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Charged fields, Higgs phenomenon
and confinement. Lesson from soluble models (*)

G. MORCHIO

Dipartimento di Fisica dell’ Universita and INFN, Pisa, Italy.

Ann. Inst. Henri Poincaré,

Vol. 64, n° 4, 1996, Physique theorique

ABSTRACT. - Higgs phenomenon and confinement are discussed on the
basis of a general framework for gauge and Poincare transformations on
field algebras arising in gauge theories, in positive gauges. The resulting
phenomena and structures are explicitly controlled for a class of soluble
models.

Nous discutons Ie phenomene de Higgs et Ie confinement dans
Ie cadre d’un formalisme general decrivant Faction des transformations de
Poincare et du groupe de jauge sur les algebres de champs intervenant
dans les theories de jauges avec jauge positive. Les phenomenes et les
structures qui en resultent sont controles de fagon explicite dans une classe
de modeles solubles.

1. MOTIVATIONS

The role of gauge theories has evolved, in the last 30 years, from that
of a special case, Quantum Electrodynamics (QED), to that of a common
tool for the description of all the fundamental interactions. The fact that
QED, and in general gauge theories, are usually described in terms of field
algebras which do not completely fit into the Wightman framework [ 1 ],

(*) Invited talk at the "Colloquium on New Problems in the General Theory of Fields and
Particles", Paris, July 1994.
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462 G. MORCHIO

poses therefore a general problem, and requires the identification and

investigation of characteristic structures.

In fact, locality and covariance of gauge fields hold only in "local

gauges", where positivity fails; on the other hand, the status of gauge fields
in positive gauges is problematic, especially when there is confinement

(i. e. absence of charged sectors with finite energy), or screening (Higgs
phenomenon).
The space-time symmetries present problems already in the QED case,

where the Lorentz group is spontaneously broken in the charged sectors
[(2], [3]), with substantial implications on the transformation properties of
charged fields. The absence of charged sectors with well-defined (unitarily
implemented) time evolution in Quantum Cromodynamics (QCD) is not

a very distant phenomenon from the breaking of the Lorentz group in
QED, the main difference being produced by the smallness of the coupling
constant in QED, which makes the problem relevant only at very large
distances.

We sketch below a general framework for these features and problems in
terms of characteristic structures of gauge field algebras in positive gauges.
As we will see,

(i) unbroken gauge groups cannot commute with those Poincare

transformations which do not leave the corresponding charged sectors

invariant; the gauge group does not therefore commute with the Lorentz
transformations in QED, and with the time translations in QCD.

(ii) In the case of a (partially) broken gauge group, the algebra of
observables is strongly dense in the field subalgebra which is pointwise
invariant under the residual unbroken gauge subgroup, and there are no
charged states corresponding to the broken charges.

(iii) In case (ii), Poincare automorphisms commuting with the gauge
group can be defined only on an extension of the field algebra with non-
trivial centre; the appearance of central variables in the time evolution

of the field algebra is at the basis of non-trivial mass spectra associated
to the breaking of the gauge group. These phenomena can be seen as
the relativistic counterpart of general features of non-relativistic systems
with Coulomb interactions, where variables at infinity appear in the time
evolution of local variables as a consequence of the removal of infrared

or volume cutoffs.

Before introducing field algebras, we recall the point of view and the
results of general Algebraic Local Quantum Theory, which always apply
to the observable algebras.

Annales de l’Institut Henri Poincare - Physique theorique



463CHARGED FIELDS, HIGGS PHENOMENON AND CONFINEMENT

2. OBSERVABLES AND FIELDS

The observable algebra of a gauge QFT can be assumed to be given
by a net ,,4 ((9) of local (Von Neumann) algebras, defined in the vacuum
representation. The whole physical content of the theory can in principle be
extracted from the observable algebras, in terms of the classification of its
representations, under suitable criteria of "physical relevance". We do not
consider for the moment the problem of which properties distinguish the
observables nets which arise in gauge theories from those which arise in
standard Quantum Field Theory (QFT), and therefore we consider any local
net ~4(0), with the standard assumptions [4]. The following possibilities
arise for relevant representations:

1. Representations labelled by "localizable" charges, obtained from the
vacuum representation through morphisms which are localizable in finite
space-time regions, in the sense that they leave invariant all observables
in the causal complement of a double cone. This has been thoroughly
investigated by Doplicher, Haag and Roberts (DHR). Space-time covariance
of the charged sectors follows, together with the classification of statistics
and the construction of a field algebra and a compact "gauge group" which
classifies the representations of ,,4 [5].

