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Ann. Inst. Henri Poincare,

Vol. 64, n° 4, 1996. Physique théorique 1

ABSTRACT. - For any given algebra of local observables in relativistic
quantum field theory there exists an associated scaling algebra which permits
one to introduce renormalization group transformations and to construct the

scaling (short distance) limit of the theory. On the basis of this result it is
discussed how the phase space properties of a theory determine the structure
of its scaling limit. Bounds on the number of local degrees of freedom
appearing in the scaling limit are given which allow one to distinguish
between theories with classical and quantum scaling limits. The results can
also be used to establish physically significant algebraic properties of the
scaling limit theories, such as the split property.

A toute algebre d’ observables locales d’une theorie de champs
relativistes, est associee une algebre d’ echelles permettant d’ introduire des
transformations de groupe de renormalisation et de construire la limite
d’ echelle a courte distance de la theorie. Sur la base de ce resultat,
nous discutons comment les proprietes d’ espace des phases de la theorie
determinent sa limite d’ echelle. Nous donnons des bornes sur Ie nombre

des degres de liberte locaux apparaissant dans cette limite, lesquelles
permettent de discerner entre theories ayant des limites d’ echelle classiques
et quantiques. Ces resultats peuvent aussi etre utilises pour etablir les

proprietes algebriques physiquement significatives des theories de limite
d’échelle, comme par exemple la « propriete de separation » (split property).
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434 D. BUCHHOLZ

1. INTRODUCTION

The general analysis of the structure of local observables at small spatio-
temporal scales is in several respects an interesting issue. It is of relevance
in the classification of the possible ultraviolet properties of local quantum
field theories and a prerequisite for the proper description of the particle-like
structures appearing at small scales, such as quarks and gluons. Moreover,
the short distance analysis is crucial to the understanding of symmetries,
such as colour, which come to light only at small scales, and it may be
a key to the reconstruction of the local gauge groups from the (gauge
invariant) observables.
A general framework for the systematic analysis of these problems has

recently been proposed in [ 1 ] . It is based on ideas of renormalization group
theory (cf [2] and references quoted there) which are incorporated into the
setting of local quantum physics by the novel concept of scaling algebra.
Within this framework one can construct in a model independent way the
scaling (short distance) limit of any given theory and analyze its structure.

It is the aim of the present article to review this approach and to

study the relation between the structure of the scaling limit and the phase
space properties of the underlying theory. This analysis is carried out

in the algebraic Haag-Kastler framework of local quantum theory [3].
Since this setting may be less well-known, we briefly describe here in
conventional field theoretic terms the basic ideas and main results of the

present investigation.
Given any local quantum field theory, we consider the corresponding

observable Wightman fields, currents etc. which act as operator-valued
distributions on the physical Hilbert space. Since we are interested in the
short distance properties of the theory, we have to study the effect of a
change of the spatio-temporal scale on the observables, while keeping the
scales c of velocity and h of action fixed. In the field theoretic setting such
a change of scale induces transformations of the underlying observable
fields. If is such a (hermitean) field which, at the original scale, is

localized at the space-time point x, then the corresponding field at other
scales is obtained by setting

where A &#x3E; 0 is a scaling factor. We call ~a (x) the field at scale A. Whereas
the action of the scaling transformations on the argument of the field needs
no explanation, its effect on the scale of field strength, given by the positive
factor Na, is more subtle. The familiar idea is to adjust this factor in such
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435STRUCTURE OF SCALING LIMITS

a way that the expectation values of the fields at scale A in some given
reference state are of equal order of magnitude for all A &#x3E; 0. The precise
way in which this idea is implemented is a matter of convention. One may
integrate for example ~~(~) with a suitable (real) test function f (:z),

and demand that

where H is the vacuum vector. Yet one could impose such a constraint
just as well on higher moments of ~(/). By conditions of this type one
can determine the factor NÀ and thereby adjust the scale of field strength.
We denote the factor ~VB which has been fixed by such a renormalization
condition by Z~.

For the analysis of the theory at small scales one has to consider the
n-point correlation functions of the fields at scale A and to proceed to
the scaling limit A B 0. There appears, however, a problem. As is well
known, the product of quantum fields at neighbouring space-time points
is quite singular and consequently the renormalization factors Z~, tend to
0 in this limit. One needs rather precise information on the way how Za
approaches 0 in order to be able to control the scaling limit of the fields.
It is apparent that if one chooses in relation ( 1.1 ) a factor N~, such that
the quotient approaches 0 or oo in the scaling limit one ends up
with a senseless result.

