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ABSTRACT. - Using variational methods, we show the existence of a
stationary state for the Maxwell-Dirac model in the case 03C9 G] 2014 m, m[
extending a previous result by Esteban, Georgev and Sere. We also show
the existence of infinitely many solutions in the case of the Coulomb-Dirac
model. @ Elsevier, Paris
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RESUME. - On utilise des méthodes variationnelles pour démontrer
l’existence d’un etat stationnaire pour 1’ equation de Maxwell-Dirac dans le
cas où cv G] 2014 m, m[ en généralisant aussi un résultat recent de Esteban,
Georgiev et Sere. On démontre 1’ existence d’ un nombre infini des solutions
stationnaires dans le système de Coulomb-Dirac. @ Elsevier, Paris

The Maxwell-Dirac equations, which describe the interaction of an
electron with its own magnetic field, have been widely considered in

literature (see for instance [20], [10]-[12], [16], [18], [4]).
Existence of solitary waves for such a system has been an open problem

for a long time (see [19] for instance). Using variational methods, Esteban
et al. [13] proved the existence of regular solutions in (3+ 1 )-Minkowski
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230 S. ABENDA

space, stationary in time, localized in space, of the form

leaving open the question of the existence of solutions of this form for
cv  0. Indeed their method fails in such a case. Moreover the Dirac

equations [26], [2], [3], [7], [8], [23], [24], [14], [15] with nonlinear
interaction depending on (p, have no stationary states with w = 0
and also for cv  0 in some interesting models (see [8] for instance). On
the other hand, in the case of the Maxwell-Dirac model, Garrett Lisi [17]
gave numerical evidence of the existence of bound states for 03C9 e] - m, m[
of the form

where (r, z, ~~ are the cylindrical coordinates in R~. Here mz = d=~
represents the total angular momentum up or down.

In this paper, using variational methods along the lines of [ 13], we extend
their result for the Maxwell-Dirac model. Indeed, we show the existence of
stationary states of the form (0.2) in the range cv e]-m, m [. On the subspace
of states of the form (0.2), the electromagnetic field has axial symmetry.
As a consequence, the nonlinear part of the functional is positive definite
(compare with (2.1 ) in [13]). Then the proof of the existence of stationary
states for 03C9 e] - m, 0] is treatable and, at the same time, some estimates
for the case c~ are straightforward. In any case, the scheme of the
proof is quite similar to that in [13] and for brevity we give here only a
sketch of the proof pointing out the differences with respect to the paper of
Esteban et al. Moreover, since many estimates and technical lemmata are
the same, for simplicity we adopt notations consistent with [13].

Finally we prove that there exists an infinite number of solutions for
the Coulomb-Dirac model. This model is obtained neglecting the magnetic
field in the Maxwell-Dirac equations and has no physical significance since
it is not Lorenz invariant. In any case we think interesting to consider it
here, since, using ansatz (0.2), the Coulombian term in the nonlinear part
of the Maxwell-Dirac functional is dominant (compare the functional FW in
section 2 with the Coulomb-Dirac functional in section 4 and see also [29]).

In the following section we introduce notations and list the main results.
In section 2 we briefly outline the linking structure of the functional.

We consider the Maxwell-Dirac functional restricted to the subspace of
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axially symmetric stationary states in H1~2. The functional restricted to this

space is still non compact and non convex, as in [13]. Hence, we prove
existence of a critical point using Hofer-Wysocki linking theorem [21] (for
other applications see [14], [15], [25], [27], [ 28]). On the other side, in our

setup, the Maxwell-Dirac functional has positive definite nonlinear part: this

property allows to show the existence of min-max levels for w E] - m, 0]
and to simplify the arguments in [13]. Indeed the possibility of proving the
existence of min - max levels also for 03C9  0 is a consequence of formula

(2.3) and inequality (2.2) (compare them with (2.4) and (2.2) in [13]).
In section 3, we prove the existence of a non trivial axially symmetric

critical point which corresponds to a solution of the Maxwell-Dirac

equations. Here the major simplification w.r.t. the proof in [13] comes
from the possibility of giving uniform bounds on the norms of certain
sequences of axially symmetric states and so of proving directly their

local convergence in Hl/2. Finally, the existence of stationary states is a

consequence of concentration-compactness Lemma [22] as in [13].
In section 4 we consider the case of Coulomb-Dirac equations (see

for instance [29], [17]) and we show the existence of infinitely many
solutions. For this problem, we study the existence of stationary states in
a spherically symmetric subspace of Hl/2 already introduced in [11] and
used in [13] in the case of the Klein-Gordon-Dirac model. The existence

proof is an easy consequence of compact embedding properties of this

space in convenient LP spaces and of the regularizing properties of the
inverse of the Dirac operator. We establish the multiplicity result proving
that, for any cv E] - m, m[ there exists an infinite number of critical levels
cn such that cn = +00.