2. Representations stable under space-time translations, defined by
(particle) states with energy-momentum spectrum in an isolated iperboloid
with positive mass. By the results of ref. [6] they can all be obtained by
morphisms which are either localized in the sense of DHR, or can be
localized in any space-like cone, i.e. the morphism can be chosen so that
all observables localized in the causal complement of any given spacelike
cone are left invariant.

3. Representations stable under space-time translations, with relativistic
spectral condition, labelled by charges which obey a Gauss’ law (which
forbids [3] eigenstates of the mass operator). The localization region of the
corresponding morphisms includes at least a spacelike cone [7].
QED, being characterized by a charge which obeys a Gauss’ law, is a

candidate for case 3. However, the generalization of the DHR analysis to
this case, and the full characterization of the properties of the charged
sectors (including particle statistics) seems to require further information
which, in our opinion, can be obtained by studying the properties of the
charged fields in the (standard) positive gauge formulations.

QCD seems to be characterized by the absence of charged sectors stable
under space-time translations and with positive energy. It is not clear how
such a theory can be characterized as a gauge theory along the lines of 1-3.

Vol. 64, n ° 4-1996.



464 G. MORCHIO

Perhaps, again some insight can be obtained by studying the algebra of
charged fields in positive gauges, which should define sectors not covariant
under (space)-time translations.
The Higgs-Kibble model, and more generally gauge theories exhibiting

the Higgs phenomenon, do not have sectors labelled by a Gauss’ charge,
because of screening. The spontaneous breaking of gauge symmetry implies
that charged fields in positive gauges cannot give rise to charged sectors,
(see Proposition 3 below). Again, even if for different reasons, it is not

clear how such a kind of theories can be characterized by a gauge group,
and, more generally, whether they can be recognized in terms of properties
of the observable algebra. Here too, the study of the field algebra in the
standard approach should give relevant hints.
The difficulty in the characterization of the phenomena exhibited by

gauge theories on the basis of the classification of the representations of
the observable algebra can in general be traced back in the idea that the
"gauge group" must be identified in terms of the "particle representations"
of ~t; these exist only in the "QED case", and even in this case do not have
the localization properties which appear as most natural from the point of
view of the local structure of the observables.

In conclusion, in order to (i) investigate a possible algebraic characte-
rization of gauge QFT, (ii) discuss possible algebraic characterizations of
confinement and of screening, (iii) get information on the charged sectors
of QED, we propose to study the general properties of the algebra of fields
in positive gauges. This strategy is very similar to that used by DHR in
their first paper [8] for theories with localizable charges, namely to abstract
general structural properties from concrete field algebras, and use them as
a basis for a general algebraic approach.

3. CHARGED FIELD ALGEBRA AS AN

EXTENSION OF THE OBSERVABLE ALGEBRA

The charged fields in gauge theories are characterized by being charged
with respect to a Gauss’ charge, and therefore they cannot be local with

respect to the observables in the abelian case, and cannot be relatively local
in the non-abelian case. Furthermore, the experience with QED suggests
that charged fields cannot in general be covariant under the Lorentz group.
Locality and covariance are obtained in renormalizable gauges, but at the

price of giving up positivity; the physical interpretation is then obtained
through a subsidiary condition on the states, and the solutions of such a

Annales de l’Institut Henri Poincare - Physique theorique



465CHARGED FIELDS, HIGGS PHENOMENON AND CONFINEMENT

condition require, for the charged sectors, a non-local construction (see
ref. [9]). This is at the basis of the absence of locality and covariance
of the states and of the morphisms which may define them in terms of
representations of the observable algebra.