In the conventional setting of quantum field theory this problem can be
solved under favourable circumstances (asymptotically free theories), since
renormalization group equations and perturbative methods provide reliable
information on the asymptotic behaviour of This approach works also in
some renormalizable theories where the underlying renormalization group
equations have a non-vanishing but small ultraviolet fixed point. Yet in the
case of theories without a (small) ultraviolet fixed point the method does not
lead to reliable results, nor can a rigorous treatment of non-renormalizable
theories be even addressed. In view of this fact a model-independent
approach to the short distance analysis of local quantum field theories
would seem to be impossible.
A way out of this problem which is quite simple has been proposed

in [ 1 ] . Within the field-theoretical setting it can be described as

follows. In a first step one proceeds from the unbounded field operators

Vol. 64, n ° 4-1996.



436 D. BUCHHOLZ

~a ( f ) to corresponding bounded operators, such as the unitary operators
This has the effect that, irrespective of the choice of the

factor 7VB in the definition of ~a(~), there do not appear any divergence
problems: the resulting operators are bounded in norm, uniformly in A.
The second crucial step is to restrict the four-momentum of these bounded

operators in accord with the uncertainty principle. Roughly speaking, one
considers only operators which can transfer to physical states at scale A
momentum proportional to A’B hence they occupy for all A &#x3E; 0 the

same phase space volume. The desired operators are obtained by suitable
space-time averages,

where is any test function and f (~ - y). It turns out that

this restriction on the momentum transfer has the following effect: if one

chooses Na such that tends to 00 in the limit of small A, then all
correlation functions involving the corresponding sequence of operators ~4;B
converge to 0. Similarly, if tends to 0, then ~4~ converges (in the
sense of correlation functions) to const’ 1. Thus in either case the operators

tend in the scaling limit to multiples of the identity. Only in the special
case where the asymptotic behaviour of A~B coincides with that of Za does
it happen that the correlation functions retain a non-trivial operator content
in the scaling limit.

In view of this fact one does not need to know the behaviour of Za
and may admit in the above construction all possible factors The

theory takes care by itself of those choices which are unreasonable and lets
them disappear in the scaling limit. It is only if Na has the right asymptotic
behaviour that the sequences AÀ give rise to non-trivial operator limits. One

may view this method as an implicit way of introducing renormalization
group transformations. It allows one to study the short distance properties
of local quantum field theories in a model independent manner.

It is convenient in this analysis to regard the operators AÀ obtained by the
above procedure as functions of the scaling parameter A. These functions
form in an obvious way an algebra, the scaling algebra. For the construction
of the scaling limit of the theory one considers the expectation values of
sums and products of the operator functions in the limit A B 0,

Actually, these limits may only exist for suitable subsequences of the

scaling parameter ~. We disregard this problem for the moment but return
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437STRUCTURE OF SCALING LIMITS

to it in the main text. What is of interest here is the fact that the limits of

the correlation functions determine, by an application of the reconstruction
theorem to the scaling algebra, a local, covariant theory with unique vacuum
vector Ho. This explains the notation on the right hand side of equation
( 1.5). By this universal method one can construct the scaling limit of any
given theory.
On the basis of this result the possible structure of scaling limit theories

has been classified in [ 1 ] . There are two extreme cases. The first possibility
is that the scaling limit theory is "classical". This happens if the correlations
between all observables disappear at small scales and the correlation

functions in ( 1.5) factorize in the limit. Examples may be certain non-
renormalizable theories, where the leading short distance singularities of
the fields are not governed by the two point functions (cf also the remarks in
the conclusions). In the second, more familiar case the quantum correlations

persist in the scaling limit. One then ends up with a full-fledged quantum
field theory.
We want to clarify in this article the relation between the nature of the

scaling limit and the phase space properties of the underlying theory and
establish criteria for deciding which of the above cases is realized. Although
phase space is a poorly defined concept in quantum field theory, one can
introduce a measure of its size by appealing to a semiclassical picture and
counting the number of states of limited energy which are localized in a
fixed spacetime region. To illustrate this idea, let us consider for given
spacetime region (9 and any A &#x3E; 0 the vectors

Here g is a fixed test function whose Fourier transform has support in a

given region 0 of momentum space. These vectors describe local excitations
of the vacuum vector H in the region AO whose energy momentum content
is confined to A ~0. In the following we denote the set of all these vectors
by s~ .

