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ABSTRACT. - We describe the construction of a linear connection
associated with a second-order differential equation field, calculate its

curvature, and discuss some applications.

RESUME. - Nous decrivons la construction d’une connexion lineaire

associee a un champ d’ equations differentielles du deuxieme ordre. Nous
calculons sa courbure et discutons quelques applications.

1. INTRODUCTION

Systems of second-order ordinary differential equations of the form
i = fi(t,xj,j) arise naturally in a number of contexts: geodesics (auto-
parallel curves), the calculus of variations, and classical mechanics spring
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224 M. CRAMPIN, E. MARTINEZ AND W. SARLET

readily to mind. Such a system of equations may be represented as a
certain type of vector field (a second-order differential equation field) on
a differentiable manifold of the form R x T M, where M is a manifold,
of dimension m, on which the xi, i = 1,2,...,m are local coordinates,
and TM is its tangent bundle. By using a representation like this, one 

_

can take a geometrical approach to tackling many problems encountered
in the study of systems of second-order ordinary differential equations: for
example, problems concerning conditions for the existence of coordinates
with respect to which the equations take a special form - in which the right-
hand sides vanish, or are linear, or in which the equations decouple; the
inverse problem of the calculus of variations; analysis of symmetries; and
problems concerned with the qualitative behaviour of families of solutions.

In this paper, we shall describe the construction, given any second-
order differential equation field, of an associated linear connection in a
certain vector bundle. This linear connection is a very effective tool for the

investigation of problems of the kind described above. In particular, the
vanishing of the curvature of the connection is the necessary and sufficient
condition for the existence of coordinates with respect to which the solution
curves of the equations are straight lines. Our construction may therefore
be regarded as providing a generalization of ordinary connection theory
to cover types of differential equations more general than those satisfied
by geodesics.

Actually, the representation of the underlying manifold as R x TM is
not ideal for our purposes. The reason for this is that we wish to allow t-

dependent coordinate transformations (where t is the standard coordinate on
R): that is, coordinate transformations on R x M of the form (t, ~ (t, yi )
with yi = together with the induced coordinate transformations
on R x T M. Such coordinate transformations do not respect the product
structure which, by implication, has been picked out once for all. So instead
we shall develop the theory for an (m + 1)-dimensional manifold E which
is a fibre bundle over R, with standard fibre M. Although E will be trivial,
no one trivialization of it is to be preferred to any other, and the notation
will reflect this. Furthermore, by working in this way we shall ensure

that all our formulas are tensorial with respect to t-dependent coordinate
transformations.

So we suppose given a fibre bundle E with projection 7r: E 2014~ R, and we
consider its first-order jet bundle, which we denote by 03C001: J103C0 ~ E. (Our
notation follows that of Saunders [26], more or less.) The fibre of J103C0 over

any point pEE is an affine space modelled on Vp03C0, the vector subspace of
Tp E consisting of those vectors vertical with respect to vr, that is, tangent
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225LINEAR CONNECTIONS FOR SECOND-ORDER EQUATIONS

to the fibre of E. Given any trivialization E = R x M, we may identify
J103C0 with R x TM, with 1f? corresponding to the tangent bundle projection

M. A second-order differential equation field is a vector field
on J103C0 with the property that its integral curves are jets of sections of 7r.
Using the projection 2014~ E, we may pull back the tangent bundle

---+ E to obtain a vector bundle over We shall show

how to construct a linear connection on 7r~*(~) whenever we are given a
second-order differential equation field on The construction depends
on the fact that the second-order differential equation field determines a
horizontal distribution, or non-linear connection, on As a matter of

fact the same construction will work for any horizontal distribution on 

but in this paper we shall discuss only the case of a horizontal distribution
coming from a second-order differential equation field.
The data, therefore, consist of the bundle 7r: E 2014~ R, a second-order

differential equation field defined on and the corresponding non-linear
connection on from these we shall construct a linear connection in

the form of a covariant derivative operator on sections of 7r~*(r~). In order
to prevent confusion we shall use the term ’connection’ to refer only to the
linear connection which we shall construct, and refer to the given non-linear
connection always in terms of the horizontal distribution which defines it.

This paper has its origins in the work of Martinez, Carinena and Sarlet
on derivations of the algebra of forms along a projection map. Initially
these authors concentrated on forms along a tangent bundle projection
TM: T M  M [20], [21]; their methods have recently been extended
to the ’time-dependent’ case, which is the case considered here [25].
Though the analysis of the properties of second-order differential equation
fields was one of the motives for this work, the theory developed is

very comprehensive, and by no means all of its results are required for
an immediate understanding of the geometrical approach to the study of
second-order differential equations. The situation is analogous to that found
in ordinary differential geometry, where the full theory of derivations of
exterior forms developed by Frolicher and Nijenhuis is not required for
the study of geodesics. The present paper contains (among other things) an
exposition, in a new guise, of those of the results of Martinez et x/. which
are of most relevance to the study of second-order differential equation
fields. As a consequence, the paper should serve as a relatively short
introduction to the more general theory developed by these authors.
The connection described in this paper is related to several connections

which have previously been defined in various different contexts. One type
of connection, to which ours is closely related, is the Berwald connection

Vol. 65, n ° 2-1996.