In a spirit similar to that of ref. [8], we consider a C* algebra .F, as
the algebra of fields in a positive gauge. The gauge group G is defined as
the group of * automorphisms ,~9, g E ~ of .~’, which leave an observable
subalgebra .~’ pointwise invariant. Clearly, given .~’ and ~, ,A can
be defined as the sub algebra of .~’ which is pointwise invariant under ~,
or, alternatively, one may consider A as a given observable algebra, .~’ an
extension of .4, and G defined by the above relation. For the observable
algebra ,,4 the standard general assumptions can be made, i.e.:

(i) ,A. is the C* completion of a local net

defined for all double cones O in Minkowski space, = Uo ,,4, C O) 
II II,

and the Poincare group is assumed to act as a group of automorphisms
Cla, A O, f .i‘t.
A vacuum state is assumed to exist as a pure state on ,,4, with unique

(pure) extension to ~’:

(ii) there exists a pure state on .~’, such that its restriction to is

pure and Poincare invariant.

The first issue is the space-time covariance properties of the field algebra
and the relation between the space-time translations and the gauge group.
In the standard approach to gauge QFTs in positive gauges, the gauge group
is believed to be a "global" one, the local gauge group having been broken
by fixing the gauge, and the folklore seems to take for granted that such
("residual") gauge group commutes with the space-time translations. It is

worthwhile to see whether this property can indeed be assumed and what
is its origin in the present framework. Assume therefore that

(iii) a subgroup 7~0 of the Poincare group defcnes a group of
automorphisms ap, p E ~o of .~’, which extend the Poincare automorphisms
defined on ,,4..

We will also use later the assumptions
(iv) As a state on .~’, wo is left invariant by the automorphisms ap :

Wo CB) = wo CaP CB)) ~ d B E .~’, p E Po.

(v) in the GNS representation 1ro defined by Wo and .~, Wo is the only state
invariant under all 03B1p, p E P0.

Vol. 64, n ° 4-1996.
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Since Wo is pure, .~’ is irreducible in 7!-o; all the gauge automorphisms ,~9
which leave o;o invariant have unitary implementers in which commute
with ~4, and it is reasonable to assume that all unitary operators in 1ro which
commute with ,,4 define automorphisms of ~"; in fact, by irreducibility of
~", this can always be achieved, by enlarging ~", if necessary, with strong
limits in TTo.

The representation 1ro of .~’ will be our primary object of interest; but
an important role is played in the following by gauge invariant strong
topologies on ~", defined by gauge invariant representations 1r of .~, i.e.

by representations which are stable under the action of the gauge group,
= 1r, E 9; the gauge automorphisms are automatically continuous

with respect to any gauge invariant strong topology, as a consequence of the
invariance under /?* of the folium of states associated to 1r. Assuming (iv)
and (v), the representation 1ro will turn out to be gauge invariant if and only
if a~o is invariant under ,C39 ; in any case, a gauge invariant representation
is obtained by taking the direct sum over the gauge group of the GNS
representations defined by the states w9 - o ,~9 . This representation will
be denoted by 
The following Propositions show the implications of the assumption that

a group of automorphisms of ~", in particular p E ~o, have "gauge
invariant generators".

PROPOSITION 1. - Let 1r be a gauge invariant representatioa of F,
an automorphism 

(i) on F, the strong limit in 1r of automorphisms 03B3L which
commute with ,C~9, then ~~y, ,~9~ = 0.

(ii) in particular, if 03B1p (A), p E the strong limit of U L (p) AUL (p)*,
UL E ,A., then

(iii) if 03B3 is implemented in 7r by (unitary) operators U in the Yon Neumann
algebra generated by A in 7r, then

Proof. - (i) The stability of 7r under 03B2g implies that 03B2g is strongly
continuous, and therefore, E .~,

Annales de l’Institut Henri Poincare - Physique " theorique "



467CHARGED FIELDS, HIGGS PHENOMENON AND CONFINEMENT

(iii) All /39 are strongly continuous and have therefore a unique strongly
continuous extension to the Von Neumann algebra generated by JF
in 7T, which leaves the Yon Neumann algebra generated by A pointwise
invariant. D

We conclude that if Poincare transformations of .~’ can be constructed

from observable local implementers, or are implemented by strong limits
of observables operators, then they commute with the gauge group. The
delicate points are here:

a) The use of a gauge invariant strong topology, which is essential for
the argument; we will see below the non-trivial implication of this fact for
broken gauge groups.

b) The Poincare group is not always implemented by observable operators
in gauge theories, nor do local implementers always converge; this cannot

confined models, if confinement corresponds to the instability of charged
sectors under time translations, as also suggested by the models discussed
below.

