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ABSTRACT. - The stochastic bosonization technique developed in a

previous paper is applied to a self-interacting Fermi system. We prove
that the evolution operator satisfies, in a proper limit, a quantum stochastic
differential equation.

RESUME. - On applique a un systeme de fermions en interaction
la technique de bosonization stochastique developpee dans un papier
precedent. On prouve que 1’ operation d’ evolution satisfait, dans une limite
appropriee, une equation différentielle stochastique.

1. INTRODUCTION

In a previous paper [AcLuMa] the stochastic limit of a quadratic fermionic
model interacting with an external filed was obtained. In the present paper,
which has been motivated by a remark of a referee of the previous one, we
show that similar ideas and techniques can be applied to deal with a truly
interacting (quartic) fermionic model. Although the interaction introduces
additional analytical and combinatorial difficulties, the final results are

qualitatively similar to the quatratic case. Also in this case, for each time t,
the evolution operator (given by the iterated series ( 1.2) below) converges,

Annales de l’lnstitut Henri Poincaré - Physique théorique - 0246-021 1
Vol. 66/97/02/$ 7.00/© Gauthier-Villars



216 L. ACCARDI AND V. MASTROPIETRO

in the sense specified by Theorem (4.1 ), to a unitary operator Ut, which is
the unique solution of the quantum stochastic differential equation:

where K is a complex number whose form we explicitly determine. Also
in this case the imaginary and real part of K coincide respectively with
the ground state energy and the lifetime estimated by a second order

perturbative computation (cf. [Ne]). Clearly the information encoded in the
limit evolution operator goes much beyond these perturbative informations :
for example it allows to compute transitions between arbitrary states and
not only vacuum-to-vacuum. However we interpret this agreement of the
stochastic limit approach with the usual perturbative techniques, in the cases
when these are applicable, as an indication that the former approach gives
a reasonably good insight about the behaviour of the system.
As in the case treated in [AcLuMa], we start from a fermionic theory

and we find, after the stochastic limit, a purely bosonic theory (in this sense
we speak of bosonization). Moreover, as in our previous paper, and in
qualitative agreement with the existing literature on bosonization of Fermi
systems in d &#x3E; 1 (cf for instance [HoMa]), the evolution operator is given
by the exponential of a boson (see eq. (4.4) below which gives the explicit
solution of the above stochastic differential equation).

Besides these similarities there are also substantial differences between

the quadratic and the quartic case:

(i) The scaling needed to obtain a finite limit in the quartic case is not
the usual van Hove scaling but a new one (cf (1.3), ( 1.4)) which involves

simultaneously both space and time, and which seems to appear for the
first time in the present paper.

(ii) The quantum noise, driving the stochastic equation, is quite different
in the two cases. In particular, in the quadratic case one started from a

quadratic expression in the Fermi fields and found in the limit a single
Bose field. In the quartic case one again finds a single Bose field and not,
as one might naively expect, a quadratic expression in a Bose field. This
is at odd with what happens in the usual exact bosonization, but it is a

familiar feature of the stochastic limit: the limit quantum noise encodes the

main characteristics of the interaction.

(iii) The present one is the first example of a stochastic limit of a purely
self-interacting theory: there is no separation between system and reservoir.

The statement (iii) above has an interesting physical implication. One

generally believes that the origins of stochasticity rely on an reservoir
(or environment) transfering disorder to a small system. The present paper
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217STOCHASTIC BOSONIZATION FOR AN INTERACTING d &#x3E; 3 FERMI SYSTEM

suggests a new, more sutble mechanism for this phenomenon, in which
a quantum system by self-interaction is its own environment and generates
its own noise. The usual picture, according to which the stochastic limit
separates the slow time scale of the system from the fast time scale of
the reservoir should be replaced here by a picture according to which
the stochastic limit distinguishes two time scales inside the quantum field
itself the slow time scale (ordered motions) in which the variations are of
order dt and the fast time scale (disordered motions) in which the variations
occur at the rate of (dt) 2 . In fact, given the above mentioned new scaling
required by the self-interaction, one should speak of space-time scales.
To individuate two physically meaningful space-time scales, which justify
such an interpretation, is in our opinion an interesting open problem for the
physical interpretation of the scaling introduced here.

Let us now describe more precisely the system we are going to consider.
Let ~~,~, ~ _ be a Fermi field with periodic boundary conditions:

where a~ _ ~ 2 is the spin index, l~ = 2L’~, n = ... , nd~ E Zd and
, , ,

~aj~~~, a~,~~, ~ = aj~~~a~ ~~, + C~~,~~,, C~j~,~ = 6g,g, 6k,k, 6a,a, , and we use, for
any operator X, the notation: 

’

The Hamiltonian is:

where A c Rd is a square box of side L, p = is the chemical
potential, pF is the Fermi momentum and m is the fermion mass.