It has been pointed out by Haag and Swieca [4] that, disregarding vectors
of small norm, the subsets Sa of the physical Hilbert space should be finite
dimensional in physically reasonable theories. A convenient measure of the
size of these sets is provided by the notion of epsilon content. This is the
number Na (~) of vectors in S~, whose mutual distance is larger than a given
~ &#x3E; 0. Thus the epsilon content Na (~) provides information on the number
of states which are affiliated with the regions AO, ~-1 C~ of configuration
and momentum space. We mention as an aside that the dependence of
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these numbers on ~ and the given regions is intimately related to thermal
properties of the underlying theory [5, 6].
As we shall see, the structure of the scaling limit of a theory depends

crucially on the size of the epsilon contents Na (~) in the limit A B 0.
Disregarding fine points, there are the following possibilities: if the limit

of the epsilon contents behaves for small c like ~-P for some

p &#x3E; 0, then the scaling limit is classical. Otherwise it is a quantum field
theory. Moreover, if No (~) behaves like for some sufficiently
small q &#x3E; 0, then the scaling limit theory satisfies a nuclearity condition,
proposed in [5], which is a sharpened version of the Haag-Swieca criterion.
This result can be used to establish a strong form of causal independence
(split property [7]) in the scaling limit theories. On the other hand, if the
epsilon contents N~, (~) diverge in the limit of small a, then the scaling
limit theory no longer complies with the condition of Haag and Swieca.

Further results of a similar nature which reveal an intimate connection
between the number of degrees of freedom affiliated with specific regions
of phase space and the short distance properties of a theory will be given
in the main text. One may hope that these results provide the basis for an
extensive analysis and classification of the possible ultraviolet properties
of local observables.

We conclude this introduction with a brief summary. In the subsequent
section we recall the basic notions used in the algebraic approach to local
quantum physics and compile some results which enter in our discussion
of phase space properties. Section 3 contains a review of the construction
of scaling algebras and scaling limits. The heart of the paper is Section 4,
where the analysis of the relation between phase space and short distance
properties is given. The paper closes with a brief discussion of examples
and an outlook on further developments of the theory.

2. PHASE SPACE PROPERTIES OF LOCAL OBSERVABLES

As mentioned in the Introduction, we make use in this investigation of the
algebraic framework of local quantum physics [3]. This allows us to discuss
the short distance properties of local observables in full generality, including
also gauge theories, where one considers besides point like fields other
observables, such as Wilson loops and string operators. In order to establish
our terminology we list in the first part of this section the basic assumptions
which ought to be satisfied by the observables in any physically reasonable
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theory. In the second part we recall some mathematical concepts and results
which are of relevance in our discussion of phase space properties.

1. (Locality) The observables of the underlying theory generate a local net
over Minkowski space RB that is an inclusion preserving map 0 ~ 2t((9)
from the set of open, bounded regions 0 C R4 to unital C*-algebras
3t((9) on the physical Hilbert space 7~. Thus each 2t(0) is a norm closed
subalgebra of the algebra of all bounded operators on 7Y which is
stable under taking adjoints and contains the unit operator, and there holds

The net complies with the principle of locality (Einstein causality) according
to which observables in spacelike separated regions commute,

Here 0’ denotes the spacelike complement of 0 and 2t((9/ the set of
operators in which commute with all operators in 2t((9). One may
think of 2t((9) as the algebra generated by all observables which can be
measured in the spacetime region (9. The global algebra 2t of observables
is generated by all local algebras 2~(9) (as inductive limit in the norm

topology). We recall that for the interpretation of a theory it is not really
necessary to assign a specific physical meaning to individual operators.
All what matters is the information about the localization properties of the
operators, which is encoded in the net structure [3].

2. (Covariance) On the Hilbert space ~-l there exists a continuous

unitary representation U of the space-time translations R4 which induces
automorphisms of the given net of observables1. Thus for each x E jR4
there is an Qx E Aut2t given by

and, in an obvious notation,

for any region 0. In addition to this fundamental postulate we assume that
the operator valued functions

1 We make no assumptions with regard to Lorentz transformations. Thus the present framework
is slightly more general than the one used in [ 1 ].
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are continuous in the norm topology. This condition, which is crucial in the
present investigation, is always satisfied by a sufficiently rich set of local
observables and does not impose any essential restrictions of generality.

