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ABSTRACT. - We consider the two-body Schrödinger operator for a neutral
pair of particles in two-dimensional space with a constant magnetic field.
The two particles interact through a potential. We prove absolute continuity
of the spectrum under several different assumptions on the potential. These
assumptions cover both the Coulomb and the Yukawa potential. We discuss
some explicitly solvable models.

Key words: Schrodinger operator, magnetic field, absolutely continuous spectrum.

RESUME. - Nous considerons Foperateur de Schrodinger d’une paire
neutre de particules bidimensionnelles soumise a un champ magnetique
constant. Les deux particules interagissent par l’intermédiaire d’ un potentiel.
Nous demontrons que le spectre est absolument continu sous plusieurs
conditions sur le potentiel. Ces conditions sont satisfaites par les

potentiels de Coulomb et de Yukawa. Nous considerons quelques modeles
explicitement solubles.
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388 A. JENSEN AND S. NAKAMURA

1. INTRODUCTION

We consider the Schrodinger operator for a neutral pair of particles in
two-dimensional space with a constant magnetic field. This operator is

given by

acting on H = L 2 ( R4 ~ ~ . Here (~,7/) E R4 = R2 x R2 , = 1, 2
denotes the masses, e the (positive) charge, -i8x the momentum,

the vector potential, and V the interaction between the pair. The
magnetic field B = is assumed to be constant. In this paper the

spectrum of H is studied.

It is well-known that the spectrum of the one particle Hamiltonian
2m (px - eA(x))2 on L2(R2) consists of the Landau levels {eB m (n+1 2)] n =
0, 1, 2, ...). The spectrum is pure point and infinitely degenerate. Hence,
if we take V - 0 in ( 1.1 ), then the spectrum of H is also pure point and
infinitely degenerate. Physically this corresponds to the classical motion of
the particles in the constant magnetic field in two dimensions. If we further
assume that the total charge is zero, which will be done throughout the
paper, then the particles might be able to move freely in the magnetic field.
Thus we arrive at our problem:

QUESTION. - Is absolutely continuous, if V ~ 0?
The answer is yes for a fairly large class of potentials, including decaying

potentials of Coulomb and Yukawa type, and growing potentials, i. e.

V(~) 2014~ oo as Ixl 2014~ oo. These results are described in detail in Section 3,
and then some solvable models and extensions are discussed in Section 4.
In Section 5 we give some results on the analogue of effective mass in
our model.

We expect to find absolutely continuous spectrum partly from analogy
with the corresponding classical system of two particles with charges in

a constant magnetic field. The classical equations of motion admit solutions
of the form (~(~), y(t~~ _ (tv, d + tv), where v and d are chosen such the
Lorenz force on each particle x B cancels the force from the potential
2014W(±6!). This cancellation is easily shown to take place for e.g. the
Coulomb interaction V = and in both dimension two and

three, in the latter case v and d are vectors in the plane orthogonal to B.
See [11] ] for discussion of the problems this type of motion causes in the
study of the many-body problem.

Annales de l’lnstitut Henri Poincaré - Physique théorique



389NEUTRAL PAIR IN A CONSTANT MAGNETIC FIELD

By analogy with solid state physics one could call the pair with the
interaction considered here for an exciton. See [ 1, page 626ff] for a

discussion of excitons.

One may ask whether there exist non-constant potentials such that the

spectrum of H is not purely absolutely continuous. We have not been able
to answer this question. It seems to be a non-trivial question in inverse
spectral theory.
The idea of the proofs is the following: We follow the argument of

Avron, Herbst, and Simon [2] to separate the center of mass motion. This

yields a family of operators E R2, where 03BE is the total pseudo-
momentum. We show that each has purely discrete spectrum, and
the eigenvalues depend analytically on ~. Then we use an analogue of the
Floquet-Bloch theory for periodic Schrodinger operators to show absolute
continuity of the spectrum of H. The key element of the proof is to show
that the eigenvalues of K() are non-constant with respect to ~. We give
several conditions on V for this property to hold, thus obtaining positive
answers to the question above.
The proofs give more detailed information than mentioned above. For

example, if V is a non-trivial potential, such that V (z)  0 for all z E R2,
V(z) - 0 as oo, and  eB/ml, then in the case m1 = m2
the spectrum of H consists of an infinite sequence of non-overlapping
intervals (bands), with the right endpoints at eBk/ml, k = 1, 2, ....