From Proposition 1 it also follows :

PROPOSITION 2. - If /39] i- 0 for some p E ~o then, in

any representation 7T, either

1) broken, or

2) 03B1p is not implemented by operators in the strong closure of the
observable algebra.

In the case of time translations Proposition 2 says that if /39] ~ 0
for some g E 9, then one has for /39 either the Higgs phenomenon or the
confinement; a non-zero mass spectrum is in fact associated in general to
the breaking of /39’ as a consequence of the lack of commutativity with at,
see ref. [ 10], and the second alternative excludes the existence of energy as
a (non local) observable. The alternative 2) can be replaced, for the group
of space-time translations by

2’) ax is not implemented by a unitary group satisfying the relativistic
spectral condition.

In fact, by Borchers’ Theorem [11] ] the implementers could then be
chosen in the strong closure of A.

A converse of Proposition 2, i.e. the fact that if a Poincare transformation
commutes with the gauge group, then it is implemented by observables,

Vol. 64, n ° 4-1996.
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requires to consider the possibility of broken gauge transformations, and
will be given below (Propositions 5 and 6).
Now we discuss the possibility that the gauge group is broken in the

vacuum representation 7ro of J~. This point has sharp implications on the
relation between ,A. and ~", and it is convenient to remark first that in
a gauge invariant representation 7T, ,,4 cannot be strongly if
the gauge group is non-trivial. This follows immediately from the strong
continuity of ,~39, which forbids the existence of a strongly dense pointwise
invariant subalgebra.

Moreover, for a GNS representation over a pure state w invariant under
the gauge group, in particular for whenever it is stable under gauge
transformations, the GNS subspace generated by ,,4 is never dense, if the
gauge group is not trivial: in fact, the invariance of 03C9 implies the existence
of unitary implementers of the gauge group, which reduce to the identity
on the GNS subspace generated by A.
Given a representation 7r of .F, the unbroken subgroup ~ of the gauge

group is given by the gauge automorphisms ,~9 which leave 7r invariant,
7r o ~39 = 7r. For the vacuum representation if (iv), (v) hold, and ~39
commutes with 0152p, 9, p E the unbroken subgroup 90 is given
by the gauge automorphisms 03B2g satisfying /3; (cvo) = cvo. We call F003C0
when 7r = the sub algebra of .~’ pointwise invariant under 9~. From
the definition of the gauge group it follows that for a gauge invariant

representation ~ == ~4, whereas, for a representation with gauge group
broken to the identity, J~ =: JF.

PROPOSITION 3. - In the GNS representation defined by cvo, the
observable algebra strongly dense in The GNS subspace generated
by A is there,f’ore dense in the GNS subspace generated by Fo. The strong
closure ,,4 = coincides with the von Neumann algebra of the operators,
in the representation space which are invariant under the unique
continuous extension of ,~9, g E 90.

Proof - Assume that the strong closure of A is contained properly in the
strong closure of the commutant of is then contained properly in
the commutant of ~4, i.e. there exists an operator in the representation space
?-L~ which commutes with ,,4 but not with by taking the hermitean (or
antihermitean) part, and using the spectral theorem, a unitary operator is
constructed with the same properties. This defines an automorphism of .~’
which leaves .A. pointwise invariant, and therefore a gauge automorphism
of .~’ implemented in which does not act trivially on contrary to its
definition. By the same argument one proves the last statement. D

l’Institut Henri Poincaré - Physique theorique
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It follows from Proposition 3 that, if the gauge group is broken to the

identity, then ~ == ~", and the representation space of 7ro coincides with
that of the GNS representation of the observables over i. e. all the states

are obtained by applying observables to the vacuum.

The Poincare automorphisms of ,,4 are then implemented by unitary
operators U ( a, A) in this representation, which belong, by irreducibility,
to the strong closure of ,A.. If the extension of the Poincare automorphisms

is done by U ( a , A) BU* ( a, A), B E .F, it does not in general
commute with the gauge group; in fact, even if U (a, A) are the strong limits
in 7ro of UL (a, A) E .A, such limits are taken in a strong topology which
is not gauge invariant, and the gauge automorphisms are not continuous
with respect to it.

