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ABSTRACT. - Consider the Laplacian in a straight planar strip of width d,
with the Neumann boundary condition at a segment of length 2 a of one of
the boundaries, and Dirichlet otherwise. For small enough a this operator
has a single eigenvalue E(a); we show that there are positive c1, c2 such
that  E(a) - (7r/d) ~ -c2a~. An analogous conclusion holds for
a pair of Dirichlet strips, of generally different widths, with a window of
length 2a in the common boundary.

RESUME. - Nous etudions Ie Laplacien sur une bande rectiligne plane,
avec des conditions aux bords de Neuman sur un intervalle de largeur 2a
Ie long de la frontiere et de Dirichlet ailleurs. Pour a suffisamment petit
cet operateur a une valeur propre simple 6(a); nous montrons qu’ il existe
deux nombres positifs c1, c2 tels que E(a) - (03C0/d)2 ~ -c2a4.
La meme conclusion s’ applique pour une paire de bandes paralleles avec
conditions aux bords de Dirichlet, de largeurs differentes et, sur la frontiere
commune, une fenetre de largeur 2a.
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1. INTRODUCTION

Recent progress in "mesoscopic" physics brought not only new physical
effects but also some interesting spectral problems. One of them concerns
the existence of bound states which appear if a Dirichlet tube of a constant
cross section is locally deformed, e.g., bent or protruded, or coupled to
another tube - see [BGRS], [ES], [DE], [SRW] and references therein. In
this paper we are concerned with another system of this type, which consists
of a pair of parallel Dirichlet strips coupled laterally through a window in
the common boundary; if they are of the same width the problem simplifies
to a treatment of a single strip with the Dirichlet boundary condition
changed to Neumann at a segment of the boundary.

Such a window-coupled system represents an idealized setup for some
existing quantum-wire devices [HTW], [Ku], [LS], [WG]. Its spectral and
scattering properties were discussed in recent papers [BGRS], [ESTV]. It
was shown there, in particular, that the discrete spectrum was nonempty
for any window width 2a &#x3E; 0; if the latter is small enough, there is just
one simple eigenvalue E(a) below the bottom of the essential spectrum.
A question naturally arises about the behavior of the gap as a 2014~ 0.

The result of [BGRS] in combination with a simple bracketing argument
shows that it is bounded from below by a numerical analysis
performed in [ESTV] suggests that the asymptotic behavior is governed by
the fourth power of the window width. Our goal here is to prove two-sided
asymptotic estimates of this type.

2. THE RESULTS

Consider a straight planar strip E := R x [-~2~1]. Given a &#x3E; 0, we
denote by the Laplacian on L2 ( ~ ) subject to the Dirichlet .

condition at ~/ = 2014~2, d 1 as well as at the x ~ &#x3E; a halfline segments of the
x-axis; this operator coincides with the Dirichlet Laplacian at the strip with
the cuts - see [RS4, Sec. XIII.15]. Set d := max{~i,~2}. If dl = d2, the
operator decomposes into an orthogonal sum with respect to the ~-parity;
the nontrivial part is unitarily equivalent to the Laplacian on L2 ( ~~ ), where
E~ := R x [0,d], with the Neumann condition at the segment [- a, a] of
the x-axis and Dirichlet at the remaining part of the boundary; we denote
it by H(d; 2a).

Basic spectral properties of these operators are the following [BGRS],
[ESTV] :

Annales de l’Institut Henri Poincaré - Physique theorique
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PROPOSITION 2.1. - The discrete

spectrum is nonempty for any a &#x3E; 0 and consists of a finite number of simple
eigenvalues (7T/D)~   ... EN (a)  (~r/d)2, where D := d2;

is small enough there is just one E(a) - 
Although the simplicity of the discrete spectrum is almost obvious

from [ESTV] it was not stated explicitly there. For readers’s convenience
we add the corresponding argument: the bracketing used in Section 2

of [ESTV] shows that eigenvalues of H(d~, d2; 2a) can be squeezed
between those of the "window box" with Neumann and Dirichlet transverse

boundaries, respectively, 6~(~) ~ En (a)  ED (a). The estimating spectra
are not simple in general, but they are simple in the region we are

interested in, i. e. , below (7r/c!)~. Moreover, the spectra differ there by
an index shift, = 6~_i(a). Finally, the upper bound is in fact sharp,
6~_i(~)  En (a)  ED (a); it is straightforward to check that the simple
eigenvalues ED (a) change in a strictly monotonous way with respect to an
outward deformation of the Dirichlet box.

