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ABSTRACT. - A geometric formulation of Classical Analytical Mechanics,
especially suited to the study of non-holonomic systems is proposed. The
argument involves a preliminary study of the geometry of the space of
kinetic states of the system, followed by a revisitation of Chetaev’ s definition
of virtual work, viewed here as a cornerstone for the implementation of
the principle of determinism. Applications to ideal non-holonomic systems
(equivalence between d’ Alembert’s and Gauss’ principles, equations of
motion) are explicitely worked out.
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2 E. MASSA AND E. PAGANI

Cette etude préliminaire concerne la géométrie de l’espace des états

cinétiques du système. Cela nous a conduit a revoir la definition de Chetaev
du travail virtuel, qui joue ici un role remarquable dans la realisation
d’un modèle mecanique compatible avec le principe de déterminisme.
L’ensemble de ce travail nous a permis de l’appliquer aux systèmes non-
holonomes ideaux, de comparer les formulations de D’ Alembert et de Gauss
et d’écrire de façon explicite les equations de la dynamique.

1. INTRODUCTION

A central issue in the development of Classical Mechanics is

the identification of general statements - often called "principles" -
characterizing the behaviour of the reactive forces for large classes of

constraints of actual physical interest.
This is e.g. the role of d’ Alembert’s principles of virtual work ([ 1 ],

[2], [3]), or of Gauss’ principle of least constraint ([4], [5], [6]) - both

providing equivalent characterizations of the class of ideal constraints - or
of Coulomb’s laws of friction [7], etc.

In general, of course, the choice of a suitable characterization of the
reactive forces is a physical problem, intimately related with the structural
properties of the devices involved in the implementation of the constraints.
In any case, however, a basic condition to be fulfilled by any significant
model is the requirement of consistency with the principle of determinism,
i. e. the ability to give rise to a dynamical scheme in which the evolution of

. the system from given initial data is determined uniquely by the knowledge
of the active forces, through the solution of a well-posed Cauchy problem.

In this paper, we propose a thorough discussion of this point. For

generality, we shall deal with arbitrary (finite-dimensional) non-holonomic
systems. The analysis will be carried on in a frame-independent language,
using the standard techniques of jet-bundle theory ([8], [9], [10], [ 11],
[12], [13]).
The main emphasis will be on the intrinsic geometry of the space of

kinetic states of the system. On this basis, we shall identify a general
definition of the concept of virtual work, extending the traditional one
to arbitrary non-holonomic systems, along the lines proposed by Chetaev
([14], [ 15], [ 16], [ 17], [ 18] ). The resulting scheme will throw new light on
the interplay between determinism and constitutive characterization of the
reactive forces, as well as on the relation between d’ Alembert’ s principle
and Gauss’ principle in the case of ideal non-holonomic systems.

Annales de l ’lnstitut Henri Poincaré - Physique théorique



3A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

The plan of presentation is as follows:

Sections 2.1 and 2.2 are introductory in nature. In section 2.1 we review the
basic concepts involved in the construction of a frame-independent model
for a mechanical system with a finite number of degrees of freedom. In
particular, we formalize the concept of configuration space-time, defined as
the abstract manifold t: V+i - % formed by the totality of admissible
configurations of the system, fibered over the real line 9’-B through the
absolute time function.

In a similar way, in section 2.2 we recall some standard aspects of
the geometry of the first jet space especially relevant to the
subsequent discussion ([8], [9], [10], [ 11 ], [13], [19]).

The study of the non-holonomic aspects arising from the presence of
kinetic constraints begins in section 2.3. Following [12], the geometrical
environment is now identified with a submanifold i : A - 
fibered over Vn+l, and representing the totality of admissible kinetic states
of the system. In addition to the "natural" structures, either implicit in
the existence of the fibration A - or obtained by pulling back the
analogous structures over the manifold A is seen to carry further

significant geometrical objects, depending in a more sophisticated way on
the properties of the embedding i : .4 2014~ 

A thorough discussion of this point is presented. Among other topics, the
analysis includes the definition of the concept of fundamental tensor of the
manifold A, as well as the introduction of a distinguished vector bundle of
differential 1-forms over A, called the Chetaev bundle.

In section 3, the geometrical scheme is applied to the study of the
dynamical aspects of the theory. In section 3.1 we show that, in the presence
of kinetic constraints, the Poincaré-Cartan 2-form of the system splits into
two terms, only one of which is effectively significant in the determination
of the evolution of the system.

An analysis of this point provides a hint for a geometrical revisitation
of the concepts of virtual displacement and virtual work. The argument is
formalized in section 3.2. A comparison with the traditional definitions is
explicitly outlined.

The discussion is completed by a factorization theorem, allowing to

express the content of Newton’s 2nd law in a form especially suited
to a precise mathematical formulation of the principle of determinism.
The interplay between determinism and constitutive characterization of the
reactive forces is considered in section 3.3. The geometrical meaning of

Vol. 66. n° ° 1-1997.



4 E. MASSA AND E. PAGANI

d’ Alembert’ s principle, as well as the relation of the latter with Gauss’
principle of least constraint are discussed in detail.
The paper is concluded by an analysis of the equations of motion for a

general non-holonomic system subject to ideal constraints. Both the intrinsic
formulation, in terms of local fibered coordinates on the submanifold A,
and the extrinsic formulation, based on the "cartesian" representation of the
embedding i : A - are explicitly outlined.

2. CLASSICAL DYNAMICS ON JET BUNDLES

2.1. Preliminaries

(i) In this Section we review a few basic aspects of Classical

Mechanics, especially relevant to the subsequent applications. Throughout
the discussion, a major role will be played by the space-time manifold V4,
defined as the totality of events, and viewed as the natural environment for
the frame-independent formulation of physical laws.

According to the axioms of absolute time and absolute space, V4 has the
nature of an affine bundle over the real line 9t, with projection t : ~4 2014~ M
(the "absolute-time function"), and standard fibre E3 (euclidean 3-space).
The totality of vectors tangent to the fibres form a vector bundle V(V4) ,
called the vertical bundle over V4.