A gauge invariant extension requires the use of a gauge invariant strong
topology, given by a representation stable under ,~9. In the representation

obtained as a direct sum of the GNS representations of .~’ over Wo 0,~9,
the strong convergence ofo ( UL ( a, A)) implies the strong convergence of

( UL (a, A) ), by definition of and invariance of UL under ,C39 . Their
limit is invariant under the unique strongly continuous extension of ,~9, and
defines an extension of the Poincare group to the strong closure of .~’ in

which commutes with the gauge group.

It is immediate to see that the strong closure of the field algebra in
the representation has a centre, which is abelian, because 
is a direct sum if irreducible representations of ~", and has a spectrum
isomorphic to the gauge group (with the discrete topology). The Poincare
automorphisms do not in general leave .~’ stable, and it follows from

their construction that they leave invariant the algebra generated by ~’ and
which may be taken as a new field algebra, on which the Poincare

automorphisms always exist and commute with the gauge group. We have
therefore proven:

PROPOSITION 4. - If the gauge group is broken in to the identity, then the
Poincare automorphisms extend to automorphisms of the algebra generated

and the centre of the von Neumann algebra generated by (~).
and commute with the gauge group.

The centre can be essential for the gauge invariance of the Poincare

automorphisms, as we will see in the models below. The appearance
of central variables in the dynamics of .~’ allows for an evasion of the
Goldstone theorem, and is at the basis of the (Higgs) phenomenon of mass

generation accompanying the spontaneous breaking of the gauge group
(spontaneous indicating the commutation between the gauge group and the

Vol. 64, n 4-1996.
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time translations) [ 10] . The point is that in general central variables appear
if the Poincare automorphisms and the gauge group are formulated so that
they commute; in the ordinary Goldstone theorem such central variables
are excluded by the assumption that a symmetry is generated by a local
current. If the action of local implementers converges strongly in 
then a very similar argument to that given above shows that they converge
strongly in and the limit may then involve central variables as a

consequence of the non local character of the charged fields. The same
structures are present in non relativistic models with long range (Coulomb)
or mean field interactions [ 10], [ 12], a prototype being Haag’s treatment
of the BCS model [13]. We may also observe that Proposition 3 applies to
any symmetry group, with .4 playing the role of the neutral subalgebra, but
a mass gap is produced only if central variables appear in the dynamics
of charged fields, and therefore only if the latter are sufficiently non-local
with respect to the observables.

We can now discuss a converse of Proposition 2, and its implications
on confinement.

PROPOSITION 5. - If = 0 for all p E 7~o and for all ,~39 which
are not broken in then the automorphisms Qp are implemented in 7ro by
unitary operators belonging to the strong closure of 7ro (~1).
Proof - is invariant under ,~9, as a consequence of (v), and under ap,

because of (iv); there exist therefore implementers U (p) and V (g), which
by construction leave invariant 1/;0, the representative vector of hence

and therefore U and V commute, by the cyclicity of 1/;0. Thus, by
Proposition 3, !7(p) E 7ro (~4). D

By applying the construction in the proof of Proposition 4, which only
uses the fact that in 7ro Qp is implemented by strong limits of observables,
the assumptions of Proposition 5 imply that all p E 7~ extend to
automorphisms of the algebra generated and .~F in which
commute with 03B2g for all g E 9. Since the form of the automorphisms
which commute with the broke~ gauge transformations is determined by the
construction given in the proof of Proposition 4, a version of Proposition 5
also applies to a field algebra with Poincare transformations invariant under
all the gauge group, and implies the existence of implementers invariant
under all the gauge group:

Annales de l’Institut Henri Poincaré - Physique theorique
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PROPOSITION 6. - 03B2g] == 0 for all g ~ G, then all the automorphisms
cxp are implemented in by gauge invariant operators, i.e. operatars in
the strong closure of 03C0inv0 (A).