Our main result are the asymptotic bounds for the narrow-window case:

THEOREM 2.2. - There are positive c1, c2 such that

B u. /

holds for all sufficiently small a.
A proof of this theorem is the contents of the following sections.

3. AN UPPER BOUND

Let u s begin with the operator H - F(c!;2a). We denote by ~(~/) =

d = 1,2,..., elements of the "transverse" orthonormal
basis (the symbol should not be confused with the indicator function ~~
of a set M), and set 03C8 = F + G, where

and

with

Vol. 65,~1-1996.



112 P. EXNER AND S. A. VUGALTER

To make ~ a trial function of Q(H) we have to ensure that it satisfies

the Neumann boundary condition at the window, e. g. , replacing G by Gé
such that

for Ixl  a, where the subscript is a shorthand for the partial derivative, and

We have to compute L(~) :== (jH~~) - (~)211~EI12. The operator
part equals II ~)~ 112 + II ~)~ 112, where the second term is evaluated using
2014~ ~ (~) 2 Xl, a simple integration by parts, and the explicit value

~(0) == together we get

It is sufficient to find the rhs for 03C8 since the difference can be made

arbitrarily small by a suitable choice of c.
Since G;l’ have disjoint supports, we 

Furthermore, the last term equals T/2 ~ and

for any ~1 &#x3E; 0 and all a small enough. In the same 0) dx =

4a~ 03C0. Finally, a bound to ~Gy~2 follows from

for a  Trd/8, which means that ~Gy~2  ~203C0/4. Putting these estimates
together, using ~Fx~2 = a2 fB;, and neglecting the negative term -(03C0 d) 211G112,
we arrive at the inequality

Annates de Henri Poincare - Physique " theorique "
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where the sum of the last two terms at the rhs is minimized by
- ,~d3 ~2+~l ~ . It remains to estimate from below. The tail contribution
is = a2 /~, while the window part expresses as

for some C &#x3E; 0; this means that 1I~112 &#x3E; a2(1-c2)I’£-I holds for any
C2 &#x3E; 0 and all a small enough. Hence

taking the minimum over ~ we find

which completes the proof of the first inequality of (2.1 ) in the symmetric
case, d1 = d2.

Let us pass to the nonsymmetric case and suppose for definiteness that
d == dl &#x3E; d2; the bottom of the essential spectrum is then determined by
the upper part of ~. We choose there the same trial function as above, 
03C8 = F + G is for y &#x3E; 0 given by (3.1 ) and (3.2). Let further R2 be defined
by (3.3) with replaced by d2 and 20147/, respectively. In the lower part of
the strip, R x [-d2, 0], we put 03C8 = G where G is given by (3.2) with R
replaced by R2. The trial function should be smoothed in the window by
requiring the continuity, G~(.r,0+) = G~(.r,02014), and

Then it belongs to in the same way as above it is sufficient to

compute the functional for the nonsmoothed ~. The value of L(~) can
be estimated by

and since the contribution to 11~112 from the window part is again 
the argument used in the symmetric case may be repeated..

Vol. 65, n° 1-1996.
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4. TWO LEMMAS

To prove the other part of Theorem 2.2 we need a few variational
results for real-valued functions. Let us first mention two elementary
inequalities obtained directly by solving the appropriate Euler equations.
Let 03C6 E with = a; then

holds for a fixed m &#x3E; 0. Similarly, if 03C6 E C2[-b, b] with = 0, then

The following results are ’ a little more involved:

LEMMA 4.1. - C2 0, d] be a function with ~)(d) = 0; then there
are positive ’ ~1, ~2 such that Jo E111/J11 implies

Proof - Let be the "Dirichlet" trigonometric basis in L2 (-d, d);
in particular, 21~2g2 is the odd extension of xl. We denote the

even extension of 03C6 to [-d, c!]; without loss of generality we may suppose
that it has a unit norm. Since ~ is even by assumption, we write it as

I&#x3E; == -I- h with h E {~1,~2}~ which implies

In a similar way we have ~ _ + ~ for the even function ~ :~ 1921. We
find easily 1;,1 = 8/37T, so = J1=-TI ~ 0.529.