3. (Spectrum condition) The joint spectrum of the energy-momentum
operators, i.e., the generators of the unitary representation U of the
translations, is contained in the closed forward lightcone Y+ _ ~ p E
jR4 : Moreover, there is an (up to a phase unique) unit vector
H E 7~, representing the vacuum, which is invariant under the action of
the representation U,

Let us turn now to the description of the phase space properties of the
observables. There we have to rely on concepts from the theory of compact
linear maps between Banach spaces. We recall here some basic definitions

and useful results.

Let E be any Banach space with norm ~.’ 11£. The unit ball of ? is

denoted by EI and the space of continuous linear functionals on £ by £*.
Given another Banach space .~’, we denote the space of continuous linear

maps L from £ to .~ by ,C(E; JF). The latter space is again a Banach space
with norm given by

A map L E ,C(~, .~’) is said to be compact if the image of £1 under
the action of L has compact closure in .~’. A convenient measure which

provides more detailed information on the size of the range of compact
maps is the notion of epsilon content.

DEFINITION. - Let L E ,C(~, .~’) and let, for given ~ &#x3E; 0, 
the maximal number of elements Ei E £1, i = 1, ...TV~(~), such that

Ej)11 7~ j. The number is called epsilon content
of L. It is finite for &#x3E; 0 if and only if L is compact ~7.

It is apparent that the epsilon content of L increases if c decreases, and
it tends to infinity if c approaches 0 (unless L is the zero map). If L is of
finite rank, then the epsilon content behaves for small ~ like ~-p for

some positive number p. The converse statement is also true [8].
We are now in a position to formulate the condition proposed by Haag

and Swieca [4] to characterize physically significant theories with decent
phase space properties. We state this condition here in a slightly modified
but mathematically equivalent form.

Annales de l’Institut Henri Poincaré - Physique theorique
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4. (Compactness) For given ,~ &#x3E; 0 and spacetime region 0, let 0~ be
the map from 2~((9) into 7~ defined by

where H is the (positive) generator of the time translations. The maps 6~
are compact for any ,~ &#x3E; 0 and any bounded 0.

For physical motivations of this condition, cf. [4] and [5]. The

compactness condition has rigorously been established in several models.
Examples are massive [4] and massless [9] free field theories and certain
interacting theories in two spacetime dimensions, such as the P(~)2 models,
the Yukawa theory Y2 and theories exhibiting solitons, cf. [ 10, Sec. 4] and
references quoted there. In fact, any theory which has the so-called split
property also satisfies the Haag-Swieca compactness condition [ 10] . On the
other hand one knows that the compactness condition is violated in theories
with an unreasonably large number of local degrees of freedom, such as
generalized free fields with continuous mass spectrum [4]. Thus the maps
0~,~ are a convenient tool to characterize the phase space properties of a
theory. For a discussion of related concepts and their comparison with the
compactness condition, cf. [ 10] and [ 11 ] .
An important class of compact maps which enter in quantitative versions

of the compactness condition, proposed in [5] and [ 10], are the so-called
nuclear maps. They are defined as follows.

DEFINITION. - Let L E L(?, be a map such that for suitable sequences
en E ?* and Fn E N, there holds (in the sense of strong convergence

.

If there holds in addition  oo for some . p &#x3E; 0 the map
L is said 0 to be p-nuclear. The p-nuclear maps form a vector space ’ which
is equipped 0 with the (quasi) norm [8]

where the infimum is to be taken with respect to all possible decompositions
of L. A map which is p-nuclear for all p &#x3E; 0 is said to be of type s.

Vol. 64, n ° 4-1996.
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It has been argued in [ 10] that, disregarding theories with a maximal
(Hagedorn) temperature, the maps 0~o in the compactness condition

ought to be of type s, i.e.,

In the present investigation we will extract from the dependence of the
p-norms on ,~ and 0 information on the nature of the scaling limit of the
theory. In the argument we make use of the fact that the epsilon content
and the p-norms of nuclear maps are closely related. We quote in this
context the following useful result.

LEMMA 2.1. - Let L E ,C(~, J~), where Hilbert space.

(i) If L is p-nuclear for some 0  p  1, its epsilon content satisfies
for any q &#x3E; p~ ( 1 - p)

where the constant c depends on p, q, but not on L.