It follows from Propositions 5 and 6 that the existence of Poincare
automorphisms commuting with the gauge group always leads to

implementers which leave invariant the Hilbert sectors defined (in 7ro

or in by the representations of the observable algebra .4; Poincare
automorphisms are therefore in this case never broken in the observable
sectors. Since the Lorentz boosts are broken in QED, and since the

breaking of time translations is typical of confined models (see below),
we conclude that Poincare automorphisms, if they exist, cannot commute
with the gauge group in these cases; the lack of commutativity between

gauge transformations and time translations may in fact characterize

confinement [ 14], since it is equivalent (Proposition 2 and Proposition 5)
to the non-existence of the energy as an observable, in the charged
sectors. However, such characterization does not cover the case of time
translations implemented by an (observable) energy unbounded from below,
a mechanism which seems to occur in QED (2 + 1 ), if the "photons" do
not acquire a mass [15].

4. MODELS

The general structures outlined above can be seen and explicitly controlled
in soluble models. We discuss in the following the Stuckelberg-Kibble and
the Schwinger model; the first is a prototype of the Higgs phenomenon, the
second of confinement. As we shall see, however, confinement takes place
also in the S-K model, for low space dimensions, and this phenomenon is

explicitely seen to depend in a very direct way upon the general alternative
discussed above for the field algebra and the gauge group.
The S-K model is defined by a linearization of the (abelian) Higgs-Kibble

model, corresponding to fixing the modulus of the Higgs field and treating
the phase as a scalar field; the Lagrangean density is

with == ~  a03BD-~03BDA ; and ~ a scalar (Higgs) field. It will be considered
for space-time dimensions d+l,d==3,2,l.

Vol. 64, n ° 4-1996.
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The Schwinger model is given, in bosonized form, by the Lagrangean
density

with ~p the (pseudo-) scalar field in terms of which the fermion field is

expressed, in two space-time dimensions. 
’

Observable algebras
We will first discuss the models in terms of observable algebras. These

are defined by the correlation functions of gauge invariant fields on the
vacuum, which are by definition independent of the gauge fixing. The role
of the gauge fixing is that of giving (non local) relations between the
fields which appear in the Lagrangean and the observables, allowing for the
construction of the corresponding field algebras. The construction follows
here therefore a different logic, compared to that of ref. [ 16], where the
field algebra at a fixed time was first defined in terms of canonical variables,
and then the time evolution was constructed, meeting problem and features
very close to those of non-relativistic Coulomb systems [ 17] .
To obtain the observable algebras, we start from the equations of motion

for the observable fields given by the above Lagrangeans and assume
local commutativity for the corresponding quantum fields; it is then easy
to characterize (all) the Poincare invariant correlation functions of such
fields satisfying the relativistic spectral condition, and obtain the complete
algebraic structure of the observable fields, which will correspond to a
canonical (Weyl) algebra.

For both models, the equation of motion for are the Maxwell

equations,

with jv given, in the S-K model, by

and, in the Schwinger model, by

For the S-K model, from Eq. (4) it follows

and, from Eqs. (2) and (5),

Annales de l’lnstitut Henri Poincare - Physique theorique
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The current fields are therefore, in the S-K model, free massive fields
of mass m2 == e2. Their two point function on a Poincare invariant state
satisfying the relativistic spectral condition is determined (up to a constant
factor) by Eq. (6),

By local commutativity and the Jost-Schroer theorem, all the truncated

correlation functions ofj~ vanish, and the commutator [~ ( x ) , j v ( y ) is a
c-number valued distribution, determined by Eq. (7). It follows that, in the
Hilbert space ~L given by the Wightman reconstruction, the exponentials of
the smeared fields W ( f ) == exp ( j ~ ( f ~ ) ), /~ real in the Schwartz space
S (jRd+1), generate a Weyl algebra .4, defined by the symplectic form

The Poincare invariant state on the Wightman fields j  defines a state Wo
on ~4, given by

and H is the GNS space of ,,4 on the state cc;o. We have therefore obtained

the observable algebra and its vacuum representation.
For the Schwinger model, the equation of motion for cp is

Eq. ( 11 ) can also be written

Equations (2) and (4) give the relations

and therefore

with (7 a field invariant under space-time translations. Eqs. ( 12) and ( 14)
imply that F01 is a free massive fields, of mass m2 = e2. It is important

Vol. 64, n 4-1996.
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to remark that the (Wick) exponentials of cp are observable, since they
correspond to the bilinears of the fermion field, so that the observable

algebra must include (as unbounded operators affiliated to the local Von
Neumann algebras) F01 and cp.