If 1(1;" ~)I  2~~i, the identities (~~) - (~, h,) and 
1 - ’YI yield

This requires

Annales de l’Institu Henri Poincaré - Physique - theorique -
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hence ’ choosing ~1 small enough we achieve &#x3E; 1 2. Consequently,

111&#x3E;’1/2 &#x3E; 703C02 4d2 holds in view of 4 1
LEMMA 4.2. - &#x3E; E C2[0, d] with 03C6(0) = 03B2 and cP(d) = 0. If

(cP, Xl) == 0, then for every m &#x3E; 0 there ’ is Co &#x3E; 0 such that

holds for all a , small enough.

Proof - We denote the lhs of (4.5) by M(~) and o use subscripts to mark a
contribution to a norm from a particular interval. Furthermore, we introduce 

’

Notice 0 as a -~ 0, so there is ao &#x3E; 0 such that

holds for a  ao, where ~ 1 is the positive number from the

previous lemma; we shall restrict ourselves in the following to

Suppose first that

holds for some (~. Since the rhs is not smaller than ~!~~ we have in
view of (4.7)

so neglecting the non-negative term we arrive at the estimate

the last inequality follows from the fact that the estimating functional is for
a fixed a :== minimized by == 

where  := -"2014 and taking the minimum over o;. Consider on the contrary
those (~ for which (4.8) is violated, 

Vol. 65, n° 1-1996.
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Since ~ is by assumption orthogonal to x1, we have

so

applying Lemma 4.1 to  we obtain

for some 6-2 &#x3E; 0. Neglecting this non-negative term, we get

then it is sufficient to employ (4.7) and estimate the rhs in the same way
as in (4.9) to arrive at the desired conclusion. []

5. A LOWER BOUND

This is the most difficult part of the proof. However, we may restrict
ourselves to the symmetric case only because inserting an additional
Neumann boundary into the window we get a lower bound to 2a);
hence it is sufficient to treat the spectrum of H - H (d; 2a).
We have to estimate L() :== (~,~) - (J)211~1I2 over "~1I2 for all ~

of a core of H, say, all C2-smooth 03C8 E satisfying the boundary
conditions. We shall employ for such functions and |x| &#x3E; a the following
uniformly convergent Fourier expansion

where ’ the coefficients (~(x, .), are ’ again smooth. Some ’ natural
restrictions may be adopted:

Annales de l’Institut Henri Poincaré - Physique théorique’



117ASYMPTOTIC ESTIMATES FOR BOUND STATES IN QUANTUM

(i) only real-valued ~ should be taken into account: since H commutes

with complex conjugation we may consider £2 (~+) as a real Hilbert space
in which H is "doubled",

(ii) we may consider only, because due to mirror symmetry we

have H = Heven 0153 Hodd, where the two parts are unitarily equivalent to the

halfstrip Laplacian with the Neumann and Dirichlet condition, respectively,
at the transverse cut. Hence and it is sufficient to estimate

the even part only.
Next we have to introduce some more notation. We put CI = f l,

where

with  := ci(2a), so /i(=L2~) = 0, and furthermore

Using this decomposition we derive in the same way as in Section 3 an

expression for the functional to be estimated,

Let us begin with the contribution from the outer region. We split a half of

the first term and consider the following expression:

Since

by (4.1) for n &#x3E; 2, and the non-negative term may be

neglected, we have

Vol.65,n°)-!996.
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and therefore

where we have also employed the fact that ~x = Gx for  2a.