Every section ( : 9t 2014~4 - henceforth called a world line - provides
the representation of a possible evolution of a point particle. In this respect,
the first jet space )1 (V4) has a natural interpretation as the totality of kinetic
states of particles.
From an algebraic viewpoint, we recall that ~1(~4) has the nature of an

affine bundle over V4, modelled on the vertical bundle V(V4) . The first jet
extension of a world-line ( : 9t 2014~4 will be denoted by ~ : 9~ 2014~ ~1(~4).

(ii) Every trivialization I : ~4 2014~ M x E3 mapping each fibre of V4
isometrically into E3 identifies what is usually called a physical frame of
reference. The trivialization I may be "lifted" to the first jet space j1 (V4) ,
thus giving rise to the further identification

V3 denoting the space of "free vectors" in E3.
The projection x : V4 - E3 associated with I will be called the

position map relative to I. The projection v : j 1 (V4) - V3 induced by
the representation (2.1 ) - clearly identical to the restriction to of the

tangent map x* : T(~) 2014~ T(E3), followed by the canonical projection
~(~3) -~ V3 - will be called the velocity map relative to I.

Annales de l’lnstitut Henri Poincaré - Physique théorique



5A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

We let the reader verify that, for each world line (, the composite map
v . ( : 9t 2014~ V3 does indeed coincide with the time derivative of the map

x.~ : ~ ~ E
(iii) Quite generally, a material system B may be viewed as a measure

space, i.e. as a triple in which B is an abstract space (the
"material space", formed by the totality of points of the system), S is a

a-ring of measurable subsets and m is a finite positive measure
over S), assigning to each 0 E S a corresponding inertial mass

m(O) := ~~ In the case of discrete systems the simplified notation
!B == ~Pl, ... , P~r~, = mi (whence also m(O) == will

be implicitly understood. 

A configuration of the system is defined as a V4 satisfying
the condition t . fl3 = const., i. e. sending all points ~ into one and the

same fiber of V4. In a similar way, a kinetic state of the system is a map

~ ~ S ~ ~1(~4) satisfying t . QJ = const . , t denoting the (pull-back of
the) absolute-time function 

According to the stated definitions, we may attach a time label to each

configuration ~ (to each kinetic state according to the identification

(respectively t(QJ) :== t . d~ E ~).
The totality of admissible configurations, or of admissible kinetic states,

does not depend only on the nature of the material space ~ , but also,
explicitly, on the constraints imposed on the system.

In general, a satisfactory insight into the situation is gained by splitting
the description into two steps, focussing at first on the positional constraints,
and deferring to a subsequent stage the description of the additional kinetic
ones 1.

In connection with the first step, we shall restrict our analysis to the
class of holonomic constraints, completely characterized by the following
properties:

a) the totality of admissible configurations form an (n + 1)-dimensional
differentiable manifold Vn+1, fibered over the real line 9t through the map
(2.2);

~ A more elastic strategy, accounting for the substantial interchangeability between positional
constraints and integrable kinetic ones, would be to base step 1 on a preselected subfamily of
constraints, of strictly positional nature, and to express all other constraints in kinetic terms. In
this connection, see also [ 12].

Vol. 66, n° 1-1997.



6 E. MASSA AND E. PAGANI

b) the correspondence x - Qx between points of Vn+1 and admissible
configurations ~3~ : !B 2014~ V4 has the property that, for each ~ E 33, the
image depends differentiably on x.
As a consequence of a) and b) it is easily seen that every admissible

evolution of the system determines a corresponding section ~y : 9t -+ Vn+ 1.
Conversely, if no further restrictions are imposed on the system, every such
section provides the representation of an admissible evolution. In this

respect, the first jet space jl (Vn+1) has therefore a natural interpretation as
the totality of kinetic states consistent with the given holonomic constraints.

Additional (non-holonomic) constraints, when present, are then easily
inserted into the scheme, in the form of restrictions on the class of

admissible sections, thus shrinking the family of allowed kinetic states

to a subset A This point will be explicitly considered in
section 2.3.

The manifold Vn+1 will be called the configuration space-time associated
with the given system; the fibration t : -+ 9t will be called the absolute

time function over Vn+1. The vertical bundle over will be denoted

by 
We recall that, by definition, both and the first jet space ~1(~+1)

may be indentified with corresponding submanifolds of the tangent space
according to the identifications

From these, it is readily seen that ~1(~+1) has the nature of an affine
bundle over Vn+1, modelled ([8], [9], [ 11 ], [12], [13], [19]).

In view of the requirement b) stated above, each point ~ determines

a differentiable map ’i3 ç : Vn+1 - V4 through the prescription

We denote by (fl3g )~ : - T(V4) the associated tangent map. A
straightforward check shows that ( i3i ) ~ preserves the property of verticality,
i.e. it satisfies C V(V4).
The restriction of (B03BE)* to the submanifold j1(03BDn+1) C T (vn+1 ) , clearly

identical to the first jet extension of the map (2.3), will be denoted by ~~ .
(iv) Given an arbitrary frame of reference I, let x : V4 - E3 and

v : ,~1 (V4) - V3 denote the corresponding position and velocity maps.

Annales de l’lnstitut Henri Poincaré - Physique théorique



7A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

For each ~ E 23 the composite map x~ := x . ~ç : Vn+1 2014~ E3 and

x~ := v . bj3i : ji (Vn+ 1 ) -+ V3 are then easily recognized as representations
of the position and velocity of ~ relative to I, respectively as functions of
the configuration and of the kinetic state of the system 2.

In local fibered coordinates t, ql, ..., qn over and

t, ql, ... , qn, ql, ... , qn over we have the familiar expressions

q ,..., q’~ ), X2 = for discrete systems).
By means of eq. (2.4), the ordinary (euclidean) scalar product in V3 may

be lifted to a frame-dependent scalar product in according to
the prescription

A straightforward check shows that, when both vectors X and Y
are vertical, the right-hand-side of eq. (2.6) is invariant under arbitrary
transformations of the frame of reference I. The restriction of the product
(2.6) to the vertical bundle is therefore a frame-independent
attribute of the manifold Vn+1, henceforth denoted by ( , ), and called the
fiber (or vertical) metric ([8], [9], [ 11 ], [12], [13], [19]).
A system is said to be non-singular if and only if the positivity condition

(X,X) &#x3E; 0 holds for all X ~ 0 in This condition will be

implicitely assumed throughout the subsequent discussion.
In local coordinates, the representation of the fiber metric is summarized

into the set of components

Returning to the general case, it may be seen that the knowledge of the
scalar product (X, Y~z for arbitrary (not necessarily vertical) vectors is

mathematically equivalent to the knowledge of the quadratic form (X, 

2 It goes without saying that, in the presence of non-holonomic constraints, the stated

interpretation applies only to the restriction of the maps xç to the family of admissible kinetic
states.