Finally some remarks on results in the literature. We refer to [5, 6, 7,
14] for general results and references on magnetic Schrodinger operators.
Recently there has been considerable interest in the many-body Schrodinger
operator with a constant magnetic field in space dimension three (for each
particle), and several results on the scattering theory have been obtained
by Gerard and Laba, see the review paper [11] and references therein. The
problem considered in this paper seems not to have been treated before.

2. NOTATION. PRELIMINARY RESULTS

We study the operator 
’

on H = L2~R4~, where we write (x, y) E R4 = R2 x R2 ~xl, x2~,
and for the momentum operators px = -2~~ _ -i~~2 ~, etc. We

Vol. 67, n° 4-1997.



390 A. JENSEN AND S. NAKAMURA

assume the magnetic field is constant with value B &#x3E; 0, and use the
Coulomb gauge, so the vector potential is given by

(2.2)
To state our assumptions on the potential V we recall the definition of the
Kato class K2 in dimension 2: V E K2, if V E and

Throughout the paper we suppose that V satisfies the following (rather
weak) assumption.
ASSUMPTION 2.1. - V is a real-valued function, decomposed as V~ _

Y~ - Y , T~~ &#x3E; 0, such that V+ E and V- E K2.
Under this assumption it is well-known (see for example [14]) that H is

defined as a quadratic form on Q(Ho) n Q(V+ ), with CÜ(R4) as a form
core. Thus H is well defined as a self-adjoint operator on H. If furthermore
V E then Co (R 4) is an operator core for H.

Since H describes a neutral pair, the center of mass motion can be
removed. Let

(2.3)
denote the total pseudo-momentum, which is the generator of the magnetic
translation group. For a neutral system the components commute, i. e.

~2~ _ 0, which can be verified by direct computation. On the other
hand, it is well-known (and easy to verify) that k commutes with H.
Thus {~~1,~2} form a commuting family of self-adjoint operators, and
therefore can be diagonalized simultaneously, see [2, 8]. In order to carry out
concrete computations, we introduce an analogue of the Fourier transform
corresponding to k. Let us write

(2.4)
Then k is written as

(2.5)
Generalized eigenfunctions of this operator are given by

(2.6)
and this leads to the definition of the transform

(2.7)

Annales de l’Institut Henri Poincaré - Physique théorique



391NEUTRAL PAIR IN A CONSTANT MAGNETIC FIELD

LEMMA 2.2. - ~ is a unitary operator on and satisfies

(2.8)

(2.9)

Moreover,

(2.10)
This Lemma follows by simple computations. Note that the expression
(2.10) depends on the choice of gauge. Now in the variable ç
appears only as a parameter, hence we can write

(2.11)

where the operator is given by the right hand side of (2.10), acting
on L2(R2). Since

(2.12)

we can translate to get

(2.13)
where ~ denotes unitary equivalence. We first consider the spectrum of
the free term

(2.14)

LEMMA 2.3. - The spectrum of Ko is discrete, and is given by

(2.15)

with multiplicities. Furthermore, Ko has compact resolvent. The ground
state is simple and given by the Gaussian wave function 

In general, the eigenfunctions have the form

(2.16)

where hn(z) is a polynomial in z.

Vol. 67, n 4-1997.
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Proof - Let q = eB/2 and let

(2.17)

(2.18)
Then it is easy to show that

(2.19)

and {a*j, ak}, j = 1, 2, k = 1, 2, form a commuting family of creation-
annihilation operators, i. e. for j = 1, 2, k = 1, 2,

Thus we learn from standard arguments that the spectrum of Ko is given
by the right hand side of (2.15), with multiplicities. Then it is clear that Ko
has compact resolvent. The ground state is given by the solution to

and these lead to

The solution is the Gaussian function (up to a constant), and thus the ground
state is simple. Then the eigenfunction corresponding to the eigenvalue

is given by

which is of the form (2.16). D

Let E N} denote a non-decreasing enumeration of 
with repetition according to multiplicity. We note that

(2.20)

We also note that for ml = m2 the distance between distinct eigenvalues
is eB/m1. If m1 ~ m2, and m1/m2 is rational, then the distance between

