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ABSTRACT. - We provide an axiomatic framework for Quantum Field
Theory at finite temperature which implies the existence of general
analyticity properties of the n-point functions; the latter parallel the

properties derived from the usual Wightman axioms in the vacuum

representation of Quantum Field Theory. Complete results are given
for the propagators, including a generalization of the Kallen-Lehmann
representation. Some known examples of "hard-thermal-loop calculations"
and the representation of "quasiparticles" are discussed in this general
framework.

Nous presentons un cadre axiomatique pour la Theorie

Quantique des Champs a temperature finie qui implique 1’ existence de

proprietes generates d’ analyticite des fonctions a n points; celles-ci forment
un parallele avec les proprietes decoulant des axiomes de Wightman
habituels pour la representation du vide de la Theorie Quantique des
Champs. Nous donnons des resultats complets pour les propagateurs,
incluant une generalisation de la representation de Kallen-Lehmann, et nous
discutons quelques exemples de « calculs de boucles a haute temperature »
ainsi que la representation des « quasiparticules » dans ce cadre general.
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496 J. BROS AND D. BUCHHOLZ

1. INTRODUCTION

In the past fifteen years, there has been an increasing interest for the
physics of media at very high temperature; in the latter, the basic quantum
fields of matter are supposed to manifest themselves through new properties
which highly deserve to be investigated from a theoretical viewpoint. In
particular, the so-called "quark-gluon plasma" has been the object of a
number of theoretical studies and computations [ 1-3 ] . These are generally
based on an adaptation of the standard methods of quantum statistical

mechanics to the relativistic system consisting of the basic fields of

quantum chromodynamics. The fields are supposed to be in an equilibrium
state of infinite volume at temperature T = 1 /,~ in a certain privileged
Lorentz frame; the latter fixes the time and space variables and

the corresponding Fourier conjugate variables, namely the energy and
momentum (c,~, p~ .
The use of the Matsubara imaginary-time formalism (ITF) (see e.g. [4]

and references therein) has resulted in computations involving discrete

imaginary-energy summations for obtaining perturbative approximations of
the retarded propagators of the fields in the space of (complex) energy
and (real) momentum variables. In this formalism, the quasiparticles are
associated with "modes" obeying a (real or complex) "dispersion law"
cv = f ( p~ , which appear as poles of the form Z ( p~ / ~cv - f ( p~ ~ ] in the

retarded propagators of the fields. Such a structure has been displayed
in the so-called "hard-thermal-loop calculations" which aim to exhibit the
very high temperature behaviour of a quark-gluon plasma; summing the
one-loop self-energy contributions in a leading approximation at large T
yields the following result: the gluon propagator exhibits two typical poles
at 03C9 = = f(), interpreted respectively as "transverse and
longitudinal plasmon modes" [5,6] .
The independent elaboration of a formalism which only involves real-

time quantities (RTF) has resulted in a double-field matrix formulation,
now called thermo-field dynamics (see e.g. [7] and references therein). This
approach introduces as preferable basic functions the time-ordered and
anti-time-ordered expectation values. ,

In the past years, there has been a long debate about the consistency
of the ITF and RTF approaches, the latter being both expressed in terms
of appropriate versions of the path-integral formalism; the controversy has
generally been set in this framework, where genuine subtleties appear in
handling "time-ordered paths" in the complex plane of the time-variable
(see e.g. [8]). Although the situation now seems to have been clarified in
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497AXIOMATIC ANALYTICITY PROPERTIES AND REPRESENTATIONS

favour of the consistency [9], one feels a real need for a general structural
study of the thermal Green functions going beyond the time-ordered path
technique.

In the present work, we adopt such a general (non-perturbative) viewpoint
on Thermal Quantum Field Theory: we suggest that the validity and
consistency of the ITF and RTF formalisms are by-products of model-
independent structural properties of the thermal n-point functions which
follow rigorously from an appropriate set of general physical principles. As
a matter of fact, we will show that one can define an axiomatic program
for studying the analytic and algebraic properties of the n-point functions
of fields in a thermal equilibrium state. This program is completely similar
to the one which has been developped in the sixties for Quantum Field
Theory in the vacuum state within the Wightman axiomatic framework
and which has led to such important structural insights as the PCT
and Spin-Statistics theorems, collision theory, dispersion relations and the
Osterwalder-Schrader theorem (see [ 10-13] and references therein).

The main discrepancy of our axiomatic starting point with respect to the
familiar Wightman axioms will consist in releasing the Lorentz covariance
properties and replacing the spectral condition by an appropriate formulation
of the KMS-condition : this idea relies on the basic analysis of [ 14],
completed by the results of [ 15,16] which display the KMS-property as
being a general criterion for systems in equilibrium states. Moreover, in
spite of the breaking of Lorentz covariance due to the thermal bath, the
basic role played by the causality cone Tl+ _ ~ x = 
for quantum field systems implies that a (stronger) relativistic form of
the KMS-condition can be justified [ 17], as a remnant of the relativistic
spectral condition.

In this preliminary work, we shall present substantial results for the
structure of the two-point functions; only partial results will be given as
far as the general program of n-point functions is concerned. However, the
case of the thermal two-point functions being already of physical interest,
we give a special importance to a Kallen-Lehmann-type representation
(already presented in [18, 19]) which we are able to derive from the

general principles; among other advantages, this representation opens a
new possibility for the characterization of particles in Thermal Quantum
Field Theory.

After having presented our axiomatic framework for the representations
of Quantum Field Theory in thermal equilibrium states in Sec. 2, we devote
Sec. 3 and 4 to the pure implications of locality: this part of the program
Vol. 64, n ° 4-1996.