Vol. 66, n° 
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8 E. MASSA AND E. PAGANI

over which, in turn, is determined uniquely by the knowledge of
its restriction (z, z)z to the sub manifold C 

The function T defined globally on by T(z) .- 2 ~z, z)z will
be called the holonomic kinetic energy relative to the frame of reference I.

Comparison with eq. (2.6) yields the representation

showing that the restriction of T to the class of admissible kinetic states
does indeed represent the kinetic energy of the system relative to I.

2.2. Geometry of j1(Vn+1)
For later use, in this Subsection we review the main aspects of the

geometry of the first jet space ~1(~+1). For an exhaustive discussion, see
e.g. ([8], [9], [11], [12], [13]), and references therein.

Keeping the same notation as in [13], we denote by the
vertical bundle over j1 (vn+1) with respect to the fibration x : jl (1&#x3E;n+1 ) -
Vn+1, and by j2(Vn+1) the second jet extension of Vn+1, viewed as an
affine bundle modelled on Y (~ 1 ( Vn+ 1 ) ) . The definitions and
elementary properties of both spaces will be regarded as known ([8], [9],
[ 11 ], [12], [13]). The annihilator of the (n + I)-dimensional distribution
spanned will be denoted by C(j1(Vn+1)), and will be called
the contact bundle over j 1 (1&#x3E;n+1 ) .

Every section will be called a

vertical vector field In a similar way, sections 7 :
- C((Vn+i)) will be called contact 1-forms, while sections

# : j2(Vn+1), viewed as a vector fields will

be called semi-sprays.
In local fibered coordinates, introducing the notation

the situation is summarized into the explicit representations

with E 

On the basis of the stated definitions, one can prove the following
general results ([8], [9], [11], [13], [19]).

Annales de l ’lnstitut Henri Poincaré - Physique théorique



9A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

(i) By regarding each z E as a vector in we can

define a linear map 8z : --* according to the

prescription

By duality, this gives rise to a map Oz of the cotangent space T~~z~ 
into on the basis of the equation

In local coordinates, recalling the representation (2.9) for the 1-forms 
we have the explicit relations

Accordingly, we shall call8z and 0~ respectively the vertical push-forward
and the contact pull-back at z.

The map (2.13) may be extended in a standard way to fields of I-forms,
by requiring the condition

For every f E the contact pull-back of df will be denoted by
def, and will be called the contact differential of f. In local coordinates,
eqs. (2.13), (2.14) provide the explicit representations

(ii) According to eq. (2.13), the kernel of the map e; coincides with
the annihilator of the vertical space while the image space

identical to the space Cz(j1(03BDn+1)) of contact 1-forms

at z.

This provides a canonical identification of Cz ( jl (vn+1 ) ) with the dual
of summarized into a bilinear pairing ( II) : : x

Y.~ ~ z ~ ( v.~ + 1 ) -~ defined implicitly by the relation

Vol. 66, n° 1-1997.



10 E. MASSA AND E. PAGANI

In local coordinates, a straigthforward comparison with eq. (2.13) yields
the explicit representation

(iii) The affine character of the fibration Vn+1 ensures that,
for each z E the vertical spaces Vz ( jl (Vn+1 )) and 
are canonically isomorphic ([8], [9], [ 11 ], [13], [19]). This gives rise to
a vertical lift of vectors from 03BDn+1 to j1(03BDn+1), denoted symbolically by
V 2014~ V, and expressed in coordinates as

Due to this fact, the scalar product between vertical vectors may be lifted
from thus defining a frame-independent structure over
the first jet-space, called once again the fiber (or vertical) metric. In local
coordinates, the evaluation of the scalar products relies on the identifications

with the ghk’s given by eq. (2.7).
(iv) By composing the vertical push forward (2.10) with the vertical lift

(2.17), one gets a linear endomorphism J : - 

mapping each vector X into the vertical vector

By the quotient law, this defines a tensor field of type ( 1,1 ) 
known as the fundamental tensor ([8], [9], [13]). In local coordinates,
eq. (2.19) provides the explicit representation

(v) The simultaneous presence of the fundamental tensor and of the fiber
metric determines a vector bundle isomorphism

(process of "lowering the indices"), assigning to each vertical vector a

corresponding contact 1-form on the basis of the requirement

clo I ’Institut Henri Poincaré - Physique théorique



11A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

In local coordinates, taking eq. (2.18) into account, we have the

representation

with inverse

g23 denoting the matrix inverse of gij.
By means of the isomorphism (2.21), the scalar product (2.18) may be

extended to the bundle of contact 1-forms, by requiring the identification

In local coordinates, this provides the relations

(vi) The linear endomorphism (2.19) may be extended to an (algebraic)
derivation v : - of the entire tensor algebra
over commuting with contractions and vanishing on functions,
i. e. satisfying the conditions

By means of v one can construct a special anti-derivation dv of the
Grassmann algebra G ( jl (1&#x3E;n+1 ) ) , called the fiber differentiation [ 13], defined
on arbitrary r-forms according to the equation

This implies, among others, the following relations

For further details, the reader is referred to [ 13].

2.3. Non-holonomic constraints

(i) As pointed out in section 2.1, when the set of constraints imposed on
the system is larger than the holonomic subset explicitly involved in the
definition of the configuration space-time ~+1, the family of admissible

Vol. 66, n° 1-1997.



12 E. MASSA AND E. PAGANI

kinetic states does no longer fill the entire first-jet space but

only a subregion A C The cases explicitly accounted for in
Analytical Mechanics are those in which A has the nature of an embedded
submanifold of fibered over Vn+1 [12].
The situation is summarized into the commutative diagram

In what follows, we shall stick to the stated assumption. Preserving
the notation, q ,..., q ,..., q for the coordinates 
and referring A to local fibered coordinates t, q 1, ... , qn , z 1, ... , the

embedding i : will be represented locally in either forms

with rank ~9(~B ... , ~)/9(~~ ... , II == r (intrinsic representation), or

with rank ~9(~B ... ..., = n - r (cartesian represen-
tation).

