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ABSTRACT. - We study the point limit of the linearized Maxwell-Lorentz
equations describing the interaction, in the dipole approximation, of an
extended charged particle with the electromagnetic field. We find that
this problem perfectly fits into the framework of singular perturbations
of the Laplacian; indeed we prove that the solutions of the Maxwell-
Lorentz equations converge - after an infinite mass renormalization which
is necessary in order to obtain a non trivial limit dynamics - to the solutions
of the abstract wave equation defined by the self-adjoint operator describing
the Laplacian with a singular perturbation at one point. The elements in
the corresponding form domain have a natural decomposition into a regular
part and a singular one, the singular subspace being three-dimensional.
We obtain that this three-dimensional subspace is nothing but the velocity
particle space, the particle dynamics being therefore completely determined
- in an explicit way - by the behaviour of the singular component of the
field. Moreover we show that the vector coefficient giving the singular
part of the field evolves according to the Abraham-Lorentz-Dirac equation.
@ Elsevier, Paris 
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Nous etudions la limite ponctuelle des equations linearisees de
Maxwell-Lorentz, qui décrivent 1’ interaction d’une particule etendue avec le
champ electromagnetique, dans l’ approximation dipolaire. Nous demontrons
que le probleme s’ étudie dans le cadre de la theorie des perturbations
singulieres du Laplacien. En effet nous prouvons que la solution des

equations de Maxwell-Lorentz converge - a la suite d’une renormalisation
de masse infinie, necessaire pour que la dynamique limite ne soit pas triviale
- vers une solution d’ une equation d’ ondes abstraite, definie par 1’ operateur
autoadjoint decrivant le Laplacien avec perturbation singuliere en un point.
On peut decomposer d’une facon naturelle les elements du domaine
de forme correspondant en une partie reguliere et une partie singuliere
appartenant a un espace de dimension trois comcidant avec l’espace des
vitesses de la particule. La dynamique de la particule est donc completement
determinee par le comportement de la composante singuliere du champ.
En outre nous demontrons que le coefficient correspondant a la partie
singuliere du champ est solution de 1’ equation de Abraham-Lorentz-Dirac.
© Elsevier, Paris

1. INTRODUCTION

One of the most important, and difficult, problems in classical and

quantum field theory is the passage to the so called "local limit", i. e. the.

limit in which the interaction takes place at one point.
The most meaningful theory in which this problem shows up is

electrodynamics of point particles, both in its classical and its quantum
version ([D],[Be],[CN]). The goal of this paper is to show that it is

possible to construct a complete and mathematically consistent theory of
the dynamical system constituted by the electromagnetic field interacting
with a charged point particle, at least in the linear (also called dipole)
approximation.

Such a program goes back to the early studies of Kramers ([Kr]) in

renormalization theory, the most comprehensive report on which is perhaps
the Ph.D. thesis of Kramers’ pupil N.G. VanKampen ([VK]).

Annales de l’Institut Henri Poincaré - Physique théorique



353CLASSICAL ELECTRODYNAMICS OF POINT PARTICLES

But these efforts did not reach the goal, and, up to now, a system
of equations already renormalized and describing the dynamics of the
coupled system was lacking. The model here studied is the point limit
of a regularization of the Maxwell-Lorentz system, also called, in this

particular case, the Pauli-Fierz model ([PF],[A],[BG],[B1]): it consists of an
extended charged particle, described by a spherically symmetric form factor
p, interacting with the electromagnetic field and in linear approximation.
In Coulomb gauge this corresponds, for the vector potential A and for the
particle position q, to the equations

here M is the projection onto the divergenceless part, e is the electric

charge, c is the light velocity, and mo is the bare, or mechanical, mass, a
parameter to be suitably redefined to get the equations in the point limit,
i. e. when p weakly converges to 80, the Dirac mass at zero. Notice that
in the Coulomb gauge the scalar potential § plays no role, in that it is

purely static, being the solution = 47rep, and for a spherically
symmetric form factor p it gives no contribution to the Lorentz force on
the particle (see e.g. [H]).
As it stands the system is meaningless in the point limit, due to the fact

that the solution for the field is not sufficiently regular to be evaluated at the
origin, as would be required in the right hand side of the particle equation
in ( 1.1 ), so that the Lorentz force on the particle appears to be ill defined.
The traditional way of dealing with this problem consists of decoupling

the system, firstly eliminating the degrees of freedom of the field by
integrating the field equation in (1.1) and then substituting into the particle
equation. This procedure leads, through heuristic manipulations, to the
classical Abraham-Lorentz-Dirac equation for the particle, namely