498 J. BROS AND D. BUCHHOLZ

reproduces in the setting of Thermal Quantum Field Theory properties of
general field theory in the vacuum state. It concerns:

a) in Sec. 3, the basic analyticity properties of n-point Green functions
in the space of complex energy and momentum variables,

b) in Sec. 4, the derivation of Kallen-Lehmann-type integral
representations for the two-point commutator and retarded functions which
are valid in the absence of Lorentz covariance and of spectral condition.

The implications of the KMS-condition will be studied in Sec. 5. In

particular, we shall exhibit the resulting double analytic structure of the

two-point functions in the time and energy variables and the relations

between the Fourier transforms of the retarded and time-ordered functions

which replace the usual "coincidence relations" implied by the spectral
condition. The derivation of similar properties for the n-point functions
will only be initiated there and mentioned as a further important part of
our program to be implemented.

In Sec. 6, the following complements on the structure of two-point
functions will be presented:

a) incorporating the KMS-condition into the Kallen-Lehmann-type
formula of Sec. 4 in order to provide a corresponding representation for
the two-point correlation function itself,

b) completing the results of Sec. 5 by analyticity properties in the

complex space and time variables which result from our relativistic form
of the KMS-condition,

c) studying the basic Feynman-type operations on two-point functions and

illustrating all the previous results on the perturbative examples mentioned
at the beginning of this introduction,

d) giving a comparative discussion of two different characterizations of
the notion of particle in Thermal Quantum Field Theory.

2. THE AXIOMATIC FRAMEWORK

The adaptation of the Wightman axiomatic framework to the case of

quantum fields in a thermal equilibrium state ~,~ of temperature T = 1//?
relies on the following well-known ideas. For simplicity, we consider the
case of a single hermitian field ~(~) , namely a system of "observables"
~( f ) = depending continuously on test-functions f on
Minkowski space (taken for convenience in the Schwartz space S(~4)).
These observables form an algebra which satisfies the general axiom of
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499AXIOMATIC ANALYTICITY PROPERTIES AND REPRESENTATIONS

"locality" or "local commutativity", namely: [~( f ), ~(g)] = 0 for all pairs
of test-functions ( f , g) whose supports are mutually space-like separated
in R4.

This axiom, which expresses the principle of Einstein causality, is

independent of the representation in which the system is described; it
therefore holds in the Hilbert space ~C,~ of thermal states in which the field
observables ~( f ) are supposed to act, as operators defined on a suitable
dense domain generated by the state vector 5~,~ . It is understood that 0(3
determines a fixed Lorentz frame, i. e. a distinguished set of time and space
variables; the corresponding unitary representation Ut of the time-translation
group in (i. e. the evolution operator group) leaves invariant, since
an equilibrium state is stationary. We shall only consider here the case when

is also invariant under the (unitary) representation of space-translations
!7~ in The action of the space and time-translations on the field is, as
usual: + t, x + a) = The previous axioms do
not differ from the corresponding Wightman axioms in the Hilbert space

generated by the vacuum state however, there are no unitary
operators which implement Lorentz transformations in ~‘~C~ .

In order to complete our axiomatic framework in we shall introduce

the "correlation functions" or "Wightman functions" 1N~’~~ (xl, ... , 
 SZ,~, &#x3E; and adopt the viewpoint of the reconstruction
theorem [ 10] . A Thermal Quantum Field Theory is thus entirely specified
by the knowledge of the corresponding set of tempered distributions

{M~;?~ E N} which have to satisfy the usual positivity conditions
of Wightman functions [ 10] . (It can equivalently be presented as the

representation associated with a on the Borchers-
Uhlmann algebra [20,21 ] of terminating sequences of test-functions

~1(~1)~ ... , ~),..., 0,...}.)
Apart from the properties which express the previous axioms, namely:
i) Locality:

ii) Translation Invariance:

for all a in !RB the thermal Wightman functions should satisfy the following
analyticity properties which replace those implied by the spectral condition

Vol. 64, n ° 4-1996.
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in the vacuum case. These properties are the mathematical expression of
the fact that the state is in thermal equilibrium [ 14-16] .

iii) KMS-condition:
Let eo be the unit vector of the time-axis. For every n E 1B1 and every

pair (1, J) of ordered sets 1 = {1~..., m}, J = {m + 1,..., ?~}, there
exists a tempered distribution ~77(~1?...?~~~) which is holomorphic
with respect to the complex variable t in the strip -03B2  Imt  0 and

admits distribution boundary values E R} and {t ~ R - i03B2} (still
denoted by satisfying the following conditions:

Let us introduce the Fourier transforms of the Wightman functions, which
(in view of ii)) can be written as W$!J) (pi,... + ’’’ + pn), with

l  n. Then the distributions W$!) on the linear manifold
pl + ’’’ = 0 satisfy the following property which is equivalent to iii):

iii)’ KMS-condition in the energy variable:

For each pair (I, J), the following identity holds:

where " 03A3i~I03C9i and ’ (03B2)n (I, J) stands for ’ 
Remark. - If we introduce " the commutator functions

it follows from Eq. (3) that )4~ is "essentially" determined from C«~ (i.e.
determined up to a part which factorizes b (WI ) ) by the formula:

We notice that this formula replaces the usual one expressing the positivity
of the energy (or spectral condition) it in the vacuum case:

(8 denoting the Heaviside step-function).
In the limit of zero temperature (/3 2014~ (0), Eq. (5 ) tends to Eq. (6); the
occurrence of the "inverse Bose-Einstein factor" (1 - in Eq. (5)