For each ~ E 23, the map V~+1 ~ V4 and lj3i : jl(V4)
retain the meaning already discussed in the holonomic case. In particular,
given an arbitrary frame of reference I, the representation of the position
and of the velocity of the point ~ as functions respectively of the

configuration and of the kinetic state of the system relies on the composite
maps

expressed in coordinates as

~xi = ~~,..., qn ~, v, = ~~~ the discrete case).

(ii) The concepts of vertical bundle and of contact bundle are easily
adapted to the submanifold .4. A vector field Z ~ D 1 (,.4~ , ~-related to a
semi-spray on will be called a dynamical flow on 

In local coordinates, introducing the notation

Annales de l’lnstitut Henri Poincaré - Physique théorique



13A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

we have the obvious identifications

In a similar way, by composing the homomorphisms (2.10), (2.11 ) with
the maps (2z ~ * and (iz ) * *, we can extend the notion of vertical push-forward
of vectors, or of contact pull-back of 1-forms at each point z E A, as well
as the subsequent identification between contact 1-forms at z and linear
functionals on the vertical space based on the pairing (2.16).

In addition to the natural structures described above, another important
class of geometrical objects is obtained through the following construction:
for each z E A, consider the image space under the map
z. : " ~’(.,4.) -~ and denote by the

corresponding annihilator. Take the image under the derivation

induced by the fundamental tensor J, and pull it back to a subspace
(2z~* *2J~N2~z~(.f-l)) :_ ,~z(,~i~ C ~’z (,.‘-1l. °

In this way, performing the same construction at each z E A, we end up
with a vector bundle = For reasons that will be clear

later on, we shall call the latter the Chetaev bundle over A. Every section
v : A - x(A) will be called a Chetaev 1-form over A. The role of the
Chetaev bundle in the study of the integrability conditions for a given set
of kinetic constraints is briefly analysed in Appendix A.
A description of in local coordinates is easily obtained, starting

with an arbitrary cartesian representation (2.27) for the submanifold

A, and observing that, by definition, the differentials 

l, ... , n - r span Recalling eq. (2.24), we conclude that the
virtual differentials = span v(.11~2~z~(,,4.~~, which is
the same as saying that the differential 1-forms

span Moreover, due to the assumption on the rank of the
Jacobian ~9(~,... ~~)/9(~,... ,~)!!, the 1-forms (2.31) are linearly
independent, so that they form a basis in xz (A) . To sum up, every Chetaev
1-form ~ on A may be expressed locally as

with À(7 E 

Vol. 66, n° 1-1997.



14 E. MASSA AND E. PAGANI

Switching to the intrinsic description (2.27) for the submanifold A, it is
easily seen that the characterization (2.32) is mathematically equivalent to
a representation of the form v = with the components q2 , zA)
subject to the conditions

(iii) At each z E A, the vertical space is canonically isomorphic
to its image C The fiber metric on 

may therefore be used to induce a scalar product on Vz (A) , as well as an
"orthogonal projection" PA : Both operations
are entirely straightforward. The geometric structure determined by the
scalar product on V(A) will be called the fiber metric over A.

In local coordinates, making use of the intrinsic representation (2.26)
for the embedding i, and omitting all unnecessary subscripts, we have the
explicit relations

with GABGBC = sC .
By means of P A , recalling the definition (2.19) of the fundamental tensor

of we construct a linear map j : Tz ~,A.~ ~ Tz(A) according
to the equation

By the quotient law, the latter identifies a tensor field j of type (1,1) over
A, henceforth called the fundamental tensor of A. In local coordinates,
recalling eqs. (2.20), (2.35), we have the explicit expression

resulting in the representation

with

In connection with the previous definition, it is worth noticing that, unlike
the fundamental tensor J of whose construction had a.universal

Annales de l ’lnstitut Henri Poincaré - Physique théorique



15A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

character, involving only the definition of the concept of first jet space - the
tensor J depends also explicitly on the fiber metric, i.e., through eq. (2.7),
on the material properties of the system in study.

In this respect, rather than as a geometrical attribute of the manifold A,
the field J is therefore to be regarded as a mechanical object over ,,4 3.

By means of J, paralleling the procedure followed we may
set up a correspondence between vertical vectors and contact 1-forms over
A, by assigning to each X ~ Vz(A) the unique element E Cz(A)
satisfying the condition

A straightforward check shows that the previous definition is consistent

with the identification

g denoting the isomorphism between vertical vectors and contact 1-forms
over ~1(~+1) described in section 2.2.
The image of the vertical bundle V(A) under the map g will be denoted

by V* (A) . Every element ~|z E V* (A) , or, more generally, every section
A ~ V* (A) will be called a virtual differential form over A.

In local coordinates, eqs. (2.37), (2.38), (2.39) imply the representation

(iv) The linear endomorphism J : T(A) - T(A) described by eq. (2.36)
may be extended to an algebraic derivation of the tensor algebra 
commuting with contractions and vanishing on functions. The resulting
operation, henceforth denoted by v, is characterized by properties formally
analogous to eqs. (2.23), namely

for all f E E E D1 (,,4.) .
Exactly as we did in section 2.2, by means of v we construct an anti-

3 An alternative proposal for the construction of a "fundamental tensor" over the constraint
submanifold A is outlined in Ref. [20]. The argument relies on the preliminary assignment of
a fibration of the configuration space time over an (r + 1)-dimensional base manifold

The resulting geometrical framework - intrinsically different from the one discussed
here - is especially suited to the study of coupled systems of second-and first-order differential
equations.

Vol. 66, n° 1-1997.