([D],[L]), where 03C40 = 3mc 2e 3 , while m is the renormalized (or phenome-
nological) mass. A first rigorous analysis of the behaviour of the particle
in the point limit appears in [BN] and more thoroughly in [B].
But the dynamics of the field is usually not even dealt with. To the

authors’ knowledge the only previous papers in which the field dynamics
plays some role are [IW] and [K] (both inspired by [EIH]).
Vol. 68, n° 3-1998.
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The procedure here adopted is more functional analytic minded, but
equally simple in spirit. We too decouple the system, in the reverse way
however, obtaining an equation for the field variable alone as follows.

Integrate the particle equation in (1.1) and substitute into the field equation,
neglecting for the moment the contribution of the initial data qo, Ao - a
contribution that, as a matter of fact, will turn out to disappear in the limit
(see lemma 2.6 for this non completely trivial fact). The result is

Now the right hand side is a finite rank perturbation of the Laplacian,
which, as we will show, turns out to converge in the point limit, in norm
resolvent sense, to a well defined self-adjoint operator -Hm, provided mass
is renormalized according to the classical prescription adopted also in the
quantum context ([Be])

where E ( p) is the electrostatic energy of the form factor, and m is the

phenomenological mass which appears here as an arbitrary parameter not
contained in the original system ( 1.1 ) (see thm. 2.1). Instead, if such a

renormalization is not performed, the limit dynamics turns out to be trivial
in a sense to be explained in thm. 2.11.
The limit equation for the field is then

an abstract wave equation where Hm is an operator that is self-adjoint,
bounded from below, containing the renormalized mass only.

Operators of this kind, when m is replaced by a parameter to be

interpreted as the scattering length, are well known in ordinary quantum
mechanics, and a wide mathematical literature exists on them ([AGHH]).
In the quantum mechanics context they are related to the so called "Fermi

pseudopotentials", which describe potentials with a singular support - one
point in our situation (see remark 2.4). Such an operator Hm represents a

rigorous version of the formal writing "-A+M- 80", in which 80 would
act as a multiplication operator.
A main characteristics of the operator Hm is the structure of its form

domain, the elements of which being the sum of a regular part and of a

Annales de l’Institut Henri Poincaré - Physique théorique



355CLASSICAL ELECTRODYNAMICS OF POINT PARTICLES

singular one with a fixed singularity, of the Coulomb type, at the origin (see
thm. 2.3). The remarkable fact is that the solutions of the Maxwell-Lorentz

system (1.1) converge to the ones of (1.3) if and only if the coefficient
of this singular component is proportional to the velocity q of the particle
through the relation

(see corollary 2.9 and (2.5)). So to determine the flow of the complete
system it suffice to calculate it for the field alone, i.e. for the equation (1.3).
This is easily done (see thm. 3 .1 ), and the particle evolution is then readily
and explicitly calculated by (1.4) (see (3.2) and (3.3)). Moreover it turns
out that the vector coefficient determining the singular part of the solution
of (1.3), i. e. q(t), evolves according to Abraham-Lorentz-Dirac equation
(1.2), where q(t)) is now the (linearized) Lorentz force due to the
free evolution; more precisely it satisfies its integrated version

where A f denotes the solution of the free wave equation with the given
initial data (see thm. 3.2). With such a q(t) the solution of (1.3) satisfies
then the distributional equation