Annales de l’Institut Henri Poincaré - Physique theorique
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implies (since is a tempered distribution) that (I, J) has an
exponentially decreasing behaviour of the form for WI tending to
-00, instead of being equal to zero for WI  0 as This

occurrence of negative energy contributions in corresponds to the
possibility of "extracting energy from the ambient thermal bath", but their
exponential suppression can be seen as a remnant of the spectral condition
of the vacuum case. As a matter of fact, the Lorentz invariance of the
latter implies a more stringent support condition for J) than the
condition WI &#x3E; 0 exhibited by Eq. (6), namely:

where pI = 03A3i~Ipi and PJ is defined analogously.
Correspondingly, in Thermal Quantum Field Theory, there is a remnant

of this relativistic spectral condition which is a relativistic form of the

KMS-condition. In fact, the analysis of [ 17] based on the general principles
of "Local Quantum Physics" [22] gives a firm background to the following
properties (stronger than iii), iii)’ ) of the Wightman functions V~~(7, J).

iv) Relativistic KMS-condition:

For each pair (I, ~T), the distribution FI J of condition iii) admits an
analytic continuation (which we still call) xn; z) with respect to
the complex four-vector variable z == (zo, z) in the following tube-domain:

The boundary value equations ( 1 ) and (2) can then be replaced respectively
by:

In the space of energy and momentum variables, condition iv) can be
equivalently expressed by iii)’ supplemented by the following condition:

iv)’ Essential support conditions in p-space:
For each pair (7,J), the distribution W~(7,J) admits the cone

{(pi,...,p~);p7 = -~J E V+} as a majorant of its "essential support
in the sense of exponential decrease". A more precise formulation of this
condition is that the products of the tempered distribution )4~ (7, J) by
Vol. 64, n ° 4-1996.
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the (smooth) functions e~+~-~1 and are required to be also
tempered.

For completeness, we should also mention an additional postulate whose
role is to restrict our framework to the case of equilibrium states SZ~ which
are pure phases.

v) Time-clustering postulate:
For each pair (7, J), one has in the limit t ~ I 2014~ oo (with the notation

used in Eq. (1)):

3. ANALYTICITY PROPERTIES IN THE

ENERGY AND MOMENTUM VARIABLES

Recently, a procedure for studying the usual n-point retarded and

advanced functions and possibly introducing generalized retarded functions
characterized by various analyticity properties in the energy variables has
been presented in the traditional imaginary-time formalism of Thermal
Quantum Field Theory [23 ] . Here, we would like to emphasize that a

general understanding of the algebraic and analytic properties of these Green
functions follows from the Wightman axiomatic approach of Quantum Field
Theory, and that the latter allows one to control exactly which results are
identical to those of the vacuum case and which ones are different.

We devote this section to the introduction of n-point thermal Green
functions enjoying analyticity properties in the energy and momentum

variables. Their definitions and algebraic study in the previous axiomatic
framework and the (correlated) derivation of their analyticity properties
as pure consequences of the axiom of locality are completely identical to
those which have been given for the vacuum representation of Quantum
Field Theory. This structure has been the object of a number of works
in the past [24-28].
The basic idea is that for each n, one can define certain privileged

combinations ra of permuted n-point Wightman functions multiplied by
appropriate products of step-functions of the (differences of) time-variables.
Each distribution ra enjoys remarkable support properties which are implied
by locality, namely the support of ra is contained in a (salient) convex
Lorentz invariant cone r a of the space of vector differences Then,
in view of a basic result of complex analysis (see e.g. [10, 29]), the Fourier

Annales de l’Institut Henri Poincaré - Physique theorique
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transform of ra is the boundary value on the reals of a holomorphic function
f a in a tube-domain Ta of the complex energy-momentum space which is
of the following form: {~ == (~i,..., k1 + ... + ~n - 0; 
where r a (called the basis of the tube Ta) is the dual cone of r a (i.e.
the set of vectors q such that qx = q1x1 + *" + qnxn is positive for
all x in i’a ). Each of these distributions ra (or holomorphic functions

will be called a generalized retarded function. It is the expectation
value  &#x3E; of a corresponding generalized retarded operator
R~(~i,..., The generalized retarded operators (resp. functions) satisfy
two sets of basic algebraic relations, namely:

i) discontinuity relations between the various R~ (resp. r~); in this

connection, generali,zed absorptive parts are introduced;

ii) relations between each R~ and the (anti) time-ordered operator
products.

The two-point function:

Let C(x) be the commutator function, i. e. , x2) == 
Locality implies that supp C C There are two

distributions rain this case, namely the "retarded and advanced functions",
defined formally as r(x) = and a(~) _ 
The relation r - a = iC corresponds to the splitting of the support of C into

its two convex components, since supp r C V+ and supp a C V’. (Note
that this splitting is defined up to a distribution with support at the origin).

This splitting is in turn equivalent to the following one for the Fourier-
transformed quantities: zC(p) = r(p) - a(p), where C is usually called

spectral function [ 1-8] and r and a are the boundary values of holomorphic
functions (denoted similarly by) and ( 1~ == in the respective
tube-domains T+ _ ~1~ = p + E V+} and T- _ -T+ of C4.
Conversely, given a holomorphic function in T+ U T- (with at most a

tempered behaviour at infinity and near the reals), the spectral function
obtained by taking the difference of the corresponding boundary values
defines a commutator function which does satisfy locality. According to
the common use, the holomorphic function ~ ( 1~ ) (or a ( 1~ ) ) is then called

the propagator whose associated spectral function is C ( p) . (In view of
the Hermitian character of the field, C ( p) is also the imaginary part of

r(p) and is commonly described as such, although its characterization as
the discontinuity of the holomorphic function (k) across the reals is more
substantial).

