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ABSTRACT. - We prove lower bounds on the number of resonances in

small neighbourhoods of the real line for connected sum of Euclidean space
and Zoll manifold. The obtained estimate in dimension 3

has the highest asymptotic order, compatible with the global upper bound.

RESUME. - Nous prouvons une borne inferieure pour Ie nombre de

resonances dans un petit voisinage de l’axe reel pour la somme connexe de
l’espace euclidien et d’une variete de Zoll. Cette estimee (dans 

a l’ordre asymptotique maximal compatible avec la borne superieure
globale.
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1. INTRODUCTION

The distribution of poles of the resolvent of the Laplacian in R"

with compactly supported perturbations (known also as scattering poles
or resonances) has been studied intensively in the last decades. Lax-

Phillips [ 13] determine the asymptotic distribution of the resonances on
the imaginary line in the obstacle case. Many authors (see [15], [17],
[21], [8], [23]) give global upper bounds on the number of resonances for
diverse cases of scattering. On the other hand, it is important to provide
lower bounds (or even existence results) for the number of resonances in
fixed regions of the complex plane. Obviously, it is of special importance
to study the influence of the dynamical structure of the perturbation on the
number of resonances near the continuous spectrum (see e.g. the survey of
M. Zworski [23] ). Several contributions [7], [10], [ 11 ], [4], [5], [6], [ 16]
clarify the situation around the Lax-Phillips conjecture - the existence of a

sequence of resonances converging to the real line.
Here we provide the first (as far as we know) elliptic case of scattering

by a compact perturbation in 1R3 where the order of the lower estimate on
the number of resonances near the real line (see Theorem 3.1 ) coincides
with the upper bound for all resonances. This phenomenon is observed on
"metric" connected sums of Euclidean space and manifolds all of whose

geodesics are periodic with the same prime period. We show that the special
dynamical properties of such a metric (and topological) perturbation imply
that a very substantial part of the resonances lie between the real line and

a curve, converging (polynomially) to R.
The class of compact perturbations of the Laplacian is obtained by cutting

off a geodesic ball of a fixed radius from 1R3 and from a 3-dimensional Zoll
manifold M (see Section 2) and by gluing the resulting spheres together.
Scattering on the so obtained Riemannian manifold in the case when M is
the 3-sphere with radius R was studied by Sjostrand and Zworski in [ 18],
Example 3 (see also [23]). They proved that if R is sufficiently large then
one can estimate the number of the resonances between some logarithmic
curve and the real line in the following way:

where ~ &#x3E; are arbitrary and the summation is over all scattering
poles A. It follows in particular that the upper bound + C) for the
number of all poles  r} obtained by Vodev in [20], [21] also

[8]) is sharp. Moreover the above estimate was used by Petkov and Vodev
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[ 16] who proved the Lax-Phillips conjecture in this case (they prove the
existence of a sequence of resonances converging to the real line).
Our main result (see Theorem 3 .1 ) is that for perturbations by Zoll

manifolds with sufficiently long geodesics (with length 27rR, R &#x3E; 0 -

sufficiently large), the number of scattering poles in small polynomial
neighborhoods of the real axis

is greater than Thus, the counting function for the resonances in
has the maximal possible asymptotic order in view of the global

upper bound. In particular we give two topologically different examples of
perturbations for which the above result holds.
Our proof follows a method which originates in the work of Sjostrand

and Zworski [ 18] and it is based on a careful study of the singularities of
the trace distribution. We give a lower estimate for the quantity I
uniformly on A and q (here uR is the wave trace for the perturbation and
the support of cpq E C~° is concentrated around oo). The

specific form of the perturbation combined with results from [ 18] lead to
the conclusion that we must estimate only where v~ is the

wave trace on the compact manifold. We pay special attention to obtain the
explicit dependence of the remainder terms with respect to q and to do this
we use the fact that on Zoll manifolds the wave trace is an approximately
periodic distribution. We count the resonances near the real axis using a
method similar to those in [4].