(see remark 3.4). This establishes the link with the traditional description.
We conclude with two remarks. The first one deals with the well-known

problem of runaway solutions ([D],[CN]). The operator Hm has a negative
eigenvalue (given by (2.6)), so that equation (1.3), and hence the particle
motion too, admits runaways. We do not discuss here this relevant physical
problem because we are concerned only with the mathematical description
of the system. In any case, on the purely mathematical side, the runaways
can be readily eliminated by projection onto the absolutely continuous
subspace of Hm.
The second remark concerns the possibility of extending the procedure

here pursued to the non linear complete Maxwell-Lorentz system. Its point
limit resists, up to now, every effort of a mathematical study. Some
preliminary work shows, contrarily to the most obvious conjecture, that
the solution to this problem is not given, as regards the limit operator,
by the Laplacian with a singular perturbation moving along the particle
trajectory. This indicates that, in the case of a moving delta interaction, the
situation for the wave equation is very different from the one for the heat
equation, as studied in [DFT].

Vol. 68, n° 3-1998. 
’
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2. THE POINT LIMIT OF THE

MAXWELL-LORENTZ EQUATIONS

Let us start with some notations. We denote by the Hilbert space
of square integrable, divergence-free, vector fields on R~. M will be the
projection from L5(R3), the Hilbert space of square integrable vector fields
on 1R3, onto and we will use the same symbol {-,-) (~ ’ 112 is

the corresponding Hilbert norm) to indicate the scalar products in L2(R3),
L5(1R3), L;(R3) and also to indicate the obvious pairing between an element
of L5(R3) and one of L2(R3) (the result being a vector in R~). By the
same abuse of notation, given two functions f and g in L2(~3), by f 0 g
we will indicate the operator in L3(~3) defined by f 0 g(A) := f (g, A).
HS(1~3), s E R, indicates the usual scale of Sobolev-Hilbert spaces, and
the meaning of and H* (~3) should now be clear. Finally, given a
measurable function p we define its energy E(p) as

On x R~ (the correct domain of definition will be specified later)
let us consider the system of equations (r &#x3E; 0)

where

and where pT(x) := r-3 p(r-lx), p E L2(~~) a spherically symmetric
probability density with bounded support. Therefore

(observe that E(p) is finite by Sobolev lemma since p E 

and pr weakly converges, as r 1 0, to bo, the Dirac mass at zero. Integrating
the particle equation in (2.1 ) one obtains

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Inserting this expression into the field equation one gets

where

and

Since M . p~. 0 pr is a bounded symmetric operator, Hr is a self-adjoint
operator on with operator domain H* ~ (~3 ) and form domain

H* ~~3).
THEOREM 2.1. - As 0, i.e. as pr weakly converges to 80, the self-adjoint

operator Hr defined above converges in norm resolvent sense in to

a self-adjoint operator Hm, where Hm has the resolvent

and where

Proof. - The proof proceeds as in [AGHH, Since

if v E f,g E spherically symmetric, a straightforward com-

putation gives

where 0, Re z &#x3E; 0, and

Vol. 68, n° 3-1998.
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Obviously

and so

(here HS stands for Hilbert-Schmidt). In order to prove that (Hm + z~ ~ - ~ is
the resolvent of a self-adjont operator one needs to prove that it is injective
and symmetric. This is done as in [AGHH, page 112]. D

Remark 2.2. - As clearly indicated by (2.3), Hr has a non .trivial, i.e.

different from -, limit if and only if mr diverges according to the

classical prescription (2.2).
We summarize the properties of the operator Hm in the following

THEOREM 2.3. - The vectors A in the operator domain of Hm
are of the type

The above decomposition in a regular part A-x, and a corresponding singular
one, is unique, and with A of this form one has

Let Fm be the quadratic form corresponding to Then the vectors A in

the form domain are of the type

Given A E D(Fm), QA can be explicitly computed by the formula

where Sr denotes the sphere of radius rand is the corresponding surface
measure. The above decomposition is unique, and with A E D ( F m) of this
form one has

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Moreover

and

where 2014Ao threefold degeneration and, given an orthonormal 

{~~. 

’ 

, 

’

are the corresponding normalized eigenvectors.