1. MAIN RESULTS AND NOTATIONS

The Maxwell-Dirac equations [6] are

where v,  E {O, 1,2, 3}, m &#x3E; 0, (, ) is the usual hermitean product in C 4,
for (xo, x) E R x R3 and 03B30 == (I 0 0 -I) ~

= (0 -03C3k 03C3k 0) E M4 4(C), 03C8 = 03B3003C8, J  = (03C8,03B3 03C8), J0 = J0,
Jk = -JB k = 1, 2, 3, and o-~ are the Pauli matrices
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232 S. ABENDA

We look for bound states, that is solutions of (1.1) of the form

where 03C9 E] - Following [17], we consider the case where p takes
the form

where (r, z, 1) are the cylindrical coordinates of x E R~. In (1.4) we have
fixed the angular momentum mz = 2 and the quantum number k = 1, the
other cases may be considered along the same lines. Substituting (1.3) in
( 1.1 ), the equations become

and stationary solutions are given by the critical points p E H 2 ( p~3 , ~ 4 ~
of the functional

1 7

wnere 1

In sections 2 and 3 we prove

THEOREM A. - For any cv E] - m, m~ there exists a non-zero critical point
cpw of Imd in ~1/2(~3~ ~4~, cpw is of the form given in equation (1.4) and
is a smooth function of x exponentially decreasing at infinity with all its
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derivatives. Finally, x) = x) = J~, ~ ~x~ are solutions
of the Maxwell-Dirac system.
We also consider stationary solutions for the Coulomb-Dirac model [28]

where k = 1,..., 3, are as above. We look for solutions of the form

where 03C9 E] - m, m[ and

where (r, 8, 03C6) are the spherical coordinates of x ~ 1R3. Stationary solutions
of

are given by the critical points p G Hi (1R3, C 4) of the functional

where we use the same notations as before. In sections 4 and 5 we prove

THEOREM B. - For any w E] - m, m[ there are infinitely many critical
levels N E N such that c~ _ To each c~ there

corresponds a critical point cp~ of I d in E of the form (1.7). ~p~ are

Vol. 68, n° 2-1998.
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smooth functions, exponentially decreasing at infinity together with all theirs
derivatives. Moreover the fields x~ _ are stationary
solutions of the Coulomb-Dirac equations.

Remark. - Both for Maxwell-Dirac and Coulomb-Dirac models, we

prove the existence of stationary states in H 2 . The proofs of regularity and
fast decreasing properties are omitted, since they follow from a bootstrap
argument and estimates on solutions essentially along the same lines as
in [15] ] and [13].

2. LINKING PROCEDURE FOR THE

MAXWELL-DIRAC EQUATIONS

In this section we describe the linking in the case of the stationary
Maxwell-Dirac equations (1.3). Let us denote by ES’ the subspace of E
given by cp of the form (1.4) and E~ ~ P~ E. c since

ES’ is a stable subspace of E w.r.t. D, we work directly in E~ . In the space
Esr we construct a linking of the kind introduced by Hofer-Wysocki [21] ]
and already applied to the Maxwell-Dirac model directly in E in [ 13], when
0  m. First of all let us observe that in the space E~ :

where (r,~~) are the cylindrical coordinates of x. Then A3 - 0 so that
the magnetic field is oriented along the z-axis. The key point, which allows
the extension of the arguments of [13] to the case w  0, is the following
inequality

Annales de l’Institut Henri Poincaré - Physique théorique
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(2.2) easily follows from (2.1) and ~4 1 ~2 &#x3E; 2t~~ since

We now prove

LEMMA 1. - Let cp = w- + e+, where cp _ E E- and e+ E where

Ef. is any N dimensional subspace in Es~ n E+. Then ~C &#x3E; 0, depending
on Ef- such that

Proof - The proof is by contradiction. In fact Q is homogeneous of

degree 4, so, if the lemma is false, there exists a sequence 03C6(n)- E E-
(  1 and a sequence e(n)+ E Ef = 1, such

that + e~~) - 0. After extraction, the sequence e+ ~ converges to
e+ E Ef and the sequence ~" weakly converges to cp_ . Moreover,

]  1. Since Q is convex and continuous, it is also weakly lower
semi-continuous, so that + e+) = 0. But from equation (2.2), we
conclude that cp - + e+ = 0 for a.e. x E ~3. Since, by construction cp - and
e+ are orthogonal in E, then e+ = 0 a.e. x E 1R3, giving a contradiction
with (2.5). D