Our next goal is to estimate the sum of the first two terms in (5.5)
by estimating ~Gx~2|x|~2a. function G : E+ ~ C2(E+) vanishes at
x = ~2a, the inequality (4.2) implies

Unfortunately, G does not satisfy this requirement, which forces us to split
it into several components and to estimate them separately. First we single
out the projection of G onto the first transverse mode,

Since /i(±2a) = 0 by definition, (5.6) may be applied to Gi. In

combination with the inequality

where the subscript in the last norm may be dropped because G 1 ( x, y) = 0
for ~x~ &#x3E; we get

The function G2 has again to be splitted; we rewrite it as

Annales de l’Institut Henri Poincaré - Physique theorique
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2a; the second part is independent of x while the first one vanishes
at the border, Ixl = 2a, so G"2,.r == G~ may be estimated by means of (5.6)
and the Schwarz inequality as

However, it is difficult to find a suitable bound for the last negative term.
Instead of attempting it we restrict ourselves to the vicinity of the window:
we introduce f2a :== [-2a,2a] x [0,a] and replace (5.10) by

We have still to find an upper bound To this end we notice that,
in addition to (i), (ii), we may restrict our attention to those y for which

holds for x ~ I &#x3E; a and 2. Indeed, let us split ~ for x I &#x3E; a into a

contribution from the n-th transverse mode, 7~ &#x3E; 2, and the orthogonal
complement introducing

The basic expression to be estimated can be then written as

Without loss of generality we may assume only those ~ for which the
numerator is negative. The part of its last term corresponding to the interval

Vol. 65, n° 1-1996.
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is by (4.1 ) minimized by the exponential function of (5.12);
hence replacing c~t ( x ) 2 by min ~ c~z ( x ) 2 , c t~ ( x ) 2 ~ we can only get a larger
negative number. At the same time, the positive denominator can be only
diminished, which justifies the claim made above.
We are interested in the norm of F restricted to hence we cannot

use the Parseval relation because in general the restrictions of x,t to [0, a]
are not orthogonal. We divide therefore the series into two pieces referring
to small and large values, respectively, relative to a-l. In the first part we
employ the smallness of the x,z norm restricted to [0,a], while the other
part will be estimated by means of the subexponential decay (5.12). In
this way, we may write

where [-] denotes the entire part; in the first term on the rhs we have used
the rough bound  The transverse-mode integral equals

Annales ’ de l’Institut Henri Poif2cnre - Physique theorique .
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being small for small a as indicated. We arrive thus at the inequality

where we have employed the estimates ]L~=2~ ~  and n2 - 1
 Tz-1. The sum in the curly bracket at the rhs of (5 .13 ) has a uniform

upper bound with respect to a being a Darboux sum of the integral

where Ei is the exponential integral function. Hence there is a positive
C such that

By (5.11 ) we have

for any b E (0,1]; the estimate (5.14) shows that choosing b small enough
one can achieve that the sum of the last two terms is non-negative. Putting
m . - 8 we arrive at the bound

In the next step we express the term containing Gy using the

decomposition (5.7), a simple integration by parts, the relation (~2(~0) =
G(x, 0), and the fact that G2(x, ~) is orthogonal to ~ = This

yields

Vol. 65, n ° 1-1996.
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where the last term does not exceed (~r/d2) + 

by the Schwarz inequality. We substitute to (5.15) from here keeping in
mind the identity and neglect the term

as well as

which is positive for a small enough, obtaining

Furthermore, the function G2(~, ~) satisfies for a fixed ~ E [2014a, a]
the assumptions of Lemma 4.2, so the sum of the second, third, and
fourth term on the rhs is below bounded by (co/a) Since

(co/2a) - &#x3E; 0 for small a, we have

where we have employed the Schwarz inequality again; taking the minimum
over we arrive finally at the estimate

The rest of the argument is simple. We have &#x3E; 

2 J~ and a similar bound is valid for the first term on the rhs

of (5.17), so

The extremal of this functional over functions with a fixed value at x = 2a

is which yields the value (~/2) - (8~/co~)~. It is
now sufficient to take the minimum over ~ to get the inequality

Annales de l’lnstitut Henri Poincare - Physique " theorique "
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which completes the proof of Theorem 2.2..

Remark 5.1. - Some of the estimates we used are certainly crude,

however, pushing them to an optimum is not sufficient to squeeze the

bound (2.1 ) enough to get the actual asymptotic behavior. This question
remains open; the same is true for the window-width threshold behavior

of higher eigenvalues [ESTV].
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