Annales de l’lnstitut Henri Poincaré - Physique théorique
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distinct eigenvalues is bounded from below by a positive constant. If m1/m2
is irrational, then the distance can be arbitrarily small for n sufficiently large.
The following expression for Ko will be useful in subsequent computations.
Let m = -l + m2 denote the reduced mass, and L3 = zlpz2 - the

third component of angular momentum. Then

(2.21)

This formula can be rewritten as

(2.22)

where

(2.23)

3. ABSOLUTELY CONTINUOUS SPECTRUM FOR H

In this section we give our main results on the spectrum of H given
by (2.1 ). The spectrum is shown to be purely absolutely continuous under
several different assumptions on V. The idea of the proof is similar to
the Floquet-Bloch theory for periodic Schrodinger operators. We will show
that the family of operators ~.K(~~ ~ is analytic with respect to ç, and each
operator has compact resolvent. If we can show that the eigenvalues are
not constant with respect to ç, absolute continuity of the spectrum of H
follows. For this purpose we introduce the following assumption.

ASSUMPTION 3.1. - V satisfies Assumption 2.1 and one of the following
three conditions:

such that

(3.1)

THEOREM 3.2. - Let V satisfy Assumption 3.1. Then H has purely
absolutely continuous spectrum.

This Theorem is proved in a series of Lemmas. We begin by noting that
each has purely discrete spectrum.

Vol. 67, n° 4-1997.



394 A. JENSEN AND S. NAKAMURA

LEMMA 3.3. - Let V satisfy Assumption 2.1. Then has purely discrete
spectrum for each ~ ~ R2, and the resolvent is compact.

Proof - We use the unitarily equivalent expression = Ko + ~ ~ - -,~)
from (2.13). This operator is defined as a quadratic form, hence

+ Y~’ - /3)) == + V~+~’ - {3)) ç Q(Ko). Thus we have, using
Theorem A.l,

where denotes the nth singular value of the operator A. It follows

that Ko + V+ (. - {3) has purely discrete spectrum, since alternative (a) in
Theorem A.l. holds. Now V- is Ko + V+ ( . -03B2)-form-bounded with relative
bound zero, hence Ko + V( . - {3) has compact resolvent and purely discrete
spectrum, see [13, Theorem XIII.68]. D

In order to apply Theorem A.5, we fix one parameter ~2, or equivalently,
The nth eigenvalue of is denoted En(ç) (repeated according to

multiplicity). We note that under Assumption 2.1 is an analytic family
of type B (see [9]), thus the next result is well-known.

LEMMA 3.4. - R2. non-degenerate eigenvalue,
then there exists 8 &#x3E; 0 such that for 1~1 - ç~1  8 
analytic in ~1. If is a j-fold degenerate eigenvalue, i.e. we have

 == 
...  there exist 8 &#x3E; 0

and j analytic functions f 1 (~1), ... , f~ (~1 ), such that

for all ~1 with ~~1 - ç~1  8.

Thus we can relabel the eigenvalues En to get a family with each
function analytic in the ~1-variable. These analytic functions are denoted

£n(ç), hence ~En ~~~ ~ ] n = 1,2,...} == {£n(ç) ‘ n = 1,2,...}, for each
ç E R2 . In order to apply Theorem A.5 we need to show that each ~n (ç)
is non-constant. For the cases (i) and (ii) in Assumption 3.1 we use the

following property.

LEMMA 3.5. - Suppose that V satisfies Assumption 2.1 and Y ( z ) -~ 0 as

~ z I --~ 00. Then for each n, En (ç) --~ En (oa) - 00.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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Proof - We use the representations (2.13) and (2.22) here. The proof
is based on the cut-and-paste technique (or geometric perturbation theory),
where we decompose R2 into two pieces. Let x E C° ( [0 , oo ) ) be a smooth
cut-off function such that 0   1 for all r &#x3E; 0, and

(3.2)

We choose another smooth cut-off function x E such that

Furthermore, let

(3.3)

(3.4)
and

(3.5)

We write

(3.6)

The map JR : j~(R~) -~ L2(R2) denotes the isometry given by

Then we can approximate by It is easy to see that

(3.7)
with TR = LR,j3JR - A simple computation shows that for c &#x3E; 0

(3.8)
where C is a constant independent of R. Now we note that

(3.9)

for some constant C &#x3E; 0, due to the (pz - A(z))2-form-boundedness of
Note that the form bound is independent of ~3.