(ii) Conversely, iffor some 0  p :S 1 there is a sequence &#x3E; 0, m ~ N,
such that

the map L is p-nuclear and

If, for some ’ 0  q ~  2/3, there ’ holds

the map L is p-nuclear for p &#x3E; 2q~(2 - q) and

where c depends on p, q, but not on L.
The arguments for the proof of these statements can be extracted from

Proposition 2.5 and Lemma 2.2 in [ 13 ] . We refrain from giving here the
straightforward details.
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3. SCALING ALGEBRAS AND SCALING LIMITS

We review in this section the construction of the scaling algebra associated
with any given local net of observables which complies with the first three
conditions given in Sec. 2. As has been shown in [ 1 ], the scaling algebra
provides a convenient tool for the definition and analysis of the scaling
limit of a theory.
The elements of the scaling algebra are bounded functions of the scaling

parameter A &#x3E; 0 with values in the algebra of observables 2t,

We mark these functions in the following by underlining. A simple example
of such a function has been given in the Introduction, cf. relation ( 1.4). As
has been discussed in [ 1 ], the values A~ of the functions A are, for given
A &#x3E; 0, to be interpreted as elements of the theory at scale a. One therefore
defines for these functions the following algebraic relations: for any A, B
and a, one puts for A &#x3E; 0

In this way the functions A acquire the structure of a *-algebra with unit
given by 1À = 1. A norm on this algebra (which in fact is a C*-norm)
is obtained by setting

The translations x E jR4 induce an action cx~ on the functions A, given by

One considers only functions A which satisfy with respect to this action
the continuity condition

This crucial requirement amounts to specific restrictions on the four-

momentum of the operators A~, a &#x3E; 0, which are suggested by the basic
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ideas of renormalization group theory [ 1 ]. The effect of this restriction has
been described in the Introduction in the case of a simple example (cf the
remarks after relation (1.4)). In [1] it was assumed that also the Lorentz

transformations act norm-continuously on A. But we do not make such
an assumption here and consider the larger class of functions satisfying
only condition (3.5).
The local structure of the underlying net of observables induces a

corresponding local structure on the functions A. One defines for any

open, bounded spacetime region 0 C R4 the subset 2t(0) of continuous
(in the sense of condition (3.5)) functions given by

Since each 2t(A(9) is a C*-algebra, it follows that 2t((9) is a C* -algebra
as well. Moreover, there holds

thus the assignment (? 2014&#x3E; 2t(0) defines a net of C*-algebras over

Minkowski space. The C*-inductive limit of this net is denoted by ~L and
called scaling algebra . It is a straightforward consequence of conditions
(2.2) and (2.4) that the net 0 ~ 2t((9) is local,

(where, by abuse of notation, we have used the symbol - 0 for the
relative commutant of 2t((?) in 2I) and covariant,

The local, covariant net2 2t,~4 is called scaling net of the underlying
theory.

In this general formalism one can describe changes of the spatio-temporal
scale by an automorphic action ~+ of the multiplicative group R+ on the
scaling algebra St. It is given for any ~c &#x3E; 0 by

As is easily verified, there hold the relations

2 As is common practice, we denote the net and its inductive limit by the same symbol.
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which reveal the geometrical significance of the scaling transformations
7~+. These automorphisms may be understood as the algebraic version of
renormalization group transformations [ 1 ] .
The scaling net comprises in a comprehensive manner information about

the underlying theory at all spatio-temporal scales. Moreover, it allows

one to compare the properties of the theory at different scales because
of the connection between the respective observables established by the
functions A. This connection is not as rigid as in the conventional approach
to the renormalization group, cf. relation ( 1.1 ). But it contains sufficient

information for the physical interpretation of the theory at arbitrarily small
spatio-temporal scales.

Within the setting of the scaling algebra the short distance analysis of
physical states is performed as follows: if w is any given physical state on
the algebra of observables 2t (e.g., the vacuum state c~(’) == (~’ f~)) one
defines its lift ~ to the scaling algebra 2t at given scale a &#x3E; 0 according to