Vol. 64, n ° 4-1996.
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Let 03C4(x), x == x1 - :cz (resp. T(:c)) be the two-point time-ordered (resp.
anti-time-ordered) function. The following relations hold:

Examples:

1) .The free , field propagators :
For any free scalar field of mass m, the commutator function and

therefore the associated retarded and advanced functions and are

independent of the representation generated by the thermal state SZ,~ . In fact,
in this case C~"2~ (x) is a structural function of the field algebra determined
by the c-number commutation relations of the field. Therefore, for every
thermal representation with temperature /3’B one has (as in the vacuum
representation): C~~~ (x) _ ~2~~2 f~4 dp, with

and

for k = == p + iq E E T-).
2) The Weldon-Pisarski (WP) propagators :
The following expressions of the high-temperature transverse and

longitudinal gluon propagators have been obtained by the resummation of
dominant contributions at small ,~ from the one-loop self-energy diagrams:

In these expressions, M denotes the "Debye screening mass" which is

directly related to the plasma frequency. The propagators ~t and Ol
can be checked to be holomorphic in the tubes T + and T - in the

privileged sheet of the logarithm which defines the physical sheet of these
functions. Therefore the associated two-point functions satisfy locality (in

Annales de l’Institut Henri Poincaré - Physique theorique
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this connection, see [30] for a detailed numerical analysis of these examples
and further comments on the construction of causal propagators).

The n-point functions:
For each n, the distributions ra are labelled by a "cell-function" a which

represents a geometrical cell ~y~ (namely a polyhedral cone) in the space
H~n~ _ ~h = (/~ ... hn) E hl + ... + hn = 0} deprived from all the
hyperplanes with equation hI = -hJ == 0. Here, (I, J) denotes an
arbitrary partition of {1,.... yz} and we use the notation hI = hi. A
cell cx is defined as the "sign-valued function" I ~ a(I) == + or -

such that 03B303B1 = {h E C {1,2,...,n},03B1(I)hI &#x3E; 0}. Two
cells al and a2 are called "adjacent cells along the face 

if they only differ on the complementary sets Io and Jo, namely if

== == -0~2(~0) = ~2(~0). The corresponding generalized
retarded operators or functions will also be said to be adjacent.
Each generalized retarded function ra is holomorphic in the tube Ta

whose conical basis T~ = 7mA; = ( ql , ... , qn); ql + " ’ + qn = 0} is
defined by the set of conditions E V + (for all proper subsets I of

{1,2,..., n~) [27, 28]. Each ordinary retarded function corresponds to
the cell a such that a ( ~ j ~ ) == + for all j e {1,2,.... n ~ except for j = i .

Discontinuity relations:

They are generated by the following set of relations which connect all the
pairs of adjacent generalized retarded operators [25, 26]: for every partition
(7, J) of {1,.... n ~ and for every pair of cells (o;i, a2 ) which are adjacent
along the face there holds:

where a ~I ~ , cx ~ J~ denote the common restrictions of the cell-functions (~1~2
respectively to the proper subsets of I and of J, and ~(7),~(j) &#x3E; are the

corresponding generalized retarded operators in the space of the variables
labelled by the elements of I and J. Correspondingly, there holds the

following set of relations, which generalize the relation r - a = iC of the
two-point function:

In the latter, the terms at the r.h.s. are interpreted as generalized absorptive
parts in the respective channels (7,J) and ( J, I ) .

Vol. 64, n° 4-1996.
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Steinmann relations [24) :
The generalized retarded operators R~ are not linearly independent. In

fact, if two adjacent pairs ( cx 1, (2) and (0152~, 0152~) along the same face HI ~
admit the same restrictions a ~1 ~ , 0152(J), the following corresponding relation
holds : R03B11 - R03B12 = R03B1’1 - Ra2.

Relations with the time-ordered operator products:
Let T(I) denote the time-ordered product of the nI field-operators ~(xi )

for i E I C {I, 2, ... , n~. For each cell 0152 the following expression of
I~a is valid [28]:

where the runs over all ordered partitions (7i,..., Ir), 2  r  n,
of {1,2,..., ~} 
Similar relations involving the anti-time-ordered operator products can also
be written. Eq. ( 18) generalizes the relations (11) of the two-point function.

4. INTEGRAL REPRESENTATION OF
THE TWO-POINT SPECTRAL FUNCTION

We present here an integral representation of the thermal two-point
commutator and spectral functions C (x) and C(p) which is a pure
consequence of locality ; from a technical viewpoint, it also relies on the
fact that C (p) I w has to be a (positive and even) measure as a by-product
of the positivity and KMS conditions (see Sec. 5). Our representation is
characterized by a certain which plays the same role
as that of the Kallen-Lehmann representation of the vacuum two-point
function. This weight-function can also be reconstructed from C(x) by a
simple inversion formula.

PROPOSITION

i) The following integral representation holds:

Annales de l’Institut Henri Poincaré - Physique theorique
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in the latter, the weight-function D(x; m) is a tempered distribution with

support in 1R3 x I~+ which is uniquely defined and computable in terms of
C by the following inversion formula

where ’ Jo is the zeroth-order Bessel function of the first kind.

ii) following 1 corresponding $ representation applies to the spectral
function:

where

belongs to v~’’(1~4), with supp p c 1R3 x R+.
Similar results were first stated by Gervais and Yndurain in some

unpublished paper [31 ]; Eq. (21 ) can be interpreted as a Jost-Lehmann-

Dyson representation (see [ 12] and references therein) in the absence of

spectral condition. The proof which we present here is self-contained; the

missing technical details of distribution theory will be given elsewhere [32].

a) Gauss-type transforms in the time and energy-variables : we first

associate with the (4d-) Fourier pair (C, C) the following (3d-) Fourier

pair (~(x; ~), ~(p; ~))

It can be checked that 03A8 and  are tempered distributions (resp. in x
and p~ which are (slowly-increasing) holomorphic functions of A in the

complex half-plane C+ = {A;ReA &#x3E; 0}. Moreover, the mapping C -+ BÎf
and (thereby) C -+ Ware one-to-one since the integral transformation

(24) can be considered as a Laplace-transformation in the variable W2 and
therefore inverted (here, one makes use of the fact that ~~ is an even
measure in c~).