The one point function of F01 on a state invariant under the proper
Poincare group vanishes by Eq. ( 12), and the two point function is that of a
massive field. Assuming as before local commutativity, which implies the
vanishing of all higher order truncated correlation functions, the observable
algebra must then be identified as the algebra ,As generated by the Weyl
exponentials of the massive free field ~f E S (l~2), and by the
variable exp i which, by local commutativity and space-time invariance,
is in the centre 

The appearence of central variables in the observable algebra is related
to chiral symmetry, which is here well defined as an automorphism of 
commuting with the (proper) Poincare group:

The presence of the central variable cr is essential for the validity of
Eq. ( 15), i.e. for the existence of chiral automorphisms commuting with
the (proper) Poincare group. In fact, if a factorial, in particular irreducible,
representation 1r of ,,4 is considered, then 1r (~) is a number, and any
automorphism of 1r (,,4) which shifts cp must also shift the massive field
Fol, and cannot therefore commute with the space-time translations.
One recovers in this way the alternative, typical for symmetries in

systems with long range forces, between

(i) a symmetric algebraic dynamics (which naturally arises as the

thermodynamic limit of a symmetric finite volume dynamics), which
involves central variables [ 10]

(ii) the use of a simple algebra, with the consequence of a non-

symmetric dynamics; this is obtained as the infinite volume limit of finite
volume dynamics generated by Hamiltonians with non-symmetric boundary
terms [18].

Moreover, the mass spectrum of the Schwinger model can be seen
as the spectrum associated to the spontaneous breaking of the chiral
transformations [16].

Field algebras
The field algebras defined by the lagrangean variables in the Coulomb

gauge can now be constructed as extended Weyl algebras. For the details,
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see refs. [ 14], [ 16] . We start from the Coulomb gauge relation

in order to construct Once the variable A° has been constructed, the

Higgs field x and the ~4’ fields in the S-K model follow immediately from
Eq. (3), which gives in terms of A°, and Ai in terms of ji and ~i ~.
We look therefore for an operator valued distribution solution of Eq. ( 16),

defined in a Hilbert space 7~, with a cyclic vector ~o invariant under

space-time translations.
The one point function of A° is then constant, and we will fix it to 0 for

the moment; the two point function W (.c 2014 ~/) is of positive type, and its
Fourier transform is therefore a measure, W (1~), satisfying

The solution of Eq. (17) is unique up to b (k) a, (1 °), and this term is

excluded if in ~-l there is only one vector invariant under space translations.
Moreover, the solution exists if and only if

is a measure (see Eqs. (9), (10)). This is true for the S-K model in space
dimensions d = 3, but not for d = 2, 1, nor for the Schwinger model.

1. Stuckelberg-Kibble model in 3 + 1 dimensions.
The solution of Eq. ( 16) is in this case uniquely determined by the one and

two point functions, assuming that all the higher order truncated correlation
functions vanish. In order to express the solution in terms of the observable

Weyl algebra ~4, it is enough to notice that the form ~g, g~, which defines
the state Wo on ,A, remains finite defined in Fourier space (on
the support of 03B4 (k2 - m2 ) ) by {/k2}, f E s (jR4); the Weyl operators can
then be extended by strong continuity S, since sequences W (fn) of
Weyl operators converge strongly, in a GNS representation over a quasi-free
state ~, if and only if f n converge strongly in the scalar product [/, /]
which defines 03C9 (Eq. (9)). The solution of Eq. ( 16) exists therefore in the
strong closure of the observable algebra, in the vacuum representation.
Given A°, the Higgs field x is determined by Eq. (3), namely ==

-a~ A°, and, as already discussed for A°, we may construct x as

We have therefore constructed the field algebra, in the Coulomb gauge,
as the Weyl algebra over the extended space ~ -1 S; moreover, since this
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algebra is regularly represented by cvo, we may include in the field algebra
all the bounded functions of the fields.