Using the lemma above, we prove

PROPOSITION 2. -

we denote

Vol. 68, n° 2-1998.
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then

Proof - We give just the sketch of the proof, pointing only the differences
with the scheme of [13]. First of all let us notice that E~ / 0, since the
vector constructed in [13] ] belongs to E+ . Let 4&#x3E;+ E ~+ with 114&#x3E;+11 == 1
and Q ( ~+ ~ &#x3E; 0. Then there exists R &#x3E; 0 such that, if e+ = R~+,

Let us now prove that  0 for any cp E We show that the

following auxiliary functional

Since (2.2) implies that

the claim follows immediately.
From Lemma 1, if cp = + e+, with cp- E E_, e+ as above,

I  = R, then we may find a constant C &#x3E; 0 such that
&#x3E; Cllcpll4 &#x3E; CR4. Then

Moreover if 03C6 E E- and cv &#x3E; -m, then

since 

We have then just to check (2.8) when p = p- + where p E E_,
e+ as ] = R == Ile+11 ] and 03BB

In the case w &#x3E; 0 we have

Annales de l’Institut Henri Poincaré - Physique théorique
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We consider two cases. If A E [0, 03BB*] where 03BB* = [1 - 03C9* m] [1 + 03C9* m],
(2.8) follows trivially. If A E [À*, 1[, for all 03C6 = p- + Ae+, from Lemma
1, &#x3E; &#x3E; CR4, so that (2.7) is satisfied for R sufficiently big.

Collecting the above results, we may choose R*  oo such that

The proof of the second of (2.6) is straightforward. D

Let us now denote by

If w E ES’ is a critical point of Imd w.r.t. ES’ then cp is a critical point of

Ima w.r.t. E, since E ES’. As in [13], J3~ is odd, nonlinear and
continuous, but does not map bounded sets into relatively compact sets,
since the problem is still invariant by translation along the z axis.

Let us define the following flow associated to restricted

to 

The flow is well defined for t 2:: 0 since ~I03C9md is Lipschitz conti-

nuous and I03C9md is non-increasing along the flow. In particular Vt 2:: 0,
n ~+ == ø.

PROPOSITION 3. - Vw* e]0, rn[, let M-, 8M-, 03A3+ c r* , p*, R* be
as in Proposition 2. Then

The proof of Proposition is as in [ 13] (see also [21], [15], [30]).

COROLLARY 4.

Vol. 68, n° 2-1998.
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2) Given cv E] - there C Es 
I 

Cerami sequence at
the critical level cW such that

Proof. - Since ~(~-) n E+ / 0, CW &#x3E; p* &#x3E; 0; since N- is bounded
and the flow decreasing, CW  F  +00. Finally, we get the existence of
the Cerami sequence [9] using standard arguments. D

3. EXISTENCE OF A NON TRIVIAL CRITICAL
POINT FOR MAXWELL-DIRAC MODEL

In this section we first show that the Cerami sequences introduced above
are uniformly bounded from below and above. From these estimates we
are then able to show the existence of a non trivial critical point at the
critical level where 0   cw .

If cp is a solution of problem (1.5), it obviously satisfies 

~ma~~P~ - 2 ~~~m~(~P~, cp~ and the Pohozaev identity

Using these identities, we can prove
LEMMA 5. - Let ~p E Es~ be a non trivial critical point of = c. Then

PROPOSITION 6. - Let be a Cerami sequence at the level c, then
there exist constants Cf  C" &#x3E; 0 such that

The proof of Proposition 6 follows the same scheme as in Lemmas
3.2 and 3.5 and Theorem 1 in [13] directly for the Cerami sequences of
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Lemma 2.4. Indeed in [13] it is unknown whether the corresponding 
are bounded and the authors introduce a sequence of auxiliary problems for
which the analogue of Proposition 6 holds true.
We give just a sketch of the proof. The Cerami sequences at the level c

are obviously bounded from below since

where a = 2 if 03C9 &#x3E; 0 and a = 1 if a;  0.

The proof that the Cerami sequence is bounded from above is by
contradiction. Indeed - +00, let

Since - 0, we have that

Let

The sequence (§3("I ) is relatively compact in since, using
estimates analogue to those in [13],

is relatively compact in 
As in [13], we then apply the concentration-compactness Lemma [22]

to the sequence

Vanishing is excluded, so we may only have compactness or dichotomy..
Moreover, from (2.3), it is possible to show that lack of compactness may
only occur in the z-direction. Therefore there exist q &#x3E; 1, 2 ~ ~ and
~ = (0~0~) ~ ~3, z = 1,..~, such that ~ -~) -~ +00, as
n - +00, and such that

Vol. 68, n ° 2-1998.
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On the other side since - 0, we have that

Therefore 2 = 0 a.e. x E R, Vi, but this is in contradiction with the fact
that ~2 are not all identically zero.