b) The transforms and ~: We define

Vol. 64, n° 4-1996.
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Locality implies that the distribution-valued holomorphic 
is tempered By inverting Eq. (25), we obtain the following
relation between the Fourier of ~ and W:

the latter being valid for all A in C~.
c) The "weight-functions" p and p: we call respectively p(x; s) and p(p; s)
the inverse Laplace-transforms and 03A6 with respect to the variable A;
(p, p) is a (3d-) Fourier pair of tempered distributions on 1R4 with support
contained in 1R3 x R+. For our needs, we write explicitly the mappings
I&#x3E; 2014~ p and p 2014~ ~:

d) The integral representations ( 19), (21 ): by plugging Eq. (28) into Eq. (26),
we obtain

By comparing Eqs. (24) and (29), we see that and the
bracket in the r.h.s. of Eq. (29) admit the same Laplace-transform with
respect to the variable w2 and are therefore equal in view of a). Since

is odd in the variable w, Eq. (21 ) is therefore established and

Eq. ( 19) immediately follows by Fourier transformation.
e) The inversion ,f’ormula (20): by plugging Eq. (23) into Eq. (25) and
the latter into Eq. (27), we readily obtain (after an admissible interchange
of integration, the following formula being understood in the sense of
distributions in the variables ~ and s):

Annales de l’Institut Henri Physique - theorique -
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Since the bracket in the r.h.s. of Eq. (30) is an integral representation of
[33], page 357, formula (9)), Eq. (30) takes the

form (20) if one replaces p by the distribution D(x; m) = 403C0m
(linked to p by Eq. (22)).
From the previous proposition, one easily deduces the following

COROLLARY

The (Fourier pair of) retarded thermal propagators r(x) and satisfy
the following general integral representations

where k varies in T+. The same representation holds for (k) with k
varying in T -.

Remark. - The Kallen-Lehmann representation, which is valid for

a general propagator in the vacuum state in the axiomatic Wightman
framework (see [ 12] and references therein), appears as a special case of
the representation (31 ); it is obtained when the weight-function D is of the
form == 2rnpo(m2) (i.e. (27r)~ po(s) b(u)), P being a
tempered (positive) measure with support contained in R+.

5. CONSEQUENCES OF THE KMS-CONDITION

The absence of the spectral condition has a drastic effect on the
structure of the n-point Green functions in the space of energy and

momentum variables: as we shall explain it below, the various generalized
retarded functions in complex energy- momentum space do not admit in
general a common analytic continuation; in contrast with the case of the
vacuum representation, there do not exist analytic n-point Green functions
in domains for the thermal representations of quantum
field theory. It also appears as a related fact that the (anti-) time-ordered
products and (generalized) retarded products have in general no mutual
coincidence regions in real energy-momentum space, which plagues the
usual connection between the approach in real time and energy variables
(RTF) (in terms of time-ordered products) and the use of the Green

functions in complex energy variables. As a matter of fact, for the case of
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representations of field theory at finite temperature T = ~3-~, the KMS-
condition provides substitutes to the usual coincidence relations due to

spectrum. These substitutes are relations which contain the Bose-Einstein
factor ( 1 - e-~W ) ~ and thereby imply that coincidence relations can be
only "essentially restored, up to exponential tails" in the limit of very
high energies.

Another consequence of the KMS-condition concerns the justification
of the approach in purely imaginary time and energy variables. It is
a standard practice of field-theorists to use the so-called "Euclidean n-

point functions", namely the Wightman functions at purely imaginary
times (or Schwinger functions) and correspondingly the n-point Green
functions at purely imaginary energies. In the vacuum representation of
Quantum Field Theory, the justification of this practice is a by-product of
the double analytic structure of the n-point functions which results from
the interplay of spectral condition and locality. In particular, it is known
that the Green functions at imaginary energies are obtained as the Fourier
transforms of the corresponding Wightman functions at imaginary times.
In the case of thermal representations of Quantum Field Theory, a similar
double analytic structure of the n-point functions also results from the
interplay of KMS-condition and locality. However, in a representation at
temperature T = /3’B the n-point Wightman functions of the complex time-
variables acquire periodicity conditions with period i,~ as a consequence of
the KMS-condition. Correspondingly, the Green functions of the complex
energy-variables (namely the Fourier-Laplace transforms of the generalized
retarded functions) are expected to be completely determined from their
values on a certain lattice of discrete purely imaginary energies of the form
w == 2i03C0l 03B2, with l integer, these values being the Fourier coefficients of the
corresponding (i03B2-periodic) Schwinger functions.

These consequences of the KMS-condition have been understood to a

large extent in the time-ordered path approach (see e.g. [4, 7, 9, 23]). We
shall exhibit them here in our general axiomatic setting and give complete
results for the case of the two-point function, but only indicate how their
generalization to the n-point functions could be worked out.

The two-point function

Substitutes to the coincidence relations ih energy-momentum space:

Let W (p) be the Fourier transform of the two-point function W (~) . The
KMS-condition in the energy variable is expressed as a special case of

Annales de l’Institut Henri Poincaré - Physique theorique



511AXIOMATIC ANALYTICITY PROPERTIES AND REPRESENTATIONS

formulas (3), (5) (see Sec 1 iii)’ ), namely:

1 - C ~"

This way of writing Eq. (5) for the case of the two-point function (with
the Bose-Einstein factor at the r.h.s. of this equation) is justified and

unambiguous, as a relation between positive measures, in view of the

additional postulate v), namely, the time-clustering property for W. The
latter implies that (after the addition of a suitable constant to the field)
W(x) tends to zero when the time-variable ~o tends to infinity (at fixed X)
and correspondingly that the measure W(p) contains no term proportional
to 8(w). Therefore, Eq. (33) determines uniquely the splitting of the

spectral function C(p) = W(p) - W(-p) and replaces the usual splitting
which results from the spectral condition in the

vacuum representation. Eq. (33) implies that C(p) and W(p) "coincide up
to an exponential tail" at very high energies, while W (p) " vanishes up to
an exponential tail" at negative energies of very high absolute value.