The cutoff function v ( x ) has the form

and with this choice the above Hamiltonian is the standard model for the
description of electrons in a metal, see for instance [Ne].
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The free evolution is characterized by the following property:

and the Hamiltonian in interaction representation is

In order to prevent divergencies it is convenient to regularize the interacting
Hamiltonian in the following way:

where gk is a cut-off function to be specified in the following and

where is the ground state of Ho.
The evolution (wave~ operator at time T is defined in the usual way:

where the series converges in norm for each finite L.

Even a very small interaction can produce a relevant effect, if the time
evolution T and the box side L are very large; this suggests to study the
evolution operator in the limit a -~ 0, ~’ -~ oo. These three limit

cannot be performed indispendently, otherwise one would obtain a trivial
result. As for the Friedrich-Van Hove limit ([vH], [Da]) the right insight
about how the limit has to be performed in order to avoid trivialities is
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given by the first non vanishing term of series obtained averaging eq. (1.2)
over the ground state of Ho; one finds in fact that the only possibility so that
this term is not trivial in the limit is to take the limits in the following way:

Notice that the limit eq. ( 1.3) is equivalent to the following scaling limit:

which makes it formally similar to the Friedrichs-Van Hove limit in which
A’ = A. In our case the presence of the factor Ld is due to self-interaction.

In the following we shall always use the scaling (1.4) and therefore from
now on we shall denote A’ simply by A.
We shall prove in the following that the techniques of the stochastic

limit of quantum systems, described in [AcLuMa] (cf [AcLuVo] for a more
detailed survey) can be applied to the present situation and lead to the
usual results.

As usual in the stochastic limit approach, we start by considering the
collective operators, which are averages (space-time averages, in our case)
of the field operators. More precisely, we define:

where ~k = k2 2m - .
In Theorem (3.1) it is proved that the operators in the limit

A - 0, L - oo are boson gaussian fields in the sense that their joint
correlations over the ground state converge in the limit to the corresponding
joint correlations of a boson gaussian field, which we denote Bt, Bt ;
moreover, in this convergence, the ground state corresponds to a vector ~
in the limit space called vacuum.

The pair Bt, Bt is a quantum Brownian motion, i. e. a boson gaussian field
over the 1-particle space ~2~8+, /C), where lC is the Hilbert space described
at the end of section 2, with vacuum correlation functions given by:

where Ci, i = 1,..., 4 depend only on the cut-off functions necessary to
make the limit meaningful. Note that the collective operators eq. (1.5) live
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in the same Hilbert space where the original fermionic fields live, while the
limiting field lives in a different Hilbert space.

Eventually, and this is our main result, we prove that the time rescaled
evolution operator admits a limit Ut (cf Theorem (4.1 ) for a precise
statement) which satisfies a stochastic differential equation, driven by the
quantum Brownian motion Bt, ~s described above.
Our results hold for dimension d &#x3E; 3 and, under special assumptions for

the cut-off functions, for d &#x3E; 2. Such dependence upon the dimension is not
technical: it is well known, for instance by renormalization group methods
(see [BeGa], [BeGaMa]), that the physical properties of a Fermi system
with hamiltonian eq. ( 1.1 ) are completely different in d = 1 or d = 3.

2. THE COLLECTIVE OPERATORS

In this section we define more precisely our model and introduce some
definitions and notations which will be useful in the following. Let be A+ a

representation of the CAR on L2 and for each n = (n1, ... , nd) E Zd
define

Given L &#x3E; 0, define ~l~ = e and, for each ~ e 11~,
define a~ = ~(XA~/,J, ~ = iLl.
The collective operators are defined as, if 03C3 = 0, lpipourj dfhjkl zehkq qjhsk

with F° (y ~ ~2 ~ ~) = F ( ki , k2 , p) and F1 (y ~ ~2 ~ ~) _ F(~i,&#x26;2,p).
We will study the collective operators in the stochastic limit eq. (1.4).