226 M. CRAMPIN, E. MARTINEZ AND W. SARLET

of Finsler geometry and its generalizations, which is described e.g. by
Grifone [15] and by Bejancu [5]. However, the use of this kind of connection
to study geometrical properties of general second-order differential equation
fields does not seem to have been recognised by workers in the field of
Finsler geometry, though Grifone has contributed extensively to the study
of the horizontal structure which is associated with a general second-order
differential equation field. On the other hand, connection theory has been
used to analyse the properties of a particular class of solution curves of
second-order differential equations, namely the geodesics of Finsler spaces,
that is, the extremals of a Lagrangian which is positively homogeneous
of degree 1 in the derivative variables. Authors in this field, such as

Auslander [3] and, more recently, Bao and Chern [4], have been concerned
mostly with extending results of Riemannian geometry, such as the theorems
of Myers and Synge, to the more general setting of Finsler geometry. One
other author who has done important work in this field is P. Foulon.

Foulon’s work, in a way, is more closely related to ours as, apart from
applications to the study of extremals of Lagrangians [ 13], [ 14], his theory
of general second-order equations [ 12] contains elements of the idea of a
linear connection which we shall develop in Section 3. In fact, his notions of
Jacobi endomorphism and dynamical derivation were among the sources of
inspiration for the work by Martinez, Carinena and Sarlet referred to above.

There is an alternative approach to the construction of linear connections
associated with second-order differential equation fields, which has been
developed by Massa and Pagani in the context of the formulation of classical
mechanics [23], and also in a purely geometrical setting by Byrnes [6].
These authors obtain an ordinary linear connection on rather than

a vector bundle connection on 7r~(~). We claim that our approach is the
better one since it avoids an almost literal duplication of effort. We shall
explain how the two approaches are related in Section 3 below.
We can claim, therefore, to provide a synthesis of several approaches to

the study and use of connection theory and related topics in the context
of second-order differential equation fields. We claim also that our work
is distinctive in several ways. In the first place, we adopt a distinctive
geometric setting, namely that of the first-order jet bundle of a manifold
fibred over R, which seems to us to be the most appropriate one for
the study of time-dependent second-order differential equations. General
Berwald connections are defined in [5] as connections in the vertical sub-
bundle of the tangent bundle of a manifold. The connections adapted to
Finsler geodesics are defined on the sphere bundle [3] or the projectivised
tangent bundle [4] of a manifold. Foulon [ 12], [ 13], [ 14] also works
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227LINEAR CONNECTIONS FOR SECOND-ORDER EQUATIONS

always in the homogeneous formalism, and his basic geometrical entity
is a sphere bundle. Secondly, we give a coordinate free definition of our
connection, using the Koszul conditions for covariant differentiation, where
other authors use tensorial methods [5], or connection forms and structural
equations [3], [4]. Thirdly, we develop the properties of our connection
further than most other authors have done, and in particular we give the full
Bianchi identities for its curvature. Fourthly, we demonstrate the usefulness
of the connection by taking the first steps to showing how its curvature
determines the intrinsic properties of the second-order differential equations
on which it is based.

2. PRELIMINARIES

In this section we shall assemble the basic facts of the geometry of E
and J103C0 which are needed for our construction.
We consider first the question of trivializing E. Any trivialization

determines a vector field T on E, namely the coordinate field along the R
factor, which has the property that = Conversely, any vector
field T on E with this property determines local trivializations, in the sense
that any point of E has a neighbourhood which can be made diffeomorphic
to I x U, where I is an open interval of R and U is an open subset of
M, in such a way that the integral curves of T correspond to the curves
t ~ (t, u) for some fixed u E U.

This observation is related to the effects of (t-dependent) coordinate
transformations on E, as follows. Any coordinate transformation 2014~

(?/B~), where yi = and u = t, leads to the following formulas
for the new coordinate vector fields on E:

where the functions X i = are determined by

We can consider + as the local coordinate representation
of a vector field T on E, which projects onto the vector field on

R. As we have noted, every trivialization of E corresponds to such a
vector field; the equations for y2 amount to Tyi = 0, and can be solved

Vol. 65, n 2-1996.



228 M. CRAMPIN, E. MARTINEZ AND W. SARLET

to find the coordinate transformation with respect to which T becomes the
t-coordinate field on E.

Turning now to we note that a j et of a section of 03C0 may be

regarded as a tangent vector to E which projects onto the vector 
Thus a trivializing vector field T on E may also be regarded as a

section of 7r? In terms of local coordinates the vector field

T = corresponds to the section vi = The

coordinate transformation (t,xi,vi) ~ (t,yi,wi) on J103C0 induced by the
transformation yi = xj) of E is given by wi = 
Thus choosing coordinates on E so that T = is equivalent to taking
the corresponding section of J103C0 as w2 = 0, that is, using the section to
define the origin in each (affine) fibre.