The fact that C(p) does not vanish in general on any open subset of
energy-momentum space (the examples given in Sec 2 are exceptions which
will be commented in Sec. 6c) below) implies that r(p) and a(p) do not
coincide on any open set and therefore that the corresponding holomorphic
functions in the tubes T+ and T- are not the analytic continuation of
each other.

Let T(p) be the Fourier transform of the time-ordered function T(x). In
view of Eqs (10), (11) and (33), the following relations hold:

which show that 7 and -i only "coincide up to an exponential tail" at

very high energies.

The double analytic structure:

The KMS-condition (see Sec. 2 iii)) implies that there exists a

holomorphic function of zo in the strip -/3   0

whose boundary values on the edges of this strip are respectively:
= and W(xo - = V~’(~). Locality then implies

that the holomorphic function W can be analytically continued as an

2,~-periodic function of zo in the whole complex plane minus the cuts
= xo + &#x3E; l e Z}. Moreover, the jump 0 W of
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W across the right-hand cut ~x~ is (as in the case of the vacuum

representation) :

If one now considers conjointly
i) the Fourier-Laplace transform

of r in its holomorphy domain Imk0 &#x3E; 0, and

ii) the Fourier coefficients of the (periodic) Schwinger function 
namely

for l non-negative integer,
one can show the following basic relations:

by means of a simple contour distortion argument. In fact, one checks
that the integral of the product over the

complex cycle -2 ~ ] U [-2 ~ , 2 ~ ] U ~2 ~ , 1R3}
reduces to Eq (36) by shrinking the integration cycle onto the real set

R+ x 1R3, while it reduces to Eq (37) for the special values l~o == 2~ t , l
integer, l &#x3E; 0 due to the i03B2-periodicity of 

Since is of moderate growth in the complex half-plane Imk0 &#x3E; 0

(for each p~, it can be characterized as the (unique) Carlsonian interpolation
(see e.g. [34] p. 153) of the sequence of its values given by Eq. (38) at the
set of discrete imaginary energies 2 ~ l , l integer, l &#x3E; 0; a corresponding
result holds for the advanced propagator a which satisfies in the lower half-

plane equations similar to Eq. (38) with l ~ 0. This result together with
formula (34) make completely clear the connection between the imaginary
and real-time formalisms for the two-point function and their equivalence
in the axiomatic framework.
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The n-point functions
The derivation of various formulas which are substitutes to coincidence

relations in energy-momentum space relies on the following fact. The

relations (5) implied by the KMS-condition can be extended to a more
general set of similar formulas, namely

where II(I) denotes the Fourier transform of any (product of) generalized
retarded or (anti-) time-ordered products of field operators depending on the
energy-momentum variables pi = pi ) ; i E I. Since all the distributions
involved are tempered, it follows from Eq. (39) that all the expressions
of the form ( SZ,~ , TI(I)TI( decrease exponentially as for cvI

tending to - 00.

By taking the latter property into account for all the terms of the sum at
the r.h.s. of Eq. ( 18) (after applying a Fourier transformation to both sides
of this equality), one easily checks the following statement:

Consider for each cell 0152 the region 7a of (real) energy- momentum space
which is defined by the condition W = (Wl,...,Wn) E then, in this

region the corresponding distribution fa (p) "essentially coincides"
with the Fourier transform T(p) of the time-ordered expectation value
(SZ,~, T ( ~ 1, 2, ... , n~ ) SZ~ ~ up to terms which are exponentially decreasing
with respect to the various energy variables inside 7a.
Formula (39) also applies to the r.h.s. of the following relations which

result from Eq. ( 17) by a Fourier transformation:

However, in contrast with what happens for the vacuum representation (in
view of the spectral condition), formula (39) does not imply any support
property for the commutator function at the r.h.s. of Eq. (40). Therefore,
the ral (1~) and r~2 (k) whose boundary values on the
reals are linked by Eq. (40) do not admit mutual analytic continuation via
the edge-of-the-wedge property as it is the case for the Green functions of
the vacuum representation.
The analytic structure of the n-point functions in the complex time-

variables results from the KMS-conditions (see Eqs ( 1 ), (2)) which one
writes for all the permuted Wightman distributions WA (7,J), (7,J)
denoting any pair of ordered sets forming an ordered partition of

{1,2,... ~}. As in the case of the vacuum representation, there exists (for
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each n) a distribution W ~’~~ ( (zl,o, ~1 ), ... , which is holomorphic
in a union of permuted tubes in the space of complex time-variables
zi,o, 1 ~ ~ ~ ~ together with regions of mutual crossover provided by
locality. However, what is different and characteristic of the representations
at temperature /3-1 is the fact that the tubes have bounded polyhedral bases
which form a multiperiodic paving of the space of purely imaginary time-
variables ?/o = (yl,o, ... , In particular, the holomorphy domain of the

contains all the Euclidean configurations ~ = 1  j  n,

except those which satisfy conditions of the form zj = zk + l E Z,
for all possible pairs ( j,1~). One therefore also expects a generalization to
take place concerning the double analytic structure in the time and energy
variables which we have exhibited above for the two-point function. More
precisely, one expects the derivation of formulas of the form (38) to be
feasible in the general case; such formulas would relate the values of the
generalized retarded n-point functions r~ on appropriate lattices of purely
imaginary energies to the Fourier coefficients of the Schwinger n-point
functions which should be computed (for each r a) on a corresponding
periodicity pattern of This is an algebraic problem which can be
solved rather easily for n=3 and is expected to be solvable for general n
with some amount of work [35].