Vol. 67, n° 4-1997.
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Let Fn (R, /3) denote the nth eigenvalue of L~. If R is sufficiently large,
the inequality (3.9) implies that Fn(R, ~3) is the nth eigenvalue of 
But then (3.7) and (3.8), together with the Riesz integral representation for
the projection onto the eigenspace, imply that we have

(3.10)

for sufficiently large R, independently of /3 E R2. We take an arbitrary
c &#x3E; 0 and fix R so large that the right hand side of (3.10) is less than c/3.
Now the same arguments can be applied to the case Y - 0, which we

denote by /3 = oo. On the other hand, it follows from the definitions that

(3.11)

As a consequence of these observations we get

(3.12)

and the right hand side converges to zero as 1131 - 00. We choose bo &#x3E; 0

so large that the right hand side of (3.12) is less than c/3 for &#x3E; bo.
Then we have

LEMMA 3.6. - Let V satisfy Assumption 3.1-(i). Then for G R2,
n e N, we have  

Proof. - We use the Poincaré Principle, Theorem A.2. Let 03C6j denote

the jth eigenfunction of and let JY~ = C L~(R~).
We have for any p E JYn

since due to (2. 16) the zero-set of p has measure zero, and by assumption
0.

Annales de /’Institut Henri Poincaré - Physique théorique



397NEUTRAL PAIR IN A CONSTANT MAGNETIC FIELD

Since Xn is finite-dimensional, we have

and the claim follows from the Poincaré Principle. D

LEMMA 3.7. - Let V satisfy Assumption 3.1-(ii). Then for each n E N
there exists bo &#x3E; 0 such that En ~~) &#x3E; En for any /3 with 1131 ] &#x3E; bo.

Proof - We use the notation from the proof of Lemma 3.5, and try to
estimate the difference Fn (R, ,~) - If we use the Agmon method
for exponential decay estimates, we can show that for any 03B3  eB /4,

(3.13)

The proof is standard, and will be omitted, see for example [3, 4]. In
the same manner we can obtain

(3.14)

with the same constant C as in (3.13). On the other hand, we can change
the definition of W~,,~ slightly to obtain the estimate (3.16) below, namely,
we let

(3.15)

We take !3 with 1!31 = 4R and use the assumption (3.1) such that we have

if R is sufficiently large. Hence, we also have

and

(3.16)
We then choose a so that 0  36a  ~y  eB/4. We get

if R is sufficiently large. D

Vol. 67,n° 4-1997.
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REMARK 3.8. - In the proof above we use (3.1) from 3.1-(ii) for
a  e~~ 144, but this is not optimal. In fact, we can show a  eB/8
is sufficient by modifying the proof (which then becomes somewhat

complicated).

LEMMA 3.9. - Let V satisfy Assumption 3.1-(iii). Then for each n E N
we have ~n (~3) -~ 00 as - 00.

Proof - Choose R &#x3E; 0 such that &#x3E; 0 for Izj &#x3E; R. Let

x~ denote the characteristic function of the R}, and let

x~ = 1 - x~. We decompose V = ~1 ~ v2 = XRV + XR V. Then Vi is

and ~2 &#x3E; 0. Moreover, due to 3.1-(iii) we have

Thus we obtain as quadratic forms for some constant c

It follows that each eigenvalue of ~"(/9) diverges to infinity as 2014~oo. D

Proof of Theorem 3.2. - We write

where

For each fixed ~2 each eigenvalue of Ç2) is (locally) an analytic
function of ~1 by Lemma 3.4. By Lemmas 3.5-3.7, 3.8 each eigenvalue
cannot be constant in hence all conditions in Theorem A.5 are satisfied.

Thus ~"(~2) has purely absolutely continuous spectrum for each ~2. Then
H is also purely absolutely continuous, by Theorem A.3. 0

For the interval near the bottom of the spectrum of H we can show
absolute continuity under different assumptions on V.

ASSUMPTION 3.10. - Let V satisfy Assumption 2.1, and further 0

as jzl -~ oo, and V(z) &#x3E; 0 for all z E R2.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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THEOREM 3.11. - Let V satis, fy Assumption 3a 1 D. Then inf a(H) = El (00),
and there exists ~ &#x3E; El(oo) such that ~~ C a(H), and H is
absolutely continuous on ~E1 (00), .~~. ’

Proof - It suffices to show that the function El () is not constant.