The fibration 03C001: J103C0 ~ E determines a vector sub-bundle of

the vertical sub-bundle; the quotient of each fibre by its vertical
subspace can be identified with a tangent space to E, so we have the exact
sequence of vector bundles over J103C0

Corresponding to this is the exact sequence of modules of sections

here denotes the module of vector fields on V (~r° ) the sub-
module of vector fields vertical with respect to 7r~ and X (~-° ) the module
of vector fields along the projection all of these spaces being modules
over 

Any section of ~rE may be pulled back to a section of ~r° * (TE ) ; that is to
say, any vector field on E gives rise to an element of ~(7!~). The elements
of ~ (~r° ) which arise in this way are called basic.
We observed above that each point of J103C0 may be considered as a

tangent vector to E which projects onto This identification may be

regarded as defining a map J103C0 ~ T E, and therefore determines in a
natural way a vector field along 7!’!jB which is called the total derivative and
denoted by T; in coordinates we have

The restriction of any element of x (~-° ) to a section of 1f~ determines an
element of x (E); this remark, applied to T, leads back to the two ways
of defining a trivialization of E discussed above.

Annales de l’lnstitut Henri Poincare - Physique theorique



229LINEAR CONNECTIONS POP SECOND-ORDER EQUATIONS

A second-order differential equation field is an element r of 
which projects onto T. We have

where f i == After a (t-dependent) coordinate transformation
the new f i become

Note that the second derivatives of f with respect to the fibre coordinates vj
transform formally like the connection coefficients of an ordinary symmetric
linear connection (though they may depend on t).
Any second-order differential equation field determines a splitting of the

vector bundle exact sequence, or in other words a vector sub-bundle of

which is complementary to the vertical sub-bundle ~~-° . The
corresponding distribution (vector field system) on is called the

horizontal distribution determined by r. The details of the construction
of this horizontal distribution have been published frequently, so will not
be repeated here (see for example [9], [25], and also [26, Section 5.4] for
a more general formulation when the base manifold is not necessarily 1-

dimensional). We content ourselves with giving the coordinate expressions
for a basis {Ra}. ~ = 0, l, 2, ... , m, of horizontal vector fields, which
are r, and Hi == where r1 = -~9p/9~. Note
in particular that the second-order differential equation field F is itself

horizontal. The horizontal distribution will not in general be integrable.
The construction of the linear connection depends on certain features of

the structure of ~r° * {TE ) which we now describe.
In the first place, is a direct sum of vector bundles. This is

because the sub-bundle 7r~(V7r) (determined by vectors on E vertical with
respect to 7r) has a naturally defined complement, spanned at each point by
the total derivative T; this is a special property of ~r°*{T~) - it is not in
general the case that there is a distinguished complement to V03C0 in TE,
of course. The corresponding direct sum decomposition of the module of
sections of is written

Sections in are annihilated by dt, while the annihilators of T are
spanned by {dxi - vidt}, the contact 1-forms, these forms being regarded

Vol. 65, nO 2-1996.



230 M. CRAMPIN, E. MARTINEZ AND W. SARLET

as local sections of the bundle dual to For any 03C3 E ~(03C001) we
where cr E ~(7r~).

If F is any vector bundle over ~ F is a linear

bundle map (over the identity) which vanishes on Y~-°, then ~ passes to
the quotient, that is, it induces a linear bundle map 7r~*(~) 2014~ F.
As a first application of this remark, we note that the vertical

endomorphism S == (dxi - vidt) @ of J103C0 vanishes on Thus S

passes to the quotient, and if we regard it as defining a linear bundle map
-~ V~~r°, then S induces a linear bundle map 71-~(7-~) ~ The

induced map has the same coordinate representation, so its kernel is just
the one-dimensional sub-bundle of spanned by T. For any section
cr of we write ~‘’ for the corresponding vertical vector field on

Then T" = 0, and o-V = 0~ == ( ~ - ~ ~, Alternatively, we can
regard S as defining a module isomorphism,  ~V, of (03C001) with 03BD(03C001).

Secondly, suppose that we have a horizontal distribution on We

shall denote by PH the horizontal projector corresponding to the horizontal
distribution: PH is the linear bundle map (or type ( 1,1) tensor field, or
vector-valued 1-form, on which is the projection of onto the

horizontal sub-bundle along Since PH vanishes on by definition,
it passes to the quotient to define a linear bundle map ~r° * (TE ) 2014~ 

which is a bundle isomorphism of ~r° * (TE ) with the horizontal sub-bundle
of r(J~7r). We denote the corresponding map of sections by cr 
Thus the splitting of the bundle exact sequence determined by a second-

order differential equation field r carries over the direct sum decomposition
of 7r~(7~), to give a three-way split: at the level of sections we may write

since TH = r. Thus every vector field ç on J103C0 may be written

ç == (03BEV )V + with 03BEV E and 03BEH E ~(03C001). Further, we

may write ÇH == ~H + with ~H E ~(7r?). Furthermore, for any
~ E X(7r?) we have = 7 - while = (7.