In the limit we will see that such operators are defined in the non zero

subspace Ko of L2 ~Rd~ ~ L2 (R d) with the property that, for any pair of
vectors F, G is this subspace
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A possible choice for the cut-off function p) is upgk1gk2 where

up , gk are such that gk = glkl and up == and vanishing at infinity faster
than any power. It is possible in fact to check that, if d &#x3E; 3, eq. (2.2) holds.
Such a choice has a clear physical meaning: the function up is a cut-off of
the momentum that the external field exchanges with the fermions while gk
is a bandwidth cut-off taking into account that the band structure in a metal
forbids the electrons to have large momenta.
The proof of (2.2) is not completely trivial. By introducing more particular

cut-off functions, the arguments drastically simplifies and one obtains a
stronger result. Namely we consider the cut-off function F(k, p) to be of
the form where gk is the sum of two C° functions,
the first, called with support in BF and the second, called g2,k, with
support in BF and decreasing faster then any power at infinity and both
vanishing at Ikl = pp. Moreover we choose gk real. Let us consider the
first summand in eq. (2.2) (similar considerations hold of course for the
other terms) which can be written then:

and performing the change of variables p’ = pt we find:
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where:

Integrating by parts and noting that the integrand vanishes at the extrema
of integration we obtain that for any integer t)1  where CN
is a suitable constant and i = 1,2. The condition that gk, ~,~ are vanishing
at PF has the only effect to smooth and XB. Note that this choice
of the cut-off is quite natural if the temperature is not 0. In this case in
fact the ~ functions are replaced by smooth functions, which are the
densities of the Fermi distributions. The functions gk, gk+p are band-width
cut-off for the two fermions operators and up is the cut-off on the exhanged
momentum. With these cut-offs our theory holds for d &#x3E; 2.

We introduce finally, for further use, the following definition, assuming
, that are real:

In the above assumptions the expression (2.3) defines a pre-scalar product
on the test functions F, and the completion of the (quotient by the zero
norm elements of the) space Ko by this scalar product, denoted K is

interpreted as the Hilbert space were the Brownian motion takes its values.
This is a general feature of the stochastic limit.

In order to motivate the above definitions we compute the stochastic limit
of the product of two collective operators.

In general we shall need in the following to compute expectation values
of the form
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where 7r is a permutation of the index set {I, ... , 2 n~, is the parity
of the permutation and

We study the ground state average of two collective operators in the
limit (1.4) ; this defines the 2-points function of the limiting fields.

Let us write eq. (2.5) if 9-(1) == a(2) = 0. We obtain

But:

so that eq. (2.6) is given by:
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In the limit L ~ oo, setting t2 - tl = 72, t1 = 03C41 03BB2 we obtain

In the same way,
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Note that

3. THE COLLECTIVE OPERATORS

AS BOSON GAUSSIAN FIELDS

In this section we prove that the collective operators in the weak coupling
limit are Boson Gaussian fields.

THEOREM 3.1. - In the notations (2.1), (2.3), one has, for any N E N,
51, Ti,..., E ~1 ~ . .. ~ gN 0 UN E Ko , with Ko C 

defined above:

is the unique mean zero Boson Gaussian field with 2-point
function given by:

Remark. - The limiting fields defined by the above theorem are an
example of a quantum brownian motion. This term is justified by the
following consideration. Fixed the test functions u, g it is easy to check
that the 1-parameter family = B+ (0, ~, g, ~c) +~(0~~,~) is

commutative, in the sense that the operators Wt commute for different t.

The vacuum distribution of these fields is gaussian, with mean zero and
variance This means that is Brownian
motion with values in the Hilbert space K. For a more detailed discussion,
see [AcLuMa].
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Proof - We want to calculate

We perform the change of variables

With notation (3.2), the creators are labeled by the odd indices; the

annihilators by even indices. By eq. (2.4), each annihilator variable k2j
is equal to one (and only one) creator variable: this shall be denoted

~27r(j)-i. Thus, by definition of vr : k2j = ~27r(j)-i’ With these notations,
from (3.1 ), we obtain that, in the limit L - oo :

where, due to momentum conservation,

and ~({~}, {~}, {~}) i s a suitable function containing the cut-off function
g and u and a product of the characteristic function x.
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To find the limit of (3.3), as A - 0, let us start considering the case
in which n is even. Recall that we want to prove that, in the limit

(4.9), the Bf tend to some boson operator But each Bf is a sum

(integral) of four fermionic operators therefore each

such product should behave like a single object. In order to prove this we
have to show that, if in (3.3) the annihilator produces a scalar product
with the annihilator then the creator must be paired with the
annihilator the operator a ~3, - ~ has to be paired with a~.~ ~ ~ ~, ~ ~ ) ~ -1 1
and the operator has to be paired with . We shall prove
that the terms for which this condition is not satisfied become negligible
in the limit 03BB ~ 0.