Note that E1 ( oo ) is non-degenerate by Lemma 2.3. We again use

the representation together with (2.22). Since V ~ 0, we have

El ( ~ ) &#x3E; for all /3 E R2 . Now let us assume = Ei(oo) for
some /3. Let ~ be a normalized eigenfunction of corresponding to
the eigenvalue El ({3). Then

and hence (~,V(- - 0. Since V (z) &#x3E; 0 for all z, this implies
03C8 = 0. Therefore we have El (ç) &#x3E; for all 03BE E R2. Together with
Lemma 3.5 this implies that ~1 is non-constant. The result now follows

as in the proof of Theorem 3.3, if we note (2.20). D

We now give two results which require more restrictive assumptions on
the potential. The proofs will only be sketched.

ASSUMPTION 3.12. - Let V satisfy Assumption 2.1, and furthermore
V E C1(R2) such that for some v E R2, ~ Iv I == 1, 

’

(3.17)

THEOREM 3.13. - Let V satis, fy Assumption ~.12. Then the spectrum of H
is purely absolutely continuous.

Proof. - We only outline the proof. The detailed arguments are similar
to the arguments in Section 5. Let R2 and let denote one

of the eigenvalues of which is assumed to be regular in a small
neighborhood of /3o. Let r denote a circle centered at with a

sufficiently small radius, such that no other eigenvalues are on or inside F
for all /? with 1{3 - {30 I  8. Let

Let p E L2(R2), such that 0. Standard arguments from

perturbation theory then give us the formula

Vol. 67, nO 4-1997.
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It follows from the assumption (3.17) that E ~~3) is not constant close to
{3o. This argument can be applied to all eigenvalues and almost all values
of {3. The proof is then concluded as above. D

ASSUMPTION 3.14. - Let V satisfy Assumption 2.1. Assume there exist
constants V) E R, Y+ ~ Y°, and v E R2, ~ Ivl = 1, such that

uniformly in z on compact subsets of R2.

THEOREM 3.15. - Let V satisfy Assumption 3.14. Then the spectrum of H
is purely absolutely continuous.

Proof - The proof is based on the geometric perturbation theory and is
a variant of the proof of Lemma 3.5. We briefly comment on the changes
necessary. We define

(3.18)

as a replacement for (3.3) and introduce

Using (3.18) we let

and define

With these and other obvious modifications the arguments in the proof
of Lemma 3.5 can be repeated. We note that the eigenvalues of 
satisfy Fn (R, +00) - + V~ as R - oo . Similar arguments apply
in the case t  0, with an obvious change in the definition (3.19) and
the final result is

Since V~ 7~ Y°, we see that each eigenvalue is non-constant, and the proof
is completed as above. D

Finally we note for later use the following result.

Annales de l’lnstitut Henri Poincaré - Physique théorique
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PROPOSITION 3.16. - Assume V real-valued, V E L°° (R2 ~ with

and V(z) ~ 0 as Izf ---+ ~. Then the ground state E1(03BE) of K(ç) is

non-degenerate for all ~ E R2.

Proof - Standard arguments from perturbation theory show that

for all n E N and all ç E R2. This estimate together with the assumption
(3.20), Lemma 3.5, and (2.20) yield the result in the Proposition. D

4. SOLVABLE MODELS AND SOME EXTENSIONS

In this section we discuss some explicitly solvable models, and we give
some extension of the results in the previous section.
We first consider the case where we add an external constant electric field

E E R~ B {0}. For Y - 0 we get an explicitly solvable problem, and in
general for bounded V we show that the spectrum is absolutely continuous.

Since the two particles have equal and opposite charges, we have without
potential the Hamiltonian

which fits into the framework of Section 2, and we can carry out the

decomposition as above. This argument also shows that Ho(E) is a well-
defined self-adjoint operator. We state the result in the ~-formulation, see
(2.13), and use the form (2.22). We have

(4.2)

where

(4.3)

Vol. 67, n° 4-1997.
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The spectrum of K 1 (E) can be found explicitly, since this operator
is unitarily equivalent to Ko (see (2.22)) via a magnetic translation.
This observation was also made in [15], where scattering problems in

space-dimension three were considered.
We conclude that has compact resolvent. The spectrum is

given by

(4.4)

where is a non-decreasing enumeration of the eigenvalues of Ko , as
in Section 2 . Obviously, each eigenvalue is non-constant in /?. Furthermore,
each eigenvalue covers R as {3 varies through R2. Repeating the arguments
in Section 3, we conclude that Ho(E) has purely absolutely continuous
spectrum equal to R.