For any E ~(7r~), we have = 0, since the vertical

distribution on J103C0 is of course integrable. But will not be

zero in general. We define a map R: X(7r?) x X(7r?) --+ x (~r° ) by

Then R is (J103C0)-bilinear and skew-symmetric. It measures the departure
of the horizontal distribution from integrability. Bearing in mind the direct
sum decomposition of 7r~(7~), it is convenient also to define a map

Annales de l’lnstitut Henri Poincaré - Physique theorique



231LINEAR CONNECTIONS FOR SECOND-ORDER EQUATIONS

~: X(~r°) --&#x3E; X(~r°) by

for reasons which will become apparent later, &#x26; is called the Jacobi

endomorphism of f. It is We shall denote the restriction

of R to x(~r°) x x(~r°) by R.
The objects R, ~ and R may also be regarded as tensor fields. In the

case of R we could simply say that it is a type (1,2) tensor field along 7r~;
but this would not be strictly correct for the others. So we shall adopt the
following terminology. For any vector bundle F, we shall call a section of
any tensor bundle constructed from F a tensor (of the appropriate type) on
F. Then R is a type (1, 2) tensor on ~r°*(TE), while ~ and R are tensors
on 7r~(V7r), of types (1,1) and ( 1, 2) respectively.
We can give a more explicit formula for R when its arguments are basic.

Notice that if A is a vector field on E, and we form AH (regarding A as an
element of ~(03C001)), then A is 03C001-related to AH . It follows that for any two
vector fields A and B on E, [A, B] is 03C001-related to and therefore

that [.4~~] - [~,B]" is vertical with respect to 7r~. Thus

One further result, involving the bracket of r with a vertical vector field,
will be needed in the next section: it follows directly from the formulas for
the horizontal distribution given earlier (see [9]) that for any X E x (~r° ),

3. THE LINEAR CONNECTION DEFINED

We now define the linear connection on ~r°* (TE), by specifying the
associated covariant derivative operator on ~(7r~).
THEOREM 1. - The operator D03BE : ~(03C001) ~ X(7r?) defined as follows

where PV == I - PH is the vertical projector, is a covariant derivative.

Proof - To show that this operator is indeed a covariant derivative, we
have merely to establish that it obeys the correct rules when its arguments
are multiplied by functions. Note first that for any f E 

Vol. 65, n° 2-1996.
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since the terms involving derivatives of f also involve and 

both of which are zero. On the other hand,

where we have used the fact that (r~)~ = ~ 2014 ( ~, 
So, given a horizontal distribution on we can define a linear

connection on 71~* (TE ) . In particular,

Furthermore, for any X E X(~°) we have

It is important to note that has no T component. In fact, for any
section o- of ~r° * (TE ) we have

To see this, observe first that for any vertical vector Geld ( on 
,G~ (dt) = 0. Thus ([P~)~],~) - 
whence it follows that (Dça, dt) = dt~ + ~(~)~ dt~ _ ~(7, 
So in particular, if = 0, then = 0 also. Thus x(~r°)
is mapped to itself by covariant differentiation; or in other words, the
connection induces a linear connection on the sub-bundle 7r~*(V7r) of

?TO* (TE).
Furthermore, it follows from this calculation that we may express the

covariant derivative as

Using the expression for Hi given earlier, we find that the covariant
derivatives are given in terms of local bases of 

and of X(~r°) as follows.
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233LINEAR CONNECTIONS FOR SECOND-ORDER EQUATIONS

If we write these entirely in terms of coordinate vector fields we obtain
the following formulas.

Notice that the covariant derivatives of both and with respect
to vanish. It follows that a necessary and sufficient condition for
cr E ~(7r~) to be basic (that is, to be a vector field on E) is that = 0

whenever ( is vertical with respect to 7r~.
The covariant derivative has been defined in terms of the bracket

operation on vector fields on It so happens that because of the
special relationships between sections of and vector fields on 
it is possible to turn this round so as to express the bracket in terms of
covariant derivatives. We shall explain next how this is done.

It is easy to verify that for any E x (~r° ), each of the three
different expressions obtained by substituting V or H for the asterisks in
~p*, (T**] - ((DP~ ~)** - (D~~~ p)*) is tensorial with respect to the arguments
p and 7. To evaluate them in general, therefore, it is sufficient to do so
when p and cr are chosen from a local basis of sections of ~r° * (TE ) .
Using the explicit expressions for the covariant derivatives given above,
and expressing p and cr in terms of their components with respect to the
direct sum decomposition of ~(~r°), we obtain the following results; here

E 
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Any reader who is familiar with the work originated by Martinez, Carinena
and Sarlet will have noticed that these equations are formally similar

to equations satisfied by the derivations DX, DHX and ~ which appear
in their papers (see [21 ], [22], and [25] for the time-dependent case at
hand). In fact there is a direct correspondence between these operators and
the various components of the covariant derivative that we have defined,
which our notation is intended to reflect. The operators defined in [25] are
derivations of the tensor algebra of ~r~ * (TE ) . The correspondence between
the derivations of covariant type in [25] and our covariant derivative is

given by

To put this another way, we can express the covariant derivative in terms
of the derivations in [25] in the form

We shall stick to our initial notation on the whole; but it will be convenient

occasionally to take advantage of this correspondence with the operators
first introduced by Martinez et al. to make use of their vertical and

horizontal covariant differentials D v and DH. For example, the condition
for o- E ~(7!-~) to be basic may be written = 0.

It follows from the formula above for [X~V~], and the observations
made earlier about the corresponding bracket when X and Y are basic, that
for any vector fields A and B on E, [~4,jB] = DAHB - DBHA.

