfies an Egorov
estimate up to time K, (fE,K o T~) E C°° (T2 ) for all .~  K and hence

o T~ is well defined. Since the pj are eigenfunctions of VT (we
drop the N on the 

Noting that 1 A03C6j &#x3E;|2~  cp3 , A* A03C6j &#x3E; for any A E L(HN), we get
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With an eye towards using the Egorov estimate (3) in Definition 1, we
rewrite this as follows:

Now we use that E 

to conclude that there exists a positive constant C~(/), such that the
following estimate holds

Using that f72 C~9~ , for any g E C°° ~T 2 ~, (74)
yields, modulo yet another easily controlled error term,
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Now, choose 6 &#x3E; 0 fixed. Then, since T is ergodic, we have for all K
large enough

Note that, for such K, and limE--+o == f, so that
the dominated convergence theorem yields that, for E sufficiently small

Taking K and E as above, and inserting (77) in (75), the Egorov estimate
(3) implies that, for N sufficiently large

It remains to control the term Note that, by using the previous
observation regarding the trace of Op~ g, we can write

In particular, given E &#x3E; 0 and K, we can choose N sufficiently large such
that (see also (73))

The first equation in Theorem 2 now follows from (70), (78), and (80). The
rest follows from standard diagonalization and density arguments which
we omit [7,30].
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