The functionals cva are states on the net ~~4, from which one can
recover the properties of the given state ú) at scale A &#x3E; 0, cf. [ 1, Prop. 3.4].
Moreover the formalism allows one to proceed to the scaling limit A B 0.
To this end one has to regard the family of states &#x3E; 0, as a net

directed towards A = 0 and to study its limit behaviour.
As has been discussed in [ 1 ], there appears a minor technical problem:

the net ~~A &#x3E; 0, does not converge since the scaling algebra comprises
the orbits of local observables arising from an abundance of admissible
renormalization group transformations (cf the freedom of choosing NÀ in
the example (1.4)). But, being a bounded set of functionals on the Banach
space U, the net always contains subnets which converge in the weak-*-
topology according to the B anach-Alaoglu theorem. We recall that the latter
statement means that there exist states on 2t such that for any given
finite set of elements E 3t~ = 1,... N, one can find some sequence

tending to 0, such that

The set of all scaling limit states ~o on 2t which arises from the given
state w on 2t by this construction, is denoted by SL(w). We mention as an
aside that does not depend on the choice of 03C9 within the class of

physically admissible states [1, Cor. 4.2].

Vol. 64, n 4-1996.
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Although the set contains many elements, the apparent ambiguities
in the definition of the scaling limit disappear in general if one takes into
account the proper interpretation of the states c_v~, inherited from the states
wa at finite scales A &#x3E; 0. The procedure is as follows. Given E SL(c)
one applies the GNS-reconstruction theorem, yielding a representation 1ro
of 2t on some Hilbert space and a cyclic vector Ho such that

It has been shown in [1, Lem. 4.3] that any Wo E SL(w) is a pure vacuum
state on 2t. Hence there exists on a continuous unitary representation
Uo of the space-time translations R4 such that for A E 2t there holds

Moreover, the joint spectrum of the generators of Uo is contained in the
closed forward lightcone V+ and no is the (up to a phase) unique unit
vector in which is invariant under the action of !7o,

From the latter fact it follows that the algebra is irreducible.

For the physical interpretation of ~ one proceeds to the corresponding
net

which is local and covariant with respect to the automorphic action o:~
of the space-time translations, given by

It has been argued in [1] ] that the nets 2to?~4 obtained in this way for
different choices of cvo E ought to describe the same physics in
generic cases, i.e., they should be isomorphic. One can then regard any
one of these nets as the unique scaling limit of the underlying theory. But
it may also happen that the nets 2to?~ are non-isomorphic in certain
theories for different choices of SL(c,~) . This situation will occur if the
underlying theory cannot be described at small scales in terms of a single
theory since its structure varies continually if one approaches A == 0. The
theory is then said to have a degenerate scaling limit.
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In either case the states give rise to pure vacuum states cvo
on the corresponding nets 2to? c~. which are given by

They describe the properties of the underlying state cv on 2t in the scaling
limit. Thus each triple complies with the general conditions
imposed on a net of observables in Sec. 2, with the possible exception of
the compactness condition.

We are interested here in the general structure of the scaling limit

theories. As has been mentioned in the Introduction, there exist two clear-
cut alternatives which follow from the fact that the scaling limit states are

pure vacuum states. Given o;o E SL(cv) one has as a first possibility:
(i) The net 2to fixed by consists only of multiples of the identity.
If this case is at hand for every choice of cvo E the theory is said to

have a classical scaling limit. For in such theories all correlations between
observables disappear at small scales. In theories with a degenerate scaling
limit it may happen, however, that only some of the states in lead

to nets which belong to the preceding class. The second possibility is:

(ii) The net 210 associated with is non-trivial in the sense that the

algebras corresponding to (sufficiently large) bounded regions are infinite
dimensional and non-commutative.

That the latter case is the only alternative to the former can be seen in
many ways. It follows for example from the following lemma which we

quote for later reference. Its proof is based on standard arguments.

LEMMA 3.1. - Let U be a continuous unitary representation of R4 on a
Hilbert space H which satisfies the relativistic spectrum condition, let H E H
be an (up to unique) unit vector which is invariant under the action of
U and let A be a bounded operator on ?-~ such that [~4*, == 0

for x varying in some open set There are the following two alternatives.

(i) ASZ = a S2 for some a E C.
For any r &#x3E; 0 the linear span of the vectors  r, is

infinite dimensional. Then the same holds true for the *-algebra generated by
the operators  r, and this algebra is non-commutative
if r is suffcciently large.