Note one important consequence of the formulas relating brackets and
covariant derivatives: all brackets of vector fields on J103C0 can be expressed
in terms of covariant derivatives and the ’curvature’ R of the non-linear

connection defined by the given horizontal distribution. The formulas can
be combined together to make this more apparent, as follows. For any
vector fields 03BE, 7y on J103C0 we have

We may express this result in the following alternative form.

Annales de l’Institut Henri Poincare - Physique theorique
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These equations are reminiscent of those which define the torsion of

an ordinary linear connection; it seems natural, therefore, to regard
the tensor -R associated with the horizontal distribution as being the
vertical component of the torsion of the linear connection on 
The horizontal component of the torsion vanishes because the horizontal
distribution is defined by a second-order differential equation field.

Covariant differentiation can be extended to tensors on 03C00*1(03C4E), and on
7r~(V7r), in the usual way. Note that there are two kinds of covariant
differentials, and In particular, if K is a type ( 1, l~ ) tensor on

03C00*1(V03C0), then we can define type (1, k + 1 ) tensors and DH K on

7r~(V7r) by

the asterisk stands for either V or H. The rule for determining when an
element of ~(71~) is basic applies to tensors on 7r~(V7r) too: the necessary
and sufficient condition for such a tensor K to be basic (that is, to come
from a tensor field on E) is that = 0.

Our linear connection on can easily be lifted to a corresponding
linear connection on by using the decomposition of a vector field on
J103C0 in terms of sections of to define its covariant derivative, as
follows. Let Ç, and ~ be vector fields on write ~ as + and

put B7 çr == + It is easy to see that V is the covariant

derivative operator of a connection on What we obtain this way is

essentially equivalent to the linear connection involved in the work of Massa
and Pagani [23] and Byrnes [6]. There is, however, one minor difference,
which is that our connection will not make all components of equal
to zero. This is due to the fact that we have DrT = ~, a property which
arises naturally in our formalism (see also [25]). All the other connection
coefficients will be found to coincide on the full space Needless to

say, there is a big advantage in our approach in terms of the economy of
the number of formulas and calculations, because the effect of lifting the
construction to J103C0 is merely to reproduce each of our formulas twice,
once with a superscript V and once with a superscript H. We are convinced
also that our construction is the more elegant and fundamental.

4. CURVATURE

We now turn our attention to the curvature of the linear connection

which we have constructed. The curvature is a C~(J103C0)-trilinear map

Vol. 65, n ° 2-1996.
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x x ~(7!-~) ~ X(7r~) which is skew-symmetric in
its first two arguments. It is defined by

in the usual way.
It is easy to calculate how the curvature acts on T directly from the

definition, using the formulas DXV T == X , DXHT = DrT = 0, and the
expressions for [F,~]. The only non-zero components of ’)T are

It is not immediately obvious how to calculate the other components of
the curvature; however, there is much that can be found out about them
indirectly, as we now show.

The Jacobi identity for vector fields on that is, ~[~[~C]] = 0
(where, here and below, E means cyclic sum), imposes identities on the
curvature components, which are effectively first Bianchi identities for the
connection.

THEOREM 2. - The curvature satisfies the first Bianchi identities

Proof. - Using the formulas which give the vertical and horizontal

components of the bracket of two vector fields on J103C0 in terms of
covariant derivatives, we see that

and that

Taking the cyclic sum and using these two formulas gives the identities
quoted above. .
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By making the various possible substitutions for f" yy, ~, corresponding to
the direct sum decomposition of x ( ~T 1 ~), in these first Bianchi identities,
and using the results for .)T, we obtain the following information
about the curvature. First, a number of the curvature components
automatically vanish:

Next, we see that two components of the curvature are simply covariant
derivatives of R:

But R(T,X) _ ~(X), from which it follows that 

1~(X,Y); we may therefore write the second of these as

From the Bianchi identities we next obtain some identities for R and 03A6
and their covariant derivatives:

The only remaining Bianchi identities are those involving terms like

curv(XH, YH)Z or There is one identity for the former,
= 0. The two identities involving the latter taken

together state that this quantity is completely symmetric in its arguments
X, Y and Z.
We may regard both and curv(XH, YH)Z as defining

type ( 1,3) tensors on 7r~*(V7r) (or, preferably, type ( 1,1 ) tensor valued
2-covariant tensors on 7r~(V7r)). When considering them in this guise
we write

Vol. 65, n° 2-1996.
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Then B is completely symmetric, while is skew-symmetric in
X and Y and is given in terms of R by

The notation 8 and Rie is taken from the papers of Martinez et al.; the
results obtained here are derived in their work also, but by different means.
However, it is of interest to observe exactly how these results are related,
through the Bianchi identities. (In fact, our use of this notation differs in
detail from that adopted by Martinez et al. in their account of the time-

dependent case, in [25]. Our tensor 9 is the same as the one in [25]. On
the other hand, Rie in [25] is a type (1,3) tensor on 7r~(r~), given by

= our Rae is the restriction of this to 7r~(V7r).)
All components of curv have now been expressed in terms of 7r~(V7!’)
tensors. We summarize our results as follows.

THEOREM 3. - The curvature components are given by

The following identities aYe satisfied

The fourth of these is actually a consequence of the second and the third.
Note that once B and 03A6 are known, the other components of the curvature

are determined. In particular, the necessary and sufficient conditions for the
curvature to be identically zero are that 8 = 0 and 03A6 = 0.
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The occurrence as the component curv (X H , T) T may help
to explain why 03A6 is called the Jacobi endomorphism - if the reader is
reminded thereby of the equation of geodesic deviation.