The observable algebra is strongly dense in the field algebra, in the
vacuum representation 03C00, and there are no charged states. The gauge
group consists of the automorphisms 1À/L defined by

corresponding to

and it is broken in 7ro to the identity (See Proposition 3).
It follows immediately from Eq. (20) that the space-time translations,

defined (by construction) on the field algebra by the unitary group which
implements the space-time translations for the observable algebra in the
vacuum representation, do not commute with ’rÀ/-L. A representation of
the field algebra can be immediately constructed as the direct sum of the
GNS representations over the states ’rÀ/-L8 cvo, and space time translations
commuting with all ’rÀ/-L can be easily constructed on the algebra generated
by the Weyl algebra over 0-1 S and the centre of its strong closure
in they have gauge invariant implementers, given in each irreducible
representation by the action of the gauge automorphisms (which are strongly
continuous in on the implementers in (See Proposition 4).
A field algebra with a non-trivial centre, and the same structure for the

space-time translation automorphisms, is also obtained if the time evolution
is constructed [ 16] as a strong limit of infrared cut-off dynamics defined
by Hamiltonians invariant under the gauge group, with a strong topology
invariant under the gauge automorphisms. The mass spectrum of the model
is associated to the spontaneous breaking of the automorphisms ’rÀ/-L, through
a generalized Goldstone theorem [ 10] .

2. Stuckelberg-Kibble model in 2 + 1 and 1+1 dimensions; Schwinger
model.

For the S-K model in 2 +1 and 1+1 dimensions, and for the Schwinger
model, the above construction does not apply, since the quadratic form
which defines the vacuum state on the observables is divergent on ð. -1 S,
and cannot in fact be extended to a positive form on 0 -1 S which still

maj orizes the extension of the symplectic form to (ð. -1 f , ~), f , g E S, a
necessary condition for the positivity of the resulting state.
The construction of the field algebras for these models can be done by an

extension of the observable Weyl algebra to an algebra defined in an abstract
way as the Weyl algebra over a space of Coo functions (linearly bounded in
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the space variables) 0-1 S, with a symplectic form (/, g) invariant under
space-time translations and extending the symplectic form on S x S [ 14] .
As a result of an analysis of the relation between the symplectic form

(f, ~), and the quadratic form ~g, ~], f e A’~ E s, the extension of
the vacuum state to the Weyl algebra of the fields is found to be unique
and given by

The vacuum representation of the field algebras is therefore non regular, i.e.
not strongly continuous in the parameters of the Weyl groups; the variables
A°, and x for the S-K model, do not exist as field variables, but only in
the exponentiated (Weyl) form exp i 03B1 A0 (/), exp i 03B2~(f), f E S.

It follows from Eq. (21 ) that the automorphisms are unbroken in the

GNS representation of the field algebra defined by the unique extension
of the vacuum state. The application to the vacuum of the charged field
variables gives therefore rise to charged states, orthogonal to the vacuum
representation of the observables, and the representations of the observable
algebra obtained by the GNS construction over such states are easily seen to
be inequivalent to the vacuum representation. The expectation value of the
electric field gives rise to a non-trivial Gauss charge in the charged sectors.

The space translation automorphisms are well defined on the (Coulomb
gauge) field algebra and are implemented by strongly continuous unitary
groups; the (space) momentum is therefore well defined also in the charged
sectors. The time evolution automorphisms, which exist on the field algebra
as a consequence of the invariance under time translations of the extended

symplectic form, leave the (unique extension of) the vacuum state invariant;
they are therefore unitarily implemented and define a time evolution of the
charged states, which give rise to representations of the observable algebras
which are inequivalent for different times. The same result is obtained,

by invariance of the vacuum under time translations, if one considers

the states obtained from a charged state by applying time translations

automorphisms to the observable algebra. The implementers of the time
translations are therefore not strongly continuous, and have no generator, i.e.
the Hamiltonian does not exist in the charged sectors. (See Propositions 2
and 5).
As in the general analysis given above, the reason is that the

gauge automorphisms do not commute with the time evolution

automorphisms, and therefore the time evolution of a charged state gives
rise to states with different values of the (unbroken) charges, with an electric
flux at infinity which oscillates in time.
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