16 E. MASSA AND E. PAGANI

derivation dv of the Grassmann algebra ~(~4), called once again the fiber
differentiation, acting on arbitrary r-forms according to the equation

In local coordinates, the evaluation of dv relies on the pair of relations

for all f E 0(A). 
’ ’

(v) At each z E A, the pull-back (2z ) * * sets up a 1-1 correspondence
between contact 1-forms in and contact I-forms in ~’z (,r4) . This
fact, together with eq. (2.22), determines a scalar product in the vector
bundle C(~4), expressed locally by the relations

with g23 = q 1, ..., z 1, ..., z ~’ ) obtained by pulling back the
quantities (2.22) to the submanifold A. In particular, by eqs. (2.38), (2.44)
we have the relations

whence, recalling eq. (2.34)

as it was to be expected, on the basis of the identifications (2.40).
The previous results are completed by the following

PROPOSITION 2.1. - The bundle Y* ~,,4.~ = ofvirtuall-forms over
A coincides with the orthogonal complement of the Chetaev bundle x(A)
in the vector bundle C(A) of contact 1 forms over A.

~’roof. - The orthogonality between V * (,,4~ and x (,.,4.) under the scalar
product (2.44) is easily checked by direct computation. Indeed, if v denotes
an arbitrary Chetaev 1-form, eqs. (2.33), (2.40), (2.45) imply

The required conclusion then follows from a dimensionality argument,
based on the fact that, at each z E A, the space ~z (A) is r-dimensional,
while the Chetaev space xz (A) is (n - r)-dimensional. D
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17A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

(vi) In view or Proposition 2.1, every contact 1-form ~ over A admits a
unique representation as the sum of a virtual 1-form a Chetaev 1-form.
In local coordinates, setting ~ = the required splitting is accomplished
through the decomposition

Indeed, in view of eqs. (2.40), (2.42), (2.45), (2.46), it is easily seen that the
fiber differentials are automatically in V* ~,A~, while the differences

satisfy the orthogonality conditions

i.e. they are all Chetaev 1-forms.

Remark 2.1. - The previous discussion points out that the 1-forms

i = 1, ... , n ~ generate (locally) the Chetaev bundle. Needless to say,
these generators are not independent. By eqs. (2.34), (2.38) they are in fact
subject to the linear relations

mathematically equivalent to eqs. (2.49).
In a similar way, the fiber differentials {03C503C8i, i = 1,..., n} generate

locally the bundle Y* (,A~ of virtual 1-forms over A. Once again, a

straightforward dimensionality argument indicates that these generators are
not independent, but are subject to n - r linear relations. In terms of an
arbitrary cartesian representation (2.27) for the submanifold A, these are
summarized into the system

3. DYNAMICS

3.1. Mechanical quantities

In this section we shall discuss the dynamical aspects of the theory
of constrained systems, within the framework introduced in section 2. As
compared with the analysis proposed in [12], the present contribution is
aimed at a better understanding of the role of d’Alembert’s principle as
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18 E. MASSA AND E. PAGANI

a general tool for the constitutive characterization of the ideal constraints,
independently of any requirement of holonomy, or of linearity.

Needless to say, the analysis is much indebted to the pioneering work of
N. Chetaev on the extension of the concept of virtual displacement to the
class of non-holonomic systems ([14], [15], [16], [17], [18]).

In what follows, we shall restate Chetaev’s ideas in a rigorous geometrical
setting, especially suited to the formal developments of Analytical
Mechanics.

To keep the language as close as possible to the traditional one, we
shall discuss everything in the euclidean three-space associated with an
(arbitrarily chosen) frame of reference I, sticking to eqs. (2.28), (2.29)
in order to express the (relative) positions and velocities of the points of
the system.
More precisely, for notational uniformity, we shall regard the functions

(2.28) as representing the maps x~ ~ 7r : A - E3, i.e. we shall regard them
as being defined on A, rather than on 
The (pull-back of the) contact differentials of the functions x~ will be

denoted by Comparison with eq. (2.15), (2.28), (2.29), (2.30) yields
the explicit representation

By eqs. (2.29), (2.42), (2.48), the latter may be splitted into the sum

with

The expression (3.3) will be called the Chetaev differential of x~ .
The contact differentials (3.1 ), together with the position and velocity

maps (2.28), (2.29), are explicitly involved in the representation of the
mechanical quantities associated with the system B in the frame of reference
I. Among these, especially relevant in a Lagrangian context are the kinetic
energy

and the kinetic momenta defined collectively by the equation
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19A NEW LOOK AT CLASSICAL MECHANICS OF CONSTRAINED SYSTEMS

A straightforward comparison with the representation (2.8) of the holonomic
kinetic energy T yields the identifications

In a similar way, by eqs. (2.7), (2.29), (3.4), (3.5) we have the identities

the exterior 2-form

will be called the kinetic Poincaré-Cartan 2-form of the system relative to
the frame of reference I ~. Eqs. (3.1), (3.4), (3.5) imply the relation

Together with eqs. (2.30), (3.7), the latter gives rise to the representation

A better insight into the nature of the kinetic Poincaré-Cartan 2-form
is provided by the splitting (3.2). The latter allows to express eq. (3.9) in
the equivalent form

with

~ The term "kinetic" is meant to point out the fact that, as compared with the standard definition
([211. [22]). eq. (3.9) leavea out all contributions coming from the acting on the system.
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The meaning of the representation (3.13) is clarified by the following

THEOREM 3.1. - For every vertical vector field V over A, the interior
product ~ ~ [2 satisfies the identity

g : ~(,~4~ -~ V*(A) denoting the process of lowering the indices
induced by the fundamental tensor of the manifold A through eq. (2.39).

Proof. - By the definition (3.5) of the kinetic momenta, setting
V = YA and recalling the identity (3.8), we have easily

Together with eqs. (2.34), (2.40), (2.50), taking the representations (3.14),
(3.15) into account, this implies the relations

mathematically equivalent to eq. (3.16). D

If, rather than a vertical vector field V, we consider a dynamical flow Z
over A, eq. (3.13) provides a splitting of the interior product H into

the sum of a virtual 1-form and a Chetaev one, namely

In analogy with Theorem 3.1 we have then the following

COROLLARY 3.1. - Let Z denote an arbitrary dynamical flow. Then:

a) the Chetaev 1 form Z ~ Ox is independent of Z, i.e. it is determined

uniquely in terms of the mechanical properties of the system;
b) the knowledge of the virtual 1-form Z  n is mathematically equi-

valent to the knowledge of Z.