6. COMPLEMENTS AND DISCUSSION

a) Integral representation of the two-point correlation function
It follows from Eqs ( 12) and (33) that the Fourier transform of the

two-point correlation function of the free field at temperature is

By multiplying both sides of Eq. (21) by and taking Eq. (33)
into account, one then obtains the following general representation for the
Fourier transform of the two-point correlation function of any local scalar
field at temperature /3"~:

By coming £ back to the space-time ’ variables, we obtain correspondingly
the following j integral representation for the correlation function itself,
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which is comparable to formula ( 19):

Remark. - The consideration of "generalized free thermal fields"

completely defined by specifying their two-point function (and imposing
the prescription that all the truncated n-point functions, with n &#x3E; 2, should

vanish) is now possible. We can say that all the information which is

necessary to construct such a field satisfying all the general principles of
Thermal Quantum Field Theory defined above (see Sec. 2) is encoded in
the "weight-function" D (~; m ) (or p ( ic, s ) ) of the integral representation
(43) (or (42)) of its two-point function; the only restriction which the
tempered distribution p(u, s) has to comply with is the following one: the
convolution expressed (formally) by the double integral at the r.h.s. of

Eq. (21) must give a positive measure. This is clearly the case if 
happens to be positive.

b) Consequences of the relativistic KMS-condition
The implications of the relativistic KMS-condition (presented above in

Sec. 2, conditions iv), iv)’ ) concern the existence of an analytic structure
of the n-point functions in the complex space-time vector variables and
the exploitation of corresponding exponential decay properties in the space
of (real) energy-momentum variables. The latter are produced not only
at very large negative energies but also at very large momenta; they in
fact apply to energy-momentum regions and to distributions for which

the relativistic spectral condition would imply vanishing properties (in the
vacuum representation of field theory).

For the case of the two-point function, a detailed study will be given
in [32] with the following type of results. Even under the weakest form
of relativistic KMS-condition (see [ 17] ), the function introduced

in Sec. 5 admits an analytic continuation W ( z ) as a holomorphic function
of the complex four-vector z = (zo, z) in a domain which contains the

i03B2-periodic "flat cut-domain" of W in This shows (as a by-
product) the regular (i.e. character of the distribution with

respect to the spatial coordinates ~. Moreover, the distribution D(x, m)
appearing as a "weight-function" in the representations ( 19) and (43) is

also shown to have a C~-dependence in x. Under the strongest form of
relativistic KMS-condition (namely, the one presented as condition iv) in
Sec. 2), W(z) is holomorphic in the union of the tube T~ together with all
those which are obtained from the latter by the translations E Z.

All these tubes are connected together by complex neighbourhoods of the
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regions ~z; yo = 1,C3, xo - x2  0, l E Z} given by locality. The weight-
function D is also proved to admit an analytic continuation D(z, m) in a
corresponding tube with imaginary basis (containing the origin) in the space
of complex coordinates f. In the energy-momentum variables (c~, p~, the
product of the spectral function è (p) by the function e’~ ~(1+p2 &#x3E; 2 - ‘1+W2 ~ 2 ~ ]
must be a tempered distribution and the "exponential tail" of f + ir extends
to the whole complement of the forward cone in 1R4; correspondingly,
the "weight-function" s ) of the representation (20) is exponentially
decreasing with respect to Similar properties could be derived for the
n-point functions.

c) Feynman-type operations on two-point functions and discussion
of examples
The double analytic structure of thermal two-point functions which we

have described (see Sec. 5) can be shown to be preserved under the two
basic Feynman-type operations, namely
i) "N -line Wick-contraction" (represented by the diagram with two vertices
zl and z2 connected by N lines):
With such a diagram F is associated the product z2) of N

two-point functions taken at the same complex point z2 (each factor
z2 ) being associated with a line A). It is clear that such a product

of holomorphic functions still satisfies the same properties (i03B2-periodicity,
analyticity domain expressing the relativistic KMS-condition, boundary
values on the reals in the sense of distributions, locality) as each individual
factor. These properties characterize as being a thermal two-point
function whose associated propagator ~~r~ (1~) or a~r~ (l~) can be computed
on the discrete sequence of energies = E Z, (see Eq. (38)) as a
(discrete) convolution of the N propagators or taken on the same

sequence of imaginary energies. Moreover, the Fourier transform of the
correlation function W~r~ (p) is also the convolution product on the (real)
energy-momentum space of the Fourier transforms of the N correlation
functions ~(A)-

ii) "vertex convolution ":

The vertex convolution of the thermal two-point functions and

tV(2) is the following convolution on Euclidean space-time: z2 ) ==

(W(1) * W(2))(z1 - z2 ) - i03B2 2-i03B2 2 dz0 R3 d W(1)(z1 - z) W(2)(z - z2).
The resulting holomorphic function W still satisfies all the structural

properties of thermal two-point functions and the associated propagator
r ( 1~ ) in complex energy-momentum space is the ordinary product of the
propagators rl ( k ) and r2 ( 1~ ) associated with t~i and W2 .
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In particular, if one starts from the free thermal two-point functions (see
Sec. 3, Example 1, and Sec. 6a)), one can construct as an application of
the operation i) appropriate perturbative two-point functions associated with
"self-energy bubble diagrams" of the thermal interacting field. Then, the
operation ii) defines in a rigorous way the two-point function obtained by
"resummation of the corresponding iterated self-energy diagrams". If the
self-energy contribution is denoted (in complex energy-momentum space)
by E(A;), the associated "complete" propagator is given, as usual, in the
complex domains (T+ and T - ) by the formula A(A;) = ~ ~ B20142014.