THEOREM 4. - Suppose that 03BE is a vector field defined along an integral
curve of r by Lie transport, so that = 0. Then

Proof - We have

and therefore

Setting this equal to zero and equating like components gives

which leads directly to the desired result..
Thus the equation DfX + &#x26;(X) = 0 is a generalization of the Jacobi

equation for geodesics (the equation of geodesic deviation). This formula
is equivalent to the one derived by Foulon [ 12], [ 14] .

5. THE SECOND BIANCHI IDENTITY

The fact that there is a first Bianchi identity is a special feature of
this particular structure. But every linear connection on a vector bundle
leads to a Bianchi identity, here called the second Bianchi identity, which
comes from the Jacobi identity for the covariant derivative operators. It

may be written

This can be broken down into components by making various substitutions
for ~, 7~ ( as before; we have to consider what happens when the curvature
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terms act on T, as well as on a section of 7r~(V7r), and so for each choice
of ~, 7/, ~ we obtain two identities. These express relations between the
tensors 0, Rie, R, and ~, and their covariant derivatives, which are likely
to be important for applications; we therefore derive them below. In the

following list we indicate the choice of ç, ~ ( and the argument as follows:

~, 77, ~; cr. We have omitted all those cases in which the identity is vacuous
because all terms vanish identically.

1. V, Z"; W :

2. r; Z : the identity is automatically satisfied by virtue of
the symmetry of 8.

3. XB YH, Z"; W:

4. X ‘’ , YH, ZH; T : we obtain the known identity 
l~) (Y, Z) .

5. YH, r; Z:

6. YH, r; T: the identity is automatically satisfied as a consequence
of the formula for 

7. X H, YH, ZH; W :

(the cyclic sum being taken over X, Y and Z).
8. X H, YH, Z"; T : we get the cyclic identity = 0.

9. Z:

10. XH, YH, r; T: the identity reduces to the known formula for 
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The rather formidable looking identities obtained at numbers 5 and 9 of
this list may be simplified considerably if it is recognised that the differential
operators acting on terms are second covariant differentials (see, for
example, [ 17, Chapter III, Section 2] ). For any type (1,~) tensor K on
7r~(V7r) we define type (1,~ + 2) tensors on 7r~(V7r) (where
the asterisks stand for V or H) by

It is easy to see that

In order to simplify the identity involving (number 5) we
do not just apply this result in the obvious way; we also express R and
Rie in terms of covariant differentials of ~. We have

from which it follows that

Note that since 0, for any tensor K,
is symmetric in X and Y. The cyclic sum is

therefore completely symmetric, as is (DrB)(X,Y)Z.
The identity involving (DrRie)(X,Y)Z (number 9) may be simplified

in a somewhat similar way. First of all, it may be written

A further simplification arises if we reverse the order of the second covariant
differentials; this introduces curvature terms, the relevant component of the
curvature being the one involving 8. It so happens that the new terms in
8 and ~ which are introduced cancel with those already present, when
the symmetries of 03B8 are taken into account. The final form of the identity
is therefore

However, this identity is not really new: it may be derived directly from one
of the first Bianchi identities by covariant differentiation. The tensor Rie
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satisfies the identity Rie(X,Y)Z = If this is covariantly
differentiated with respect to r; the order of the derivatives on the right
hand side reversed using the formula for the curvature; and the resulting
terms involving (DrR)(X, Y) replaced with terms by means of the

identity then the second

Bianchi identity above is obtained.

Similarly, the identity = 0

(number 7 above) may be obtained by differentiating Rie(X,Y)W ==

covariantly with respect to interchanging the order
of differentiation, and using the cyclic identity Z) = 0.

Finally, identity 3, (DZHB)(X, Y)W -
may be obtained by covariantly differentiating

with respect to r the identity = 0

(which is equivalent to the first identity by virtue of the symmetry of
0), interchanging the order of differentiation, and using the formula for
DrO from identity 5.

There remain, therefore, only two essentially new independent results,
as follows.

THEOREM 5. - The .second Bianchi identity for the curvature is equivalent
to the following two identities relating the tensors 0 and $:

6. VANISHING CURVATURE

We now derive some results concerned with the consequences of the

vanishing of the curvature, or of certain components of it, which illustrate
the significance of the connection in the study of second-order differential

equations.