Proof. - Starting with an arbitrarily chosen dynamical flow Zo, set

Qo :== Zo  and recall that the most general dynamical flow Z is
obtained by adding to Zo an arbitrary vertical vector field V. In view of
Theorem 3.1 we have then the relation
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proving assertion a) and

whence also

showing that the knowledge of Z  n is indeed equivalent to the knowledge
ofZ. D

In local coordinates, recalling eqs. (2.48), (3.11 ), (3.17) (or also by direct

computation, starting with eqs. (3.14), (3.15)) one can easily verify the

validity of the expressions

As a concluding remark we observe that, as a consequence of

Corollary 3.1, strictly associated with the kinetic Poincaré-Cartan 2-form
- and thus, ultimately, with the choice of the frame of reference I - is a
distinguished dynamical flow Zz, defined by the condition

In view of eq. (3.18), every other dynamical flow Z is then determined
uniquely by the knowledge of the virtual 1-form Q = n, according
to the relation

The expression (3.22) resembles very closely the situation discussed in
[12], where the term was taken axiomatically as a representation
of the forces acting on the system in the frame of reference I.

In local coordinates, taking eqs. (2.34), (3.8), (3.19) into account, the
solution of eq. (3.21) is easily recognized to be
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3.2. Virtual work

The (frame-dependent) correspondence between dynamical flows and
virtual 1-forms described in Corollary 3.1, namely

plays a erucial role in the geometrization of Dynamics.
To ensure consistency with the traditional language, we introduce the

following

DEFINITION 3.1. - For each z E A, the assigning to
each 03BE ~ B the vector valued virtual 1-form

will be called the virtual displacement of the system at z.
Before discussing the dynamical significance of Definition 3.1, a

. comparison with the conventional concept of virtual displacement is in
order. To this end, we make use of the fact that every contact 1-form at
z may be viewed as a linear functional on the vertical space 
through the pairing (2.16).

In particular, if we let the functionals associated with the 1-forms 
and be denoted respectively by 8xç and = 1, ... , n,
eq. (3.24) takes the traditional form 5

In general, however, as pointed out in Remark 2.1, the fiber differentials
and thus also the functionals 8qk - are not linearly independent, but

are subject to the inner identities (2.51), qi, qi) = 0, 7 = 1,..., n - r
denoting any cartesian representation for the submanifold A. When

expressed in terms of the functionals 8qk these reproduce the so-called
Chetaev conditions

5 The viewpoint of regarding both sides of eq. (3.25) as functionals on vertical vectors reflects
the classical notion of virtual displacement as an "infinitesimal change of the configuration of
the system, resulting from arbitrary infinitesimal changes in the positions of all points, consistent
with the restrictions imposed by the constraints at the given instant t" [3].
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It goes without saying that in the holonomic case (corresponding to

r = n), the conditions (3.26) are empty, and the functional 8qk are linearly
independent.
To sum up, Definition 3.1, translated into the language of linear

functionals over yields back the traditional notion of virtual
displacement, with the Chetaev conditions (3.26) automatically embodied
into the formalism.

To undestand the role of Definition 3.1 in a dynamical context, we now
turn our attention to the description of the interactions. To this end, we rely
on the usual classification of the mechanical forces into active and reactive

ones, as well as on the identification - already outlined in section 2.1 -
of the material system B with a measure space (B,S,m), S denoting
the a-ring of measurable subsets of the material space 23. By definition, a
representation of the active forces is then a map F : S x ~4 -~ V3 , assigning
to each H E S a corresponding vector valued function Fn (z) := F(H, z ~ ,
expressing the total (active) force on n in terms of the kinetic state of
the system.
With the standard notation of measure theory, we shall write

the dependence of both sides on the variable z being implicitly understood.
The quantities

(Qk = Fi . the discrete case) will be called the Lagrangian
components of F.

Recalling the representation (3 .1 ) for the contact differentials dcxç, we
have the obvious identification

The description of the reactive forces follows a similar pattern, the
only (substantial!) difference being that, in general, the associated map
4J : S x V3 is a-priori unknown. In place of it, one has a statement
- henceforth called a constitutive characterization of the constraints -
indicating which reactive forces are effectively allowed and which are not,
the selection depending on the physical properties of the devices involved
in the implementation of the constraints. We shall return on this point in
section 3.3. The totality of admissible maps ~ : S x will be
indicated by 1i (S x A) .
Vol. 66, n° 1-1997.
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Exactly as we did with the active forces, we introduce the notation
= J 0 ~(d~), and define the Lagrangian components pk of $ collectively

through the equation

Remark 3 .1 . - In the case of distributed forces (defined by the condition
03A603A9 = 0 whenever m(H) = 0), the measures F, 03A6 may be

expressed in terms of the corresponding Radon-Nikodym derivatives

f = p = (specific forces, or forces per unit mass) in
the standard form F = fm, P = cpm ([23], [24]). This possibility breaks
down in the presence of concentrated forces, i. e. of force measures not

absolutely continuous with respect to m.

Remark 3 .2. - Various instances of vector-valued, z-dependent measures
on !B, absolutely continuous with respect to m, have already been met in
the description of the mechanical quantities. The most significant example
is provided by the "momentum measure" P, related to the velocity map

:= by the identification P = vm . For each measurable
domain Q the quantity

expresses the total linear momentum of H as a function of the kinetic state

of the system.
Let us now denote by M(S x A) (M for short) the totality of vector

valued, z-dependent measures U : S x A - V3 such that, for each S2 E S,
the function := depends differentiably on z. From an

algebraic viewpoint, M has the nature of a module over the ring 
of differentiable functions over A.

DEFINITION 3.2. - For each U E M , the virtual 1-form

((U) = 03A3Ni=1 Ui . 03C5 vi in the discrete case), will be called the virtual

content of U . In the special case when U is a force measure, the expression
(3.32 ) will be called the virtual work of U.

Comparison with eq. (3.2) shows that the virtual work of the active forces
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coincides with the virtual part of the 1-form (3.29). In local coordinates,
recalling eq. (2.48), we have the explicit representations

In particular at each z E A, keeping the same notation as in the discussion
following Definition 3.1, and denoting by 8W the linear functional over

l associated with A(F), we get the familiar expression

with the Chetaev conditions (3.26) automatically embodied into the

formalism. Fairly similar conclusions apply to the virtual work A(4J) of
the reactive forces.