Proof - Everything follows proceeding as in [AGHH, ~I.1.1, §11.1.1] as
regards the operator, and as in [T, §2] as regards the form. However, for
the reader convenience, we give the proof. At first observe that, if A &#x3E; 0

and -A e 

and (GÀ, (-A + A)A) = A(0) if A E H* (1~3). This gives the result about
D(Hm). As regards the univocity of the representation let A = 0. Then
Aa = and the LHS is continuous if and only if
Aa(0) = 0. This implies Aa = 0 and univocity follows. As regards the
singular and absolutely continuous spectrum everything follows from a well
known theorem of Weyl. The elements in the point spectrum are the poles
of the resolvent, i.e. the zeroes of -z2  0; a straightforward
calculation gives formula (2.6).
On the dense domain

!

let us now define the (positive, when ~ &#x3E; ~o) symmetric quadratic fonn

Now we prove that Fm is closed. Take any sequence {An}~1 C D(Fm)
converging in L;(R3), and such that

Vol. 68, n° 3-1998.
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Then

and

Therefore there exists Aa E H* (~3) and QA E 1R3 such that

and

The two previous formulas and the uniqueness of the strong limit give then

and

This gives closedness. Obviously D(Hm) C D(Fm), and, if A E D(Hm),
then

By a straightforward calculation one then verifies that

As regards formula (2.5) observe that and that the

of the measure is of the same order as r-1~2.
D

Remark 2.4. - By (2.4) we have that for any A E ~* ( ~3 ) such that
A(0) = 0, HmA == -AA. Therefore Hm is a singular perturbation of -A,
the perturbation taking place only at x = 0.

Remark 2.5. - By the definition of D(Fm) given in thm. 2.3, any
A E D(Fm) can be written as

Annales de l’Institut Henri Poincaré - Physique théorique
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where Lm : : - 1R3 is the bounded linear operator defined by

Moreover for any A ~ A &#x3E; Ao, r sufficiently small so that

-A e p(Hr), we can write

where, since (Hr + ~ ~ - 2 converges to (Hm -~ ~ ~ - 2 in norm, r,~0

k 112 = 0, and Lr : Lfl (1R3) - 1R3 is a bounded linear operator such that

Let us now give some general results on second order linear differential

equations in Hilbert spaces which we will need below (for the proofs of
such results see [F, Chaps. II and III],[Ki],[Sl,2]). Let H be a bounded
from below (this is a necessary condition) self-adjoint operator on L~ (1~3),
and let F the corresponding quadratic form. Then H generates a cosine

operator function C : i.e. C is a strongly
continuous function such that

Moreover Vz e C such that -z2 E p(H) and Re z &#x3E; ~ I10 ~ 2

and so, by (H + z2)-lA = z-2A - z-2(H + z2)HA, and by inverse
Laplace transform, 0, VA E D(H),

Vol. 68, n° 3-1998.
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One defines then the sine operator function S : R - G(L*(~3); 
by

Given ~ let

Then A E 

and A(t) solves the inhomogeneous Cauchy problem

Moreover there is a well defined dynamics on the "phase-space" in the
following sense: on D(F) x define the Hilbert norm

with A s.t. H + A is strictly positive. Then U(t) defined by

is a strongly continuous (w.r.t. the energy norm ~ ’ ~) one-parameter
group on D(F) x with generator

and U(t)(D(H) x D(F)) C D(H) x D(F).
The lemma below is the key ingredient in the proof of the next theorem

and hence of the successive corollary. It essentially says that convergence
of the solutions of the Cauchy problem (2.1 ) occurs only and only if

Annales de l’Institut Henri Poincaré - Physique théorique
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some compatibility conditions on the initial data are satisfied and the

inhomogeneous term Mvr pr disappears in the limit.

Then

if and only if

Remark 2.7. - The third condition in (2.8) requires, obviously, some
regularity at the origin for Xo. Such a limit exists if Xo E 
Uo a neighbourhood of the origin. Moreover note that if we define

Ao : - (Hr + Yo E then one can prove (by proceeding
as in the proof below) that lemma 2.6 holds true under the condition,
beside X = 0,

which coincides with the relation, holding for an element in 
between Q A and ~(0) that can be obtained by thm. 2.3.