All these structural properties could of course be derived similarly for
non-scalar fields such as those of QCD. One can thus understand in this
general framework such computations of gluon propagators as those given
by Weldon and Pisarski [5, 6] (see Sec. 3, Example 2). In the latter,
however, a high-temperature approximation has been taken which makes
the expressions ( 14) and ( 15) of the propagators Ol and ð.t somewhat
peculiar, as far as the support and decrease properties of the associated
spectral functions are concerned.

We first notice that, apart from those of the free field and of the two-
lined bubble diagram, the spectral functions of all the perturbative two-point
functions generated by the previous operations i) and ii) have no support
restrictions ; however, they all enjoy a property of exponential decrease at
large momenta which expresses the fact that the relativistic KMS-condition
is satisfied. These two properties are violated by the spectral functions of
the WP-propagators, since:

1 ) the latter only satisfy a condition of power decrease at large momenta:
but this "hard thermal loop approximation" is generally used only in the
low momentum region;

2) in the usual relativistic spectral region &#x3E; 1P1, their support is restricted
to a pair of hypersurfaces of the form 03C9 == which correspond to
sharp terms containing the factors the existence of such

real dispersion laws, interpreted as "plasmon modes", calls for further
comments which open our last topic.

We conclude these remarks by noting that a general perturbative
approach to the construction of thermal correlation functions, based on the
systematic exploitation of locality and KMS-condition, has been proposed
by Steinmann [36].
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d) Representations of particles
The concept of "dispersion = for representing a

"particle" (or "mode") in Thermal Quantum Field Theory may seem
the most natural one to be inherited from the familiar formalism of

quantum field theory in the vacuum representation, having in mind that
the hypersurface defined by this law in the space of the energy-momentum
variables might not be (in general) a relativistic hyperboloid shell. Such a
hypersurface should appear as the singular set of a real pole in the thermal
propagators of the theory, or equivalently as the support of a in the

corresponding spectral functions. However, this attractive picture turns out
to be false, except precisely in the trivial case of a relativistic free particle
moving across the thermal bath without any interaction : so is the content of
the Narnhofer-Requardt-Thirring theorem [37] which has been proved by
these authors in the general framework of "Local Quantum Physics" [22].
This frustrating result holds true, even if one allows the support of the 8-
term to be imbedded in a region where the spectral function has a non-zero
continuous background. As a matter of fact, this is not so surprising since
a 8-term in C ( p ) would imply that the correlation function 1N ( t, x ) has the
"normal" slow decay property (as along any world-line x = vt, and
therefore that the particle is not submitted to dissipative effects due to the
interactions with the thermal bath. For example, the WP-gluon-propagators
considered above represent an approximation which does not provide a
realistic description in terms of particles in a thermal equilibrium state.

A reasonable way out of this deadlock, which has been proposed in
particular by Landsman [38], consists in adopting the same viewpoint as for
the representation of unstable particles in the vacuum state of field theory.
This amounts to assume that the retarded propagator (or a distinguished part
of it) admits an analytic continuation from the upper ko-plane (or the tube
T+) into the lower across (part of) the reals, and that a complex
pole l~o == is present in this second-sheet domain.

Of course, this complex dispersion law should present some characteristics
which would distinguish the type of decay (due to statistical dissipative
effects) of a particle in a thermal bath from the one (due to intrinsic

unstability) of a resonance. In particular, one would expect the law to be
such that the dissipative effects are barely felt by the particle at rest ,
namely that keeps the behaviour for v = 0, while being
exponentially decreasing in t 0. This is certainly not the case
for the simplest ways of choosing the "width" (i.e. constant or

proportional to .

At this point, we would like to advocate (as in [ 18.19]) that our general
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integral representations (21) and (43) of the thermal spectral functions
and correlation functions provide a somewhat more natural prescription for
representing particles: let us assume that, as in the Kallen-Lehmann formula
for the spectral function in the vacuum state, a particle is associated with
a the weight-function (, 8) of the representation (21), namely,
with a term of the form 8(8 - The representation (43)
then contains the distinguished term where 
is (up to a factor) the Fourier transform of ~part(~). It is now clear

that, if we interpret as a "dissipative for damping factor" which
should decrease, for instance, exponentially at large x, this distinguished
term is a good candidate for representing a particle behaviour. (Note that
it would satisfy the exponential decrease property along all world-lines
x = ~ but would behave as at rest, like the free correlation function

Since in this case, the function would be holomorphic in
a tube domain of the complexified variables u, one can prove that the
corresponding propagator represented by formula (32) would then have
analytic continuation properties in the lower half-plane of the variable l~o.
This indicates (and a further general study confirms it as well as the special
example presented in [ 18,19]) that this 03B4-representation far
from being contradictory with the previous one based on "second sheet
complex poles" of the propagators, selects inside the latter class candidates
which might be the most appropriate representatives of the notion of particle
in Relativistic Thermal Quantum Field Theory.

Finally, one can also show that the integral representations ( 19) and (21 )
are a useful tool for investigating the manifestations of "thermal Goldstone
particles" in the case of "spontaneous symmetry breaking"; this will be the
object of a further work [39].

In conclusion, we have presented a general framework "a la Wightman"
for the concepts of Thermal Quantum Field Theory and a set of (preliminary)
results, mainly expressed in terms of analytic structural properties of the
n-point functions of the fields. These results are already rather complete
for the case n = 2. They are useful for clarifying some structural aspects
of perturbative results, obtained in the previous years by various authors.
Moreover, the general integral representation of thermal two-point functions
that we have obtained is interesting under several respects: providing a
complete knowledge of "generalized free thermal fields", it also suggests
a rather promising approach to the concept of particle, integrating the
previously known ideas and consistent with the general principles of
relativistic thermal field theory. Many open problems remain, as far as
the properties and the use of n-point functions are concerned (for n &#x3E; 2);
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among the important ones, let us mention in particular the problem of the
possible definition of several-particle states as a manifestation of the field
interactions in a spirit comparable to the collision theory in the vacuum state.
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