In order to evidentiate the negligible terms, it is convenient to rewrite

the product (3.3) as a product over pairs (since, in the limit, each such
pair shall define a scalar product in the bosonic one-particle space). To this
goal, recall that, in (3.3) the permutation 7r of {1,... n~ is fixed and define
inductively the subset A7r == ... , vn~2 ~ ç {I, ..., n~ as follows:

With these notations the expression (3.3) can be written:

Vol. 66, n 2-1997.
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with ~{~} 
Performing the change of variables tj - = 7j and A~(~) = 

we obtain:

In the 0 we distinguish two kinds of terms in the sum over 7r
in eq. (3.4):

1 ) Let us consider a term in the sum over 7r in eq. (3.4) such that, for some

Such a term is vanishing as 03BB ~ 0 for the Riemann-Lebesgue lemma.

2) == ~27r(7r(j))-i and 1~2~,_1 = ~2~~~~C3))-1 and 1~2~~C~)-1 -
than from (3.4) we obtain:

where p is a pair partition of the indices 1,..., n.
A similar argument shows that if n is odd the left hand side of (4.9)

vanishes in 0, L - oo limit.

4. LIMIT PROCESS

THEOREM 4.1. - In the notations ( 1.2), (2.1 ), (2.2), (2.3) the limit
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exists and is equal to

where a E {0, 1}N, T E {0, 1}N’, and B#(S, T, u, f) is the quantum
Brownian motion defined in Theorem (4.1 ).

Ut is the unique (unitary) solution of the Stochastic Differential Equation:

where we use the notation:

with defined as (c,f: 2.3) but with +~-~
replaced by 0-~.
Moreover the solution of (4.3) is

. Remark. - The Ito correction term can be written as (u 0 0 g) =
iEo + r with Eo and r real and r &#x3E; 0. Using the well known distribution
formula:

where P denotes the principal part, we have that:

If
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from (4.3) one obtains:

so that Eo and r are respectively the ground state energy shift and the
lifetime of the ground state; they coincide with the correspondent quantities
computated by a standard perturbation theory at the second order in A (see
for instance [Ne]).

P~oof. - The proof of the Theorem 4.1 will be done in several steps.
Let us define:

and the operator as:

We consider:

Expanding eq. (4.5) with the iterative series one obtains:

It is possible to prove, by an adaptation of the technique used in [Lu92], that
a series absolutely convergent, uniformly in the pair (A, t).

It is convenient to write In = In + In + If where 7~ is given by the
terms in which the ferrnionic operators belonging to the same Ba are paired
with operators belonging to different B~ , and by the analysis of section 4

In = 0 and:
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where and:

It is straightforward to check that 7~ converges to a different from zero value
in the weak coupling limit. On the other hand by definition 7~ is given by:

where I1* means that at least a couple (i, j) is such that j - i &#x3E; 1 and

{rrt} U U == 1 ..n .
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Performing the change of variables Tj = we have that 12 contains
at least an integral of the form:

with  0 and in the limit A - 0 the above expression is vanishing.
Deriving eq. (4.5) with respect to t we obtain:

The above expression is an average over the ground state of a product of
fermionic operators, and by eq. (2.4) it is given by a sum of terms in which
each fermionic operator is paired in the sense of the preceding section
with some other. We call 7i the sum of the terms in which the fermionic
operators in Bx ( ~2 , g, u) are paired with the operators the

analogue of 13 with Wx (g2 , u2 ) , 13 the sum of terms in which the operators
in Bx ( ~2 , g, u) are paired with fermionic operators in !7_; the other terms
i. e. the terms in which the fermionic operators in J3~(~) are paired with
operators belonging to different B operators vanish in 0, L - oc
limit, as follow from the computation of the preceding section.

Let us start considering the Ii term. We need the following lemma:

LEMMA. - It holds that:

where 03C0/ is a partition in pairs of the indeces 1, ..., m without 2 and 
is the sum over such partitions.

Proof. - The left hand side of the above equation is given, by eq. (2.4),
by a sum of terms; noting that the terms in which the fermionic operators of
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the .B~ (2014 ~ u) operator are paired with fermionic operators with different
times are vanishing in the limit A - 0, L - oo, the left hand side of the
above equation is given by:

where is the subset of 1, ..z - 1, i + 2;, ..m such that the lemma holds.

By straightforward application of the above lemma we obtain:

In order to compute the 13 term we need another lemma:
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LEMMA. - It holds that:

Proof - The proof consists in showing that the terms in which

B03BB(t/03BB2, g, u, L) is paired with with j ~ 1 are vanishing
in the 0, L - oo. The left hand side of the above expression
can be written as:

where fo = and, if z # 1, than  0 and the above term

is vanishing in the limit.

Using this lemma we have that:

and the theorem is proved.
The last part of the theorem is proved by a straightforward adaptation

of [AcFriLu].
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