Proof. - It follows from the spectrum condition by an argument of
the Reeh-Schlieder type that the closure J’C of the linear span of vectors

Ixl  r, coincides with that of the vectors E R4. Thus
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1C is invariant under the action of U. If 1C is finite dimensional one can see

by an application of the spectral theorem to the unitary group that

Here the sum is finite and pn E V+ because of the spectrum condition.
By the commutation properties of A and the invariance of 03A9 under the
action of U, this function coincides with (.A~ for x varying
in some open set. The latter function extends, because of the spectrum
condition, to an analytic function on the backward tube R4 - iY+ and it is
bounded there. Since the former function is entire analytic the edge of the
wedge theorem implies that the two functions coincide on the backward
tube. Hence, in view of their boundedness, there holds pn = 0, i.e., the
functions are constant. Consequently = A03A9 for x E 1R4, and
taking into account the uniqueness of the invariant vector H one arrives at
the conclusion that ASZ = for some a E C. This is case (i).

The alternative is that IC is infinite dimensional. Then the *-algebra
generated by the operators  r, is infinite dimensional
as well since the subspace obtained by applying this algebra to 03A9
contains IC. Moreover, if this algebra were commutative for every
choice of r &#x3E; 0, the commutator [~ would vanish for
all x E 1R4 and consequently the functions ~ 2014~ and

.r 2014~ (~4*f~ would coincide. Since the Fourier transforms of
these functions have support in Y+ and 2014V+, respectively, they would
have to be constant and consequently ASZ = a H for some a E C. Thus IC
would be one-dimensional, which is a contradiction. D

Since any local operator A complies with the assumption in this lemma
and since the scaling limit states are pure and hence (in their superselection
sector) unique vacuum states, we see that there are only the two general
possibilities for the nets mentioned above. If the second case is at hand
for every choice of c~o E we say the theory has a pure quantum
scaling limit (which may be degenerate, though).

The preceding classification of the possible structure of the scaling limit
arises as a logical alternative within the general setting of the theory of
local observables. Yet it does not shed any light on the question as to
which case is at hand in a given theory. This point will be clarified in
the subsequent section.
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4. PHASE SPACE AND SCALING LIMIT

We turn now to the analysis of the relation between the phase-space
properties of a theory and the nature of its scaling limit. As was explained
in Sec. 3, the phase space properties can be described in terms of the maps

defined in relation (2.8), which depend on the choice of a parameter
/3 &#x3E; 0 and a bounded spacetime region 0 C Throughout this section
we assume that these maps are compact and denote their epsilon contents
by &#x3E; 0.

We also consider the analogous maps in the scaling limit theories:
let cvo E let be the corresponding covariant net and let
S2o E ~lo be the corresponding vacuum vector. Given /3, 0 we define a
map 8~~~ from 2l0( 0) into 7-~ setting

where No denotes the generator of the time translations in the scaling limit
theory, cf. relation (3.15). The epsilon content of this map is denoted by
N~ °, ~ ( e ) , ~ &#x3E; 0, provided it is finite.

It is our aim to derive information on the properties of the maps 0~
from the structure of the maps 0~ in the underlying theory. In a first
preparatory step we pick a test function f,~ on R whose Fourier transform
f,~ is equal to (27r)’~e’~ for úJ &#x3E; 0 and arbitrary otherwise. Since
the time translations at act norm continuously on the scaling algebra 2t it
follows that the integrals (in the sense of Bochner)

are elements of the scaling algebra 9L Each cvo E SL(w) is a weak-*-limit
point of the family of states ~, A &#x3E; 0, which are the lifts of the vacuum
state c~(’) == (~,’ H) on 2t to the scaling algebra. Hence, recalling relation
(3.13), there exists for each finite set of elements A E 2t some sequence
A~m e N, tending to 0, such that
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where in the first and last equality we made use of the spectrum condition
and the specific form of f,~ .

Relation (4.3) will be the key to the proof of the subsequent lemmas.
In the argument we make also use of the following well-known fact in
the theory of C* -algebras, cf. for example [ 14, Ch. 1.8]: if ~ is a unital

C*-algebra and 7r some representation of B there holds

where ’ the subscript I denotes the unit ball in the respective ’ algebra.
LEMMA 4.1. - The epsilon contents of the ’ maps 0~,o and 8~~~ satisfy

Proof - Let A ~n ) E ~0(~)1,~ = 1, ... N, be such that there holds
A(~,~)) ~ ~ &#x3E; ~ for As 7ro(2t(0))t ==

7!’o(2t(C’)i), there exist N elements E 2t(C’)i, such that A~n) _
= 1, ... N, and consequently

Since we are only dealing with a finite number of elements of 2t(C) we
can apply relation (4.3) and find that there is some number mo such that
for all m &#x3E; mo and n’ , n" = 1,... N there holds