Proof of Lemma 2.6. - By the expression for (Hr + ~)-1 we have

Since

we have the sum of two positive terms, and so vr ~ ~ ~ - ~ 
needs to converge. However ((-A + ~ ~ -1 pr , p,r.. ~ diverges, and so 

Vol. 68, n° 3-1998.
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needs to converge to zero. Since E H* (ff~3) C L6(~3), and
= by Holder inequality we obtain

and so we need

Since

we obtain

Therefore

we have

Since Hr converges in norm resolvent sense to Hm,

if and only if

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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Moreover

so we have the sum of two positive terms, and therefore we need

Since vT ~ ~ - 0 + converges, and Vr converges to zero, we have

Therefore

and so X = 0. This implies that vT ~ ~ - 0 + a ~ -1 pT , Pr ~ needs to converge
. 

to zero, and so

Now we want to study the convergence of Ur(t), the one-parameter group
on H* (1~3) EÐ generated by solving the equation

To avoid the problem given by the fact that the limit operator Hm generates
an energy norm different from the one given by Hr, we will indeed study
the convergence, w.r.t. the x L;(R3) norm, of

THEOREM 2.8. - Given X, Xo E L* ~1~3~, qo E 1~3, ~ &#x3E; ~o, let

let Ur(t) be the strongly continuous group on ~,~ ~If~3) x with

generator 
- - -

Vol. 68, n° 3-1998.
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and let Um(t) be the strongly continuous group on x with

generator 
- -

Then

converges, strongly in x uniformly in t over compact
intervals, to

if and only if

Proof. - Let us at first prove that the theorem holds true for and
the affine, strongly continuous, groups with generators

By functional calculus we have

By norm resolvent convergence of Hr to Hm we have that

Annales de l’Institut Henri Poincaré - Physique théorique
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converges, strongly in L* ~~~ ~ x L;(R3), uniformly in t over compact
intervals, to

and so we only need to study the behaviour of (Hr + 03BB)-1 2 Mvr03C1r as r j 0.
By the previous lemma we have therefore proved the theorem with 
and in the place of Ur(t) and Um(t) respectively. Let us now go
back to Ur(t) and Um(t). Let

be the difference between the generators of lfm (t) and Ur(t), Um(t).
Then define the non autonomous, affine, vector fields

and let Pr (t, s ) and Pm (t, s ) be the corresponding evolution operators. With
these notations we have, as can be easily verified,

Since

converges, strongly in x to

if and only if (2.8) holds, we have that

converges, strongly in x L;(1R3), to

if and only if (2.8) holds. Therefore

Vol. 68, n° 3-1998.
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converges, strongly in x L;(R3), to

if and only if (2.8) holds. In conclusion

converges, strongly in x uniformly in t, to

and the proof is done. D
We can now state our main result about the convergence of the solutions

of the Maxwell-Lorentz system:

COROLLARY 2.9. -Let (Ar , qr) E C(R ; Hj$ (R3) x (R ; L* (B~3) x R3)
be the mild solution of the Cauchy problem

with 03BB &#x3E; Ao, A0 E and with Xo ~ such that

where A E L* (1~3)) is the mild solution of the Cauchy
problem

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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Moreover if Xo does not satisfy the relations (2.10) then there is no

convergence of the A~. ’s.

Remark 2 .10. - If in the corollary 2.9 we are concerned with strict

solutions of (2.9), i. e. if Ar(0) = (Hr + Ar(0) = (Hr + 
ito then, by remark 2.7, the (2.11 )’ s hold under the condition

and A(t) is now the strict solution of (2.12) with initial data

Proof of corollary 2.9. - The assertions about the convergence of the
Ar’s immediately follows from the previous theorem equating the initial
data to the elements defining the vector vr . Let us now prove the
convergence of the qr’s.