2. PERTURBATION

Let M be a compact smooth 3-dimensional manifold with a Riemannian
metric gR such that all geodesics of are simple closed of length
2~r1~. By a slight abuse of general usage we call such an object a Zoll
manifold. For each odd dimension there are two topologically diff’erent rank
one symmetric spaces. They are the classical examples of manifolds whose
geodesics are all periodic with the same minimal period. Explicitly we
have the sphere with radius R in the Euclidean (n ~-1)-dimensional
space and the real projective space which is obtained as factor

S~(2R)/Z2 (note that the radius of the sphere is chosen to be 2jR, so that
the length of the closed geodesics on to be 27T.R). The eigenvalues
of the Laplacian on these manifolds and their multiplicities are (see [1])

Vol. 65, n ° 2-1996.
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for S3(R):

for ~8~3(R):

Denote by a the Maslov index along the closed geodesics on M. The
square roots

of the shifted eigenvalues (repeated according to their multiplicity)
of the Laplacian on a general Zoll manifold cluster around an arithmetic
progression in the following manner [9], Section 29.2 (see also [22]):

(H) There exist positive constants and CR such that:

and for cR &#x3E; c &#x3E; 0 in any interval

for k &#x3E; kR there exist exactly cRk2 + elements 

Since Condition (H) holds for a large class of perturbations of the
Laplacian (in particular - Stark effect) [9], [22] the following proofs hold
also for such perturbations.

Remark. - Note that in [3] it is proved that property (H) of the spectrum
characterizes Zoll manifolds.

Let 7T : T*M 2014~ M be the cotangent bundle of M and let us denote

by U MR the bundle of unit spheres in T * M. We shall use the canonical
Riemannian metric 91 on U MR as defined in [2], Ch. 1, M.

Let s &#x3E; 0 and x E M. Denote by BR(x, s) the geodesic ball of radius s
around x in ( M, gR ) and by B ( 0, s ) the geodesic ball of radius s around 0
in the Euclidean space 1R3. In what follows we fix x E M and s &#x3E; 0 and

we assume that s  R and it is so small that BR(x, s) is contained in the
domain of normal geodesic coordinates centered at x.

Annales de l’Institut Henri Poincaré - Physique theorique
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We need the following j technical fact, where ~ we use the volume "

corresponding j to the metric gl.

LEMMA 2.1. - We have ’ the estimate:

where q,t is the geodesic flow on UMR.
We skip the easy proof.
Now we define the perturbed manifold (X, GR). Let

Denote for each p &#x3E; 0:

where y EM. Obviously

We identify WR C M and W C 1R3 so that 6’(0, ~/2) is identified with

and S(0, s) is identified with ~(~,~/2). Obviously this gives
us a smooth (and even real analytic) structure on the connected sum X
of M and 1R3. To define the Riemannian structure Gp on X we glue the
metrics from (M, gR) and 1R3 by using a partition of the unity subordinated
to the open covering:

In the rest of this paper we shall study scattering on the Riemannian
manifold (X, GR).

3. SCATTERING POLES

Denote by HR the Laplacian on the manifold (X, GR) or the Laplacian
with an additional perturbation supported on M B s) (considered as a
part of (X, GR)), which does not change the principal symbol. Obviously
HR is an admissible compact perturbation of the free Laplacian in 1R3 in
the sense of Definition 1 from [8] (see also [21]). Let

Vol. 65, nO 2-1996.
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where R(z) == ( HR - z 2 ) -1 and x C C~ is equal to 1 in a neighborhood
of the perturbation.
The cutoff resolvent Rx admits a meromorphic continuation to the whole

complex plane C which we denote also by The poles of Rx (z) are
called resonances or scattering poles.

Denote by 11R the set of all scattering poles. Then 11R &#x3E; 0} and
since the perturbation is elliptic we have [21 ], [8] :

where Cp &#x3E; 0 and the poles are counted according to their multiplicities.
Motivated by the trace formula (of Poisson type) proved by Melrose

[14] and in full generality by Sjostrand-Zworski [19] we denote by 
the distribution

and introduce a counting function for a, ~ &#x3E; 0:

In what follows we fix a function cp(t) E C~(2014l, 1), such that for A E !R:

and we pose for some 1 &#x3E; ~ &#x3E; 0 and T &#x3E; 0:

The reasoning from [ 18] combined with Lemma 2.1 gives us the following
estimate for small ~ &#x3E; 0

where

and are the square roots of the shifted eigenvalues of the Laplacian
on the Zoll manifold M, repeated according to their multiplicity. As was
pointed out in Section 2 the numbers satisfy Condition (H).