We conclude this Subsection by proving a factorization theorem, which
will play a major role in the discussion of the constitutive characterization
of the reactive forces. To this end, within the module M of vector valued,
z-dependent measures defined above, we single out the submodule 
formed by the totality of measures with vanishing virtual content, namely

Moreover, we introduce a correspondence between vertical vector fields
and vector valued measures, based on the prescription

In view of eqs. (3.14), (3.32), taking Theorem 3.1 into account, this

implies the identity

showing that the knowledge of the measure V(v)m is mathematically
equivalent to the knowledge of the field V.

Collecting all previous definitions, we can now state

THEOREM 3.2. - Every measure U E M admits a unique factorization
of the form

in terms of a measure U i E M 1.., and of a vertical vector field Vu over A.
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Proof. - Simply observe that, on account of eqs. (3.35), (3.37), eq. (3.38)
is mathematically equivalent to the condition Vu = D

For dynamical purposes, the content of Theorem 3.2 is conveniently
summarized into the pair of assertions

a) the correspondence U - U 1 = U - Vu(v)m determines an 0-linear
projection of the module M onto 

b) every measure U E M is uniquely determined by the knowledge of
its projection U1 E and of the virtual 1-form A(U).
The proof is entirely straightforward, and is left to the reader.

3.3. Equations of motion

To complete our analysis, we shall now discuss the role of the previous
definitions in the study of the problem of motion for the system B.
As widely explained in the literature (see, e.g. [12] and references

therein), the problem can be stated geometrically as follows: given the
active forces, expressed by a vector-valued, z-dependent measure F E M ,
as well as the constitutive characterization of the constraints, summarized
into the assignment of a suitable class H(S x A) of admissible reactive
forces, determine a dynamical flow Z over A in such a way that, for

each z E A, the integral curve of Z through z coincides with the first jet
extension of the section "y : 9~ 2014~ Vn+l describing the evolution of the
system from the initial kinetic state z.

Within the stated framework, the principle of determinism has then
an obvious mathematical counterpart in the requirement that, for each

assignment of F, the constitutive characterization of the constraints be

sufficient to determine a unique such Z.

Let us examine this point in detail: with the notation of section 3.2,
Newton’s 2nd law requires that, for each measurable subset S2 E S, the
total linear momentum viewed as a vector-valued function over A,
be related to the total (active + reactive) force Fo + by the evolution

equation

Z denoting the (so far unknown) dynamical flow. Recalling the

representations (3.27), (3.31), as well as the analogous expression for

~Ç2, eq. (3.39) may be written in the equivalent form
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i. e. as a relation

between vector valued measures in the class 

Keeping the same notation as in Theorem 3.2, we can then state

COROLLARY 3.2. - Eqs. (3.40 ) are mathematically equivalent to the system

Zz denoting the dynamical flow associated with the frame of reference I
through the prescription (3.21 ~.

Proof. - For every dynamical flow Z, eqs. (3.14), (3.32) yield the identity

Setting V = H), and recalling eqs. (3.21), (3.22), this implies
the relations

which, together with eqs. (3.35), (3.38), provide the further identification

The system (3.41), (3.42) is therefore equivalent to the pair of conditions

The conclusion is then a direct consequence of assertion b) following
Theorem 3.2. D

Corollary 3.2 allows a precise mathematical formulation of the concept
of determinism. This is readily understood by recalling that, according
to eq. (3.21), the vector field Zz is a datum of the problem, completely
determined by the knowledge of the frame of reference I, and expressed
locally through eq. (3.23).

Taking eqs. (3.41), (3.42) as well as Corollary 3.1 into account, and
recalling the comments following Theorem 3.2, one is then led to the
conclusion that the only freedom left by Newton’s 2nd law in the
determination of both the dynamical flow Z and the reactive force measure
~ is the value of the virtual work 
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The missing information is of course to be found in the constitutive

characterization of the constraints. A criterion for the latter to be consistent

with the principle of determinism is therefore the requirement that, for

each choice of the active force measure F, the condition 03A6 E H(S x A),
possibly completed by eq. (3.42), be sufficient to determine the virtual

1-form A(4J) uniquely in terms of F, and of the kinetic state of the system.
By far the simplest and most significant application of the stated criterion

is provided by the celebrated d’ Alembert’s principle, summarized into the
following

DEFINITION 3.3. - A set of constraints is said to ideal if and only if the
corresponding constitutive characterization is expressed by the condition

i.e. if and only if the class of admissible reactive forces coincides with the
submodule M C M.

As pointed out above, the constitutive characterization (3.43) is

automatically deterministic.
An important insight into the dynamical content of d’ Alembert’s principle

is provided by an equally celabrated statement, known as the principle of
least constraint, of K. F. Gauss. In the traditional formulation, valid for
discrete systems, the latter reads:

For a mechanical system subject to ideal constraints, the actual motion
under the action of given active forces, is the one for which, at any instant
t, the quantity

attains a minimum within the class of kinematically admissible evolutions

([3], [5], [6], [12], [17], [25]).
In strictly logical terms, rather than as a characterization of the class of

admissible reactive forces, Gauss’ principle is to be seen as a prescription
indicating how to handle the dynamical equations Fi + llli = miai, in order
to determine the evolution of the system - and thus also, indirectly, the
reactive forces 4Ji - in terms of the active forces Fi .

To this end, one has simply to replace each vector 4Ji, i = 1,..., N
in eq. (3.44) by the difference m2ai - Fi, looking then, at each instant t,
for the values ai that minimize the resulting expression within the class
of admissible accelerations.
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In order to compare the content of d’ Alembert’ s and Gauss’ principles,
we shall first extend the latter to the case of reactive forces described by
vector valued measures.

An apparent limitation here arises from the fact that the expression (3.44)
has no natural counterpart in the case of force measures not absolutely
continuous with respect to the mass measure m. The difficulty, however,
is easily overcome by observing that, as far as the dependence on the
accelerations is concerned, the function (3.44) has the same extremal points
as the difference

Unlike the original expression (3.44), the newer one can be extended to
arbitrary force measures, due to fact that, as a consequence of Newton’s
2nd law, the sum P + F is always absolutely continuous with respect
to m. Introducing the Radon-Nikodym derivative + we can

therefore restate Gauss principle as a minimality request for the functional

at any instant t, within the class of admissible accelerations.