THEOREM 6. - The linear connection has zero curvature (is flat) if and

only if about every point of E there is a local trivialization, and adapted
coordinates (t, x2 ), such that with respect to these coordinates

so that the corresponding system of differential equations takes the form
xi = 0.
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Proof. - If curv == 0 then there is a parallel field of frames of 03C00*1(03C4E),
say {~}, where a = 0,l,2,...,m. That is to say, the ~a E x(~r°) are
everywhere linearly independent and satisfy = 0 for all vector fields

ç on They are determined up to replacement by linear combinations
with constant coefficients. Now

so is constant for each a; taking advantage of the freedom of
choice of the ~a we may ensure that = 1, while ~~i, dt~ = 0 for
i = 1, 2, ... , m. Thus in particular cr, = Xi E Since = 0, the

are basic, that is, they define vector fields on E; and in particular, (10

projects onto and therefore defines a local trivialization of E about

any point. We may therefore introduce local coordinates on E, adapted to
the local trivialization, such that (7o = Now for any vector fields A
and B on E, we have ~A, B~ = DAHB - DBHA; and therefore if A and
B (considered as elements of x (~r° ) ) are parallel, then [~4, B] = 0. We
conclude that the Xi are independent of t, and therefore define local vector
fields on M. Furthermore, [X,, X~~ = 0 for every i and j, so there are local
coordinates xi on M such that Xi = By inspecting the coordinate
formulas for the covariant derivative given earlier, we see that with respect
to the coordinates (whose corresponding coordinate vector fields,
considered as elements of x (~r° ), are parallel) the functions in
the definition of r all vanish. Thus if curv = 0 the corresponding system
of second-order differential equations is just xi = 0.
The converse is obviouss. []
In practical terms, the test conditions which have to be checked in order

to apply this theorem are just 9 = 0 and 03A6 = 0.
A slightly less restrictive condition on the curvature also leads to an

interesting result. As we have already noted, covariant derivatives of
sections of 7r~(V7r) (that is, sections of which are vertical with

respect to vr) remain so; we may therefore define a linear connection
on 7r~(V7r) by restriction. The curvature of this connection is simply the
restriction of ri) to the vertical sub-bundle; in other words, it is given
by the components of curv of the form where Z E 
The vanishing of just these components is thus a well-defined condition.

THEOREM 7. - The linear connection restricted to 7r~(V7r) has zero
curvature (is flat) if and only if about every point of E local
trivialization, and adapted coordinates (t, xi ), such that with respect to
these coordinates
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so that the corresponding system of equations takes the form ~i = 

(the right-hand sides being independent 

Proof - The argument proceeds in spirit as before, except that now we
are assured merely of a covariant constant field of frames of 7r~(V7r). But
this still ensures that, with respect to any local trivialization of E, for each t
there is a local field of frames ~Xi (t) ~ on the standard fibre M for which the
vector fields Xi( t) pairwise commute (where the t is treated as a parameter).
We may therefore choose local coordinates xi on each fibre so that the
coordinate vector fields, considered as elements of X (~r° ), are parallel,
as before; this choice of coordinates defines the required trivialization.

Note, however, it is no longer the case that c~/~t is parallel, or that any
trivialization consistent with the choice of these affine coordinates will

make it so. From the expressions for the covariant derivatives of the 
we see that n = 0, which is to say that ~fi/~uj = 0, as required. «
The conditions of this theorem may be expressed as follows: 8 = 0,

Rie = 0 and = R(X, Y). From the last of these, and

from the identity 3R(X,V) = it follows

that R(X, Y ) = 0; all components of the curvature therefore vanish, except
~(X ). Furthermore, = 0 for all X and Y,

so that 03A6 is basic. In order to test whether a system of equations can be
converted to the form xi = by a change of coordinates, therefore,
it is necesary to check only whether 8 = 0 and 03A6 is basic.

Further progress in this general direction has been made by Martinez and
Carinena [ 19], in the autonomous case, where the theory is developed on a

tangent bundle TM: T M -~ M. Their results, so far as the identification of
the components of the curvature, and the Bianchi identities, are concerned,

comprise the subset of our results which would be obtained by restricting all

arguments to ~(7r~). The results of the present paper therefore constitute a
significant generalization of those of [ 19] . However, Martínez and Carinena
show further that the necessary and sufficient condition for the existence of

local coordinates on M with respect to which a given system of second-
order differential equations xi = is linear in the so that f i

takes the form fi(xj, = is that the linear connection

induced by the corresponding second-order differential equation field is flat;
and that the equations are linearizable in both variables if and only if, in

addition, the Jacobi endomorphism is parallel (its covariant derivatives all
vanish). Now linearity in the v~ corresponds to the vanishing of 
and as we pointed out earlier, the transformation rule for this object is

formally the same in the time-dependent and time-independent cases. It

follows that the same results hold, mutatis mutandis, in the time-dependent
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case. Thus the necessary and sufficient conditions for the linearizability
of a given system of second-order differential equations, that is, for the
existence of coordinates with respect to which the system takes the form
x2 = + + are that 9 = 0 and = 0 for
all X and Y .

It is not easy to make direct comparisons between our results and
those on similar topics which have been obtained previously. First of all,
most of the existing literature dealing with linearization or other forms
of simplification of second-order differential equations is concerned with
single equations, not systems (see, for example, [2], [16], [27]). Secondly,
the coordinate transformations which have previously been used in the
process of simplification are of a type which makes no distinction between
the coordinates t and x, and thus requires a projectivized space for its

geometrical description. Our results are more restrictive than these in the
sense that we allow only coordinate transformations which preserve the
distinction between dependent and independent variables; but on the other
hand they are much more general in the sense that they are valid for
systems of differential equations.

Clearly, if we specialize our results to the case m = 1, we should
obtain statements which, interpreted analytically, are subcases of those in
the aforementioned literature. It will be instructive to explore a couple of
these instances.