Annales de l’Institut Henri Poincaré - Physique theorique
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The main result which we prove in this work is

THEOREM 3.1. - Let 0  cx and 0  (3  1. For all sufficiently large
R &#x3E; 0 we have the following lower bound on the number of resonances
in 11R near the real axis:

where the positive constant independent of r.

In the course of the proof of Theorem 3.1 we use results from
[4] and [5] - all done in space dimension 3. For that reason, here we study
only this case. Nevertheless, it is possible to extend the result for any odd
dimension n &#x3E; 3 and we expect that the corresponding estimate will be

with a constant &#x3E; 0 independent of r.

4. ESTIMATE

In this section we prove Theorem 3.1.

First we shall estimate the remainder terms in the Poisson summation

formula:

PROPOSITION 4.1. - For any A, R &#x3E; 0 and ~ &#x3E; 0 su, f ’ficiently small we have:

where ’ 0  C~, CR,~ do not depend on 03BB and q and not depend on R.

Proof - We compare v R ( t) with

which is a periodic distribution and can be calculated. Namely, from the
Poisson summation formula ([9], Section 7.2) we have

Vol. 65, n° 2-1996.



Hence:

00 o0

vo(t) = -2~I-~3 £ b"(t - 2 j7rR) - 
j=-oo j=0

We pose

00

w(t) - 
j=0

and prove the following

LEMMA 4.2. - For any À, c, R &#x3E; 0 we have the estimates:

(i) Ce,R;
(ii) R R - 1  

where the positive constants C,R are independent of  and q.

Proof. - (i) From the Paley-Wiener estimate we get:

where CM &#x3E; 0 is independent of and ~. Hence for 0  c  1 and A &#x3E; 0

where C~ &#x3E; 0 depends on (~ but it is independent of A and q. Since the
series in the right-hand side converges we get (i).

(ii) It will become clear from the reasoning below that in Condition (H)
for AR in Section 2 we may use the term k2 instead of cRl2 + 
We have :

Annales de l’Institut Henri Poincaré - Physique théorique
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where

and ... , are the elements in the interval I~ (see Condition (H)).
Now we estimate using the obvious equality

and for we obtain:

The Paley-Wiener estimate gives for any integer M &#x3E; 0:

Then we get:

where &#x3E; 0 is independent and I~. Using the properties of
described in Condition (H), it is easy to see that the term in the

right-hand side is estimated from above by:

where &#x3E; 0 is independent of q and A.
Since the first two sums in (4.1 ) are rapidly decreasing with respect to

A, uniformly on q, the lemma is proved. Q

Vol. 65, n ° 2-1996.
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We continue with the proof of the proposition. Applying Lemma 4.2 and
the formula for vo(t) we get for small E &#x3E; 0:

This proves the proposition. 
We need the counting function:

Since the global upper bound for the poles in l~~ is given in (3 .1 ) and

hence it is C~ (r3 ) we have the following result, proved in [4] (Corollary 2.4
from [4] ) :

PROPOSITION 4.3. - Let ~1R be the set of all scattering poles. Then for any
r &#x3E; 2 we have the estimate:

where ’ C and ’ Cé are positive ’ constants independent of r and q.

Proof of Theorem 3 .1. - Using (3.2) and ’ Proposition 4.1 we obtain

Then if R is sufficiently large we get

where the positive constants and are independent of a and q.

Now we shall use a method similar to those from Section 4 from [4] to

complete the proof of the theorem. From (4.2) and (4.3) we obtain:

where - &#x3E; 0 are independent of r and q.

Annales de l’Institut Henri Poincare - Physique theorique .
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We fix 0152 &#x3E; 0 and 1 &#x3E; ~3 &#x3E; 0 and following [4] we denote

and choose a constant C~"~"~~ in such way that

where 0  {3  {3’  1. We pose also:

Obviously

where C~,~,~,,R is positive and independent of q. Hence from (4.4) we get:

This can be written as follows:

where we use that {3’  1.

Thus the theorem is proved. Q
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