We can now prove

THEOREM 3.3. - When formulated in terms of the functional (3.45), Gauss’
characterization of the class of ideal constraints is mathematically equivalent
to d’Alembert’s constitutive characterization (3.43).

Proof - Taking Newton’s 2nd law (3.40) into account, the functional
(3.45) may be written as

Viewed as a prescription for the evaluation of the dynamical flow Z in
terms of F, Gauss minimality request may therefore be stated in the form

for all admissible flows Z’. Setting Z’ - Z . - Y, this amounts to the
requirement
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whence, by the arbitrariness of 

The previous relations may be summarized into the single equation

clearly identical to the prescription that would arise by inserting Newton’ s
2nd law (3.40) directly into d’Alembert’s condition (3.43). D

The equations of motion for a mechanical system subject to ideal

constraints are obtained by inserting d’Alembert’s characterization (3.43)
directly into eq. (3.41), namely

In local coordinates, making use of the representations (3.19), (3.33), this
gives rise to the system

Alternatively, on the basis of eq. (3.22), the solution of eq. (3.46) may
be written in compact form as

From this, recalling eqs. (3.23), (3.33), we conclude that the evolution of
the system determined by then + r ordinary differential equations 

.

for the unknowns qi = qi(t), 
The previous arguments provide a complete solution of the problem of

motion, valid whenever the embedding i : A - is expressed
in the intrinsic form (2.26).
Or course, the same problem can also be tackled starting with a cartesian

representation for the submanifold A, of the form

with rank
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Under the stated assumption, rather than looking for a direct evaluation
of the dynamical flow Z over A, it is more convenient to consider the

push-forward ~(~), viewed as the restriction to the submanifold i(A) of a
semi-spray Z = defined in a neighbourhood of 
and i-related to Z. 

~ 

By definition, this implies the identification = iz* (Zz ) Vz E A,
showing that the evaluation of Z at each point is indeed equivalent to
the solution of the problem of motion.
A first set of conditions on Z comes from the relations

expressing the requirement that the field Z be everywhere tangent to the
hypersurface 

In addition to this, recalling the representation (3.12) of the Poincare-
Cartan 2-form on A, we have the identification

T denoting the holonomic kinetic energy (2.8).
On the other hand, in view of eqs. (3.9), (3.29), (3.30), Newton’s 2nd

law (3.40) implies the relation

Qk and pk denoting the Lagrangian components of the active and reactive
forces.

All this holds independently of any constitutive assumption concerning
the nature of the constraints. In particular, on account of eqs. (3.2), (3.32),
the 1-form (3.30) may be splitted into

The content of d’ Alembert’s principle (3.43) is then that, within the class
of ideal constraints, the expression at the left-hand side of eq. (3.53) is
always a Chetaev 1-form over A.
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Nothing further that the differential 1-forms i * ~ d.~ g~ ~ span the Chetaev

bundle, the constitutive characterization (3.43) may therefore be rephrased
as

the coefficients Aa denoting n - r a-priori unspecified functions over A.
The rest is now entirely straightforward: by eqs. (3.51 ), (3.52), taking the

characterization (3.54) into account, we get the n independent relations

These, together with eqs. (3.50), form a system of 2n - r equations for
the n components Zi of the semi-spray Z along z(~4), and for the n - r
coefficients thus providing once again a complete solution for the

problem of motion.

Example 3.1. - As an illustration of the methods discussed above, we
shall sketch the familiar problem of a rigid disc, rolling without sliding on
a horizontal plane, under the action of given active forces. For simplicity,
the positional constraints will be assumed to include the requirement that
the plane of the disk remains vertical throughout the evolution.

Denoting by m and R the mass and radius of the disk, and introducing
Lagrangian coordinates x, y, cp, B, expressing respectively the cartesian
coordinates of the point of contact of the disk with the plane, the angle
between the normal to the disk and the x axis, and the angle of rotation
of the disk around its axis, the holonomic kinetic energy is given by the

equation

while the rolling condition is summarized into the pair of relations

Choosing the generalized velocities z~ := cp, z2 := ~ as independent
variables, one can easily write down the explicit representation of the
constraint manifold A
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as well as the (pull-back of the) contact 1-forms

The Chetaev bundle is generated by the pair of independent 1-forms

Taking the expression (3.56) for the holonomic kinetic energy into account,
and denoting by Qx , Qy , Q~ Qe the Lagrangian components of the active
forces, a straightforward comparison with eqs. (3.55) yields the equations
of motion

These determine the evolution of the system, as well as the Lagrangian
components of the reactive forces, summarized into the Chetaev 1-form

In order to write down the equations of motion in the intrinsic form, we
notice that, on account of eqs. (3.6), (3.56), the (pull-back of the) kinetic
energy and of the kinetic momenta pk over A are given by the expressions

and

In view of eq. (3.49) the required equations are then summarized into the
system
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APPENDIX A

Keeping the same notation as in section 2.3, the fibration

will be said to be integrable (or more precisely, to identify a set of

integrable kinetic constraints) if and only if, in a neighbourhood of each
point E A, the submanifold admits at least one
cartesian representation (2.27) of the special form

involving (the pull-back of) n - r differentiable functions f ~ ~t, ql , ... , qn)
defined on Recalling the definition of the Chetaev bundle over A,
we prove

THEOREM A.1. - The fibration (A.1 ~ is integrable if and only if the ideal ,~
generated by the module of Chetaev 1-forms over A is a differential ideal.

Proof. - Necessity: the existence of a local representation of the form
(A.2) for the submanifold A implies that the Chetaev bundle is generated
locally by the family of 1-forms

Comparison with eqs. (2.30), (A.2) provides the identifications

showing that, under the stated assumption, J is a differential ideal.

Sufficiency: according to Frobenius theorem, the assumption that J is
differential ideal is mathematically equivalent to the assertion that the

Chetaev bundle is generated locally by n - r exact 1-forms VU = dfu.
Since - by definition - the latter are automatically contact 1-forms, the
condition Z -.J dfu = 0 for all dynamical flows Z implies the validity
of the relations
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On the basis of eqs. (A.4), (A.5), a straightforward dimensionality argument
shows that, under the stated assumption, the submanifold A is represented
locally in the form

i. e. it satisfies the integrability requirement (A.2). D
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