Let Sr(t) and Cm(t), be the cosine and the sine

operator functions of and respectively. Then, writing =

(Hr + A)~ % Y§, A(0) = (Hm + ~~ 2 ~0~

where

and

where

By the previous theorem, since lim = 0,
r 10

Vol. 68, n° 3-1998.
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Since

the thesis follows from

In the next theorem we study the case in which no mass renormalization
is done, i.e. mr =const. By abuse of notation we will denote such a constant
by the symbol m. In this situation we prove that the limit dynamics is trivial
(As regards the particle dynamics, and for zero initial data for the field, the
same result already appeared in [BN]).

THEOREM 2.11.- Let (Ar,qr) E 
be the strict solution of the Cauchy problem

Then 0

where A f is the solution of the free wave equation with the same initial
data Ao, Ao.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Proof - By remark 2.2 Hr converges in norm resolvent sense 
Therefore, proceeding as in thm. 2.8, the first formula in (2.13) follows from

Since, if t &#x3E; 0,

by

X E L* ~6~3), -z2 E 

by

and by Lebesgue dominated convergence theorem, we obtain

and the proof is done. Q

Vol. 68,n° 3-1998.
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3. THE LIMIT DYNAMICS

The results in corollary 2.9 induce us to declare that the system

describes the classical electrodynamics of a point charged particle in the
dipole approximation. The next theorem gives us the solution of (3 .1 ).
THEOREM 3.1. - Let the cosine and the sine operator

functions of and let So(t) the cosine and the sine operator
functions Then, Vt &#x3E; 0,

where

and K2 (t) is the Hilbert-Schmidt operator with kernel given by

Here 8 denotes the Heaviside function. Moreover which is defined
on is given by

where denotes the radial derivative and

Proof. - By the explicit expression for the resolvent of Hm we have
= Co(t) + M . K(t) where K(t) has a Laplace transform given by

the integral operator with kernel

Annales de l’Institut Henri Poincaré - Physique théorique
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Since (here we use the same trick as in [ABD, §3.1])

since 8t-s and 8(t - s) are the inverse Laplace transforms of e-zs and
respectively, and since

the statements about Cm(t) and then readily follows. By the
definition of the proof is then concluded by straightforward
calculations. D

Suppose now that Ao E D(Fm ), Ao E L;(R3) are such that

and

(here we are using spherical coordinates). Then, if (.) denotes the spherical
mean,

Vol. 68, n° 3-1998.
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Since + So(t)Ao E H* (8~3), since

where

Br(x) :== { ~ : yl  r }, we have that Co(t)Ao + gives
no contribution to QA~t~, and so

Let us now consider strict solutions, i. e. we suppose that Ao 
Ao E D(Fm). Then

and

Annales de l’Institut Henri Poincaré - Physique théorique
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Moreover A E C1(R; D(Fm)), QA E C1(R; R3), and

These results, and the classical Kirchhoff formula for the solution of the
free wave equation, give us the following

THEOREM. - Let A E C(R; D(Fm)) n C~(R; L;(R3)) be the mild solution
of the Cauchy problem

Then

where Aj(t) is the solution of the free wave equation with initial data

Ao, mio, and

Moreover if Ao E D(Hm) and Ao E D(Fm), i.e. if we are dealing with
strict solutions, then QA E 1R3), and it solves the Cauchy problem

Remark. 3.3. - Let us note that in the above Cauchy problem the function
t ~--~ 0) is well defined for any t &#x3E; 0, and, by (3.3) and the Kirchhoff
formula, one has

Remark. 3.4. - One can rephrase the previous theorem saying that the
strict solution of the Cauchy problem

Vol. 68, n° 3-1998.
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coincides with the first component of (A, Q), the solution of

Moreover if Aa E H* (1~3), and ix E H* ~~3), then, by (3.4), QA E
C2(R; R3) and one obtains, defining

the Abraham-Lorentz-Dirac equation

where

Observe is nothing but the (linearized) Lorentz force
due to the free field evaluated at x = 0. Moreover let us point out
that the relation q(0) _ as the correct initial acceleration for the

Abraham-Lorentz-Dirac equation, already appeared in [B].
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