This explicit result can be generalized as follows.

PROPOSITION 4.1. - Let V E LCX)(R2) be real-valued and let E E R21 ~0~.
Then the operator

(4.5)
has purely absolutely continuous spectrum equal to R.

Proof. - As above we have

with

Since Kl (E) has compact resolvent and ffd (Ki (E)) _ ] n E
N}, and since V is bounded, the operator + V(z - {3) has compact
resolvent. We write

Standard perturbation theory yields

(4.6)
Annales de l’Institut Henri Poincaré - Physique théorique
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for all n E N and all /3 E R2. Thus K(E"~) has compact resolvent and
its eigenvalues are given by

(4.7)

Using (4.6) we see that the eigenvalues are non-constant in /3, and cover
R as {3 varies through R2. Thus the spectrum of H(E) is absolutely
continuous and equals R. D

REMARK 4.2. - One can also apply Theorem 3.15. Under the assumptions
V E C1(R2) and E . + E2 &#x3E; 0 for all z E R2 we conclude that
the spectrum of H is purely absolutely continuous. We should also add a
condition that allows us to define H(E) (see (4.5)) as a self-adjoint operator.

Let us now consider the particular case V(z) = coz2, the harmonic
oscillator potential. We also include an external constant electric field E,
but this time we allow E to equal 0. We take

(4.8)
and decompose as above

Some straightforward algebraic manipulations give

(4.9)

where w5 = e2 B2 + 2Mco. The operator is unitarily equivalent
to the operator

(4.10)

via a magnetic translation. Therefore has compact resolvent. The

operator in (4.10) is quadratic in pz and z. It is well known that its spectrum

Vol. 67, n° 4-1997.
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can be computed explicitly, see for example [ 12] for details. One finds that
the eigenvalues of K(E, co; {3) are given by

(4.11)

They are obviously non-constant in /3.
We state the results as follows.

PROPOSITION 4.3. - Let E E R2 and let co &#x3E; 0. Then the operator H ( E, co )
given by (4.8) has purely absolutely continuous spectrum a(H(E, co ) ) ==

oo), where

with

Proof - The proof follows from the explicit formula (4.11 ) for the

eigenvalues and arguments as above. D

REMARK 4.4. - Since V(z) = c0z2 + E . z satisfies Assumption 3.1-
(iii), we know from Theorem 3.2 that the spectrum of H(E, co) is purely
absolutely continuous. Lemma 3.9 further implies that the spectrum is a
half-line. The above result gives an example where the bottom can be
determined explicitly.

5. EFFECTIVE MASS

In this section we give some results on the analogue of effective mass

computation for periodic Schrodinger operators. Here we study the effective
mass for the bottom of the spectrum. Namely, we look at the Hessian matrix:

Annales de l’lnstitut Henri Poincaré - Physique théorique
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where is the lowest eigenvalue of K(~~, and ço is the minimal point
of El (g) . By the definition, is nonnegative. If is strictly positive,
the inverse of the eigenvalues are called effective masses, by analogy to

periodic Schrodinger operators, see [1] ] for the physics background and
[10] for some rigorous results. These values are expected to dominate the
long-time behavior of the the time-evolution of states with energy near the
bottom of the spectrum.

Example 5 .1 . - Let V(z) = coz2. Then, taking E = 0, nl = 0, n2 = 0
in (4.11 ) and using (2.12), we find

where w5 = e2B2 + 2Mco. Thus is given by and the

effective mass is 

In the following, we study the properties of (eij) and give a sufficient
condition for the strict positivity of this matrix, i.e., the finiteness of the
effective masses. Without loss of generality, we may suppose ~o = 0.

Moreover, we suppose

ASSUMPTION 5.2. - El (ç) is non-degenerate for 03BE E R2.
A sufficient condition for Assumption 5.2 is given by Proposition 3.16. As

before, we always suppose Assumption 2.1. We use the following notation:
1jJ is the ground state of K(0), i.e., = with 11’l/J11 = 1. P(~)
is the projection onto the ground state of 

where r is a sufficiently small circle around If ç is in a small

neighborhood of 0, it is easy to see that

We write

LEMMA 5.3
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Proof. - For the sake of simplicity, we set El (0) = 0 without loss of
generality. By differentiating = g(~), we obtain

By direct computations, we see that the right hand side is given by

where r is a small circle around 0. Then we use

and the claim follows by simple computations. We note that each term in
the right hand side of (5.1) is symmetric in i and j. D

In order to compute the right hand side of (5.1 ), we employ the following
expression for 

(5.2)

where m and e are given at the end of Section 2, and

It is easy to see that

We set

LEMMA 5.4.