Arnold [2], in his brief discussion of normal forms of second-order
differential equations, mentions the general rule by which such an equation
transforms under a transformation of the dependent variable (Chapter 1, §6
B.3). The corresponding analysis in our notation of the conditions for an
equation to be transformable into the free particle equation :r = 0, goes as
follows. Consider a single second-order differential equation i~’ = f (t, ?/, ?/),
with corresponding vector field r. Suppose that this equation transforms
into x = 0 under a transformation of the form x = G(t, y) . The function
G must be such that Gy = 0, and it must satisfy 1,2 (G) = 0, or
equivalently /(~~) = -(T(Gt) Thus f will necessarily
be quadratic in y, so that the tensor 8 will be zero. Starting from a general
quadratic expression

one can ask directly for the conditions that there should exist a function
such that f has the required form. A standard analysis of the

integrability conditions for the partial differential equations to which this
question gives rise shows that the conditions are that 2Ct = By and
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2(Bt - 2Ay) = B2 - 4AC. On the other hand, it is easy to compute the

single component of the tensor field 03A6 for this situation: we find that

Thus the results of the analysis in this special case are in perfect agreement
with our general Theorem 6.

For a second comparison of our results with those in the literature, we
consider the problem of linearizability in the case of a single equation.
Grissom et al. [16], who use Cartan’s method of equivalence to study
the problem, claim that ~/ = f (t, ~, ~) is linearizable if and only if f is

cubic in ~/,

and its coefficients satisfy the following two conditions:

According to our Theorem 7 the necessary and sufficient conditions for

linearizability are that 0=0, = 0 and = 0 for all

X, Y E ~(7T~). The first of these again implies that f must be quadratic
in ~/; but this is not in conflict with [ 16] as the cubic dependence on ?/
is an extra freedom coming from their permitted freedom to transform
the independent variable t. The other two conditions, in this case of one

degree of freedom, mean simply that the single component cannot

depend on ~/ or on y, respectively. In the case in which D = 0 we can
read these conditions off directly from the formula above they are

By = 2Ct and Bty - 2Ayy + 2AyC + 2ACy - BBy = 0. Using the first,
the second may be written

Now, with D = 0 and By = 2Ct, the first condition of Grissom et al.

is satisfied; but the second one reduces to Bty - 3AyC + 3ACy +
B Ct - 2 B By = 0, or equivalently

This is evidently incompatible with our condition, so one or the other must
be wrong. But the latter would be satisfied for C = 0 and would therefore

imply that every equation of the form i~’ = y) + 3B(t)~ is linearizable
in y and y. Clearly, for arbitrary A(t,y), this cannot be true.
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7. DISCUSSION

The results discussed in this paper represent the coming together of two
strands of analysis of second-order differential equation fields, one using
non-linear connection theory [8], [ 18], [28], the other being the adaptation
of the Frolicher-Nijenhuis theory of derivations of forms to take account
of the additional structure that arises when one is dealing with a tangent
bundle manifold [20], [21 ], [25]. The overall effect of all these
developments is that we now have ready to hand a collection of very
effective tools for the study of second-order differential equations and
related matters. To end the paper we shall briefly mention some of the
work that has been, and is being, done to apply these tools to the solution
of specific problems in this field.

In addition to the results concerning the existence of special coordinates
noted above, the methods described in this paper have been used to good
effect in the study of at least two other problems. One is the search
for conditions under which the second-order differential equations are

completely separable. This problem is again concerned with conditions
for the existence of coordinates with respect to which the equations take
a special form, namely that they decouple into m independent equations
each involving one dependent variable only. This problem has been solved
completely, in [22] for the autonomous case, and quite recently in [7] for
the time-dependent case. The conditions are somewhat more complicated
than those discussed in this paper, but they may be expressed in terms of
the linear connection and its curvature also.
The second problem in question is the inverse problem of the calculus

of variations, which seeks the conditions for a system of second-order
differential equations to be equivalent to the Euler-Lagrange equations
of some Lagrangian function. This is a long standing problem (see [ 1 ],
[24] for recent reviews), whose complete solution remains elusive; but
the use of the methods described in this paper gives promise of new
and illuminating results. As an example of the possibilities we cite recent
work [ 10] on the re-evaluation of one of the classic papers in the field. In
1941 Douglas [11] ] gave a complete solution of the inverse problem with
m = 2. His results appear to be exhaustive, but his methods are entirely
analytical in nature, so until recently it has been very difficult to form

any intuitive understanding of his work. In [ 10], however, almost all of
Douglas’s paper is shown to be readily interpretable in terms of the linear
connection and its associated tensors and operators. Thus certain algebraic
conditions that arise in Douglas’s classification of types of equations turn out
to be expressible directly in terms of the Jordan normal form of the Jacobi
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endomorphism; certain unexplained but recurring combinations of first

derivatives are merely covariant differentiations; and, most striking of all,
certain complicated expressions which arise in the analysis of integrability
conditions are nothing else than the second covariant differentials which

appeared in our second Bianchi identities.
No comparable solution to Douglas’ s for any case m &#x3E; 2 has ever

appeared in print - or even been attempted, so far as we know. This is due
no doubt to the deterrent effect of the complexity of Douglas’s paper. But
our success in interpreting Douglas’s work geometrically emboldens us to

hope that progress can be made with this problem in future.
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