PROPOSITION 7. - Let cv E] - m, m[ be fixed. Let E Es~ be a Cerami
sequence at the critical level c &#x3E; 0 such that

Then there exist 1 ::; p  +00 non-trivial solutions of the Maxwell-Dirac
equations ~ ..., ~ and ~~’~~ - ~0, 0 x~’~~l C 1IJ)3’ - 1 ..., ~ such thatequations V"1, ..., V"p an Xi == 2 l ~ R3, z - , ..., p suc t at

I ---t +00 ~ ~ and

Proof - As in the proof of Proposition 6 above and in Proposition 3.6 in
[13], is relatively compact and using concentration compactness one
can show the existence of p solutions of the Maxwell-Dirac equations.
p is finite since, as in [13], there exists a constant K &#x3E; 0 such that, if cp

is a non-trivial critical point, then 2K.

Moreover the lack of compactness, due to the symmetry properties of
the functional restricted to E" , can only occur along the axis in which the
magnetic field points (the z-axis in our case). 0

COROLLARY 8. - Let úJ e] - m, m[ be fixed. Then 3p E Es~ such that
B~mdl,~~l - ~ and 0   cW.

Proof - It is sufficient to apply Proposition 6 and 7 to the Cerami

sequence of Corollary 4, and set p = D

4. THE COULOMB CASE

Let ES be the subspace of E given by p of the form (1.9). We denote
Ex = P x E and El = c ES. Es is stable w.r.t. E, so we look for

stationary states using the restriction of the Coulomb functional to In

Annales de l ’lnstitut Henri Poincaré - Physique théorique
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this setting, the linking follows from classical arguments (see for instance
[ 1 ], [5], [15]) and we only give some details here for completeness.

PROPOSITION 9. - VN E N*, e]0,m[. 3R* = N), r* = r(cv* ),
p* = &#x3E; 0, R* &#x3E; r* and Ef c E+ n Es such that, if we denote

then

We just give a sketch of the proof. Let E~ be any finite dimensional
subset of E+. Notice that E+ is an infinite dimensional subspace of E+
since the set of states P+ ~ introduced in Proposition 2 are contained in E+ .
Moreover ES c E~.
We may again apply Lemma 1, since

so that the rest of the proof is similar to that of Proposition 2. D

Let us denote by

If cp E ES is a critical point of 7~ w.r.t. Es then p is a critical point of
7~ w.r.t. E since E ES.

Moreover 7~ is odd, nonlinear, and maps bounded sets into relatively
compact sets. If ~  C, then is relatively
compact in Let

Then, the flow ~03C9t is well defined for t &#x3E; 0 and it is non-decreasing.

Vol. 68, n° 2-1998.
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PROPOSITION 10. - .I~ ~, 9~~, A+ c ~’s,
r* , p* , R* as above. Then

where ~y is the ~2-degree of symmetric sets.
The proof is classical and is omitted (see for instance [ 1 ]).

PROPOSITION 11. - Under the above hypotheses, let 03C9 ~ [-03C9*,03C9*] be

fixed, and let

where

Then

The proof of Proposition 11 is standard and is omitted. The existence of
a bounded state at each critical value c~ easily follows. Indeed any Cerami
sequence is bounded. The proof is again by contradiction and is simpler
than in Proposition 6. The convergence of bounded Cerami sequences
to non-trivial critical points is then straightforward and follows from the
properties of compact embedding of ~s in appropriate LP spaces (see for
instance [13]). Finally, we get existence of critical points in Es, applying
the above results to the sequences of Proposition 11.

For cv e] - fixed, we get the existence of an infinite number of
solutions proving limN~~ cN = +00, where we omit the index 03C9 for

simplicity in the sequences cN of Proposition 11. Indeed, by construction,
there exists Suppose by contradiction that the limit is finite
and denote it with c.

It is possible to show that the sets

: 

are compact. In particular the critical set associated to the c is also compact.

Annales de l’Institut Henri Poincaré - Physique théorique
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Moreover, using classical arguments (see for instance [ 1 ], [15]), it is

possible to prove that

Then, using the properties of the degree, we get a contradiction since
cannot be finite and 1C~ is compact if c is finite. This is of course

the required contradiction.
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