(5.4)
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Proof. - By direct computations, we have

and the claim follows. 0

By (5.3) and (5.4), we learn

On the other hand, it is easy to see

Combining these with Lemma 5.3, we obtain our main result of this section:

THEOREM 5.5. - With the notation introduced above,

(5.5)

holds in the operator sense on C2, where 12 x 2 is the 2 by 2 unit matrix.
The proof is a straightforward computation, which we omit.

COROLLARY 5.6. - If 4(El (0~ - F)  E2 ~Q~ - E1 ~0~, then is non-

degenerate, i.e., the ef~ f’ective masses at the bottom of the spectrum are
finite.

In particular, if ml = m2, then e = 0, and we have a simpler picture.
Namely, is given by

Hence, by the Courant-Weyl principle, the discrete eigenvalues of K(0)
converges to those of h as B - 0. If, moreover, F is discrete in a(h), then

Thus we have

These imply the following:
COROLLARY 5.7. - Suppose ml = m2, and suppose F is discrete in a(h).

Then (eij) is non-degenerate if |B| is sufficiently small.
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A. AUXILIARY RESULTS

This appendix contains the precise statement of some results needed in
our study, and in a few cases outlines of proofs.

. A.I. Min-max and max-min

For reference we state precisely the min-max and max-min principles
used in our study.
We recall the following result for quadratic forms from [ 13] . It is there

called the min-max principle. Here we prefer to follow [16] and call it the
Courant-Weyl principle.
THEOREM A.1. - Assume H is self-adjoint and bounded below. Let

(A.l )

Then for each fixed neither

(a) there are n eigenvalues below the bottom of the essential spectrum,
and (H) is the nth eigenvalue (counted with multiplicity)
or

(b) (H) is the bottom of the essential spectrum.
An alternative formulation is what in [ 16] is called the Poincaré principle,

and for consistency one could call it the max-min principle.

THEOREM A.2. - Assume H is self-adjoint and bounded below. Let

Then the alternative in Theorem A.l holds.

A.2. Results on decomposable operators

In this part of the appendix we give some results on the spectrum of
a decomposable operator. The results are well-known and are stated here
for easy reference.

THEOREM A.3. - Let (M, be a a-finite measure space and let

T = ~~ be a decomposed self-adjoint operator 

~~ Then the following results hold:

(i) For any bounded Borel function F
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Proof - For the results (i)-(iii) we refer to [13, Theorem XIII.85]. For
(iv) we note that the proof in [ 13] can be localized to the interval I. D

DEFINITION A.4. - A function f : R ~ R is said to be piecewise
strictly monotone, if there exists a partition R = Uj~NIj into disjoint
intervals whose endpoints have no finite point of accumulation, such that
the restriction of f to each Ij is strictly increasing or strictly decreasing.
THEOREM A.5. - Let T = ~R be a decomposed self-adjoint

operator on the space H = ~R H’dm. Assume
( 1 ) For each mER has compact resolvent.

(2) For each m ~ R and n E N 
(3) For each n E N the function is bounded, and piecewise
strictly monotone, and furthermore the piecewise inverse is Lipschitz
continuous.

(4) The map nt - is measurable, and for each mER
n E N~ is an orthonormal basis for H’.

Then T has purely absolutely continuous spectrum.

Proof. - The proof is a variant of the proof of [ 13, Theorem XIII.86].
We outline it for the sake of completeness. Define

The subspaces 1in are closed, pairwise orthogonal, and due to

assumption (4)

Furthermore, Hn C D(T) and T(Hn) C Let p E Hn, 9(rn) =
A computation shows = ~~f~~r~(R~. Thus Un :

1jJ - f, Un : L2(R) defines a unitary map.
Let T" = Then a computation shows that

Thus Tn is multiplication by the function which satisfies the
conditions in assumption (3), and therefore has purely absolutely continuous
spectrum. D
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