But E ~t. ( ~ C~ ) I , ~ &#x3E; 0, hence we see from the latter inequality that N
cannot be larger than the epsilon content of the maps 8Àm3,ÀmO, m 2:: mo .
The statement then follows. D

In the next step we establish a lower bound on the epsilon content of
the maps 8~~~ in the scaling limit theories. -

LEMMA 4.2. - Let 00 be any spacetime region whose closure is contained
in the interior of 0 and let {30 &#x3E; {3. The epsilon contents of the maps 8~~~
and 0,~, ~ satisfy

Remark. - It is an open problem whether this result persists if one

requires that the elements of the scaling algebra are also norm-continuous
with respect to the action of Lorentz transformations.
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Proof - Let ~ &#x3E; 0 and let N be any natural number which is less than

or equal to the limes inferior of the numbers N03BB03B20,03BBO0(~) for 03BB tending to
0. Accordingly there exist a Ao &#x3E; 0 and, for any given 0  ~  Ao, N

operators = 1, ... N, such that

We pick now a suitable non-negative, integrable function f on jR4 which
has support in a sufficiently small neighbourhood of the origin 0 such that
00 + supp f c 0, in an obvious notation. Moreover, = 1, and
the Fourier transform of f has to satisfy the lower bound

(Such functions f can be obtained from the elementary function R  U ~
where for lul  rand == 0 for

lul &#x3E; r, setting /(.r) = and choosing r sufficiently small.)
With the help of this function and the operators we can define elements

~4~B n = 1,... N, of the scaling algebra 2( according to

and = 0 for A &#x3E; Ao. Since f is absolutely integrable and the

operators are bounded in norm by 1 each satisfies the continuity
requirement (3.5). In fact,

Moreover, because of the localization and normalization properties of ,~
as well as of the operators A~B there holds &#x3E; 0, and

consequently A~’~~ E = 1,...~V. We apply once again relation
(4. 3 ), giving for = 1,...~V,~ / and some suitable sequence

A~,m e N, tending to 0,
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Here P is the four-momentum operator and we made use of the
lower bound (4.5) imposed on f on the forward lightcone which
contains the spectrum of P. From the above estimate and the fact that

~r(A~~’~ ) E = 1,... N, we see that A~(~). This completes
the proof of the statement. D

Making use of these results we will establish now conditions in terms
of the epsilon contents N~, ~ ( ~ ) , ~ &#x3E; 0, which provide information on the
nature of the scaling limit. In order to simplify the notation we set for c &#x3E; 0

provided the respective limits exist. In these definitions we made use
of the obvious fact that the limits depend on /3, 0 in the combination
/3~0. The information contained in the preceding two lemmas can thus
be summarized in the inequalities

which will be used in the proof of the following proposition. For the sake
of simplicity we do not aim here at an optimal result. (Cf the proof of
Proposition 4.5 for certain refinements.)

PROPOSITION 4.3. - The following conditions are necessary, respectively
sufficient, for the underlying theory to have a scaling limit of the given type.

(i) Pure quantum scaling limit : it is necessary that there is some bounded
region 0 such that for any p &#x3E; 0 there holds ~p N03B2-1O(~) ~ oo as ~ ~ 0.
It is sufficient that ~2 N03B2-1O (~) ~ oo as ~ ~ 0.

(ii) Scaling limit of Haag-Swieca type (all triples cx~°~ , no arising
from states in SL(cv) satisfy the Haag-Swieca compactness condition) : it

is necessary that N03B2-1O(~)  &#x3E; 0, and sufficient that N03B2-1O(~) 
00, c &#x3E; 0, for all bounded regions O.

(iii) Classical scaling limit : it is necessary that, for each bounded
spacetime region 0, c2 N03B2-1O(~)  const as ~ ~ 0. It is sufficient that
there is some p &#x3E; 0 such that ~p N03B2-1O (~)  const as ~ ~ 0.

Proof. - In the proof of these statements we make use of the fact that if
L is a (non-zero) compact linear map between Banach spaces with epsilon
content &#x3E; 0, then ~p NL(~)  const as ~ ~ 0 for some p &#x3E; 0
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if and only if L has finite rank. In particular, e2  const as e B 0
if and only if L has rank 1 as a complex linear map. The proof of the
if-part of these statements is straightforward, the only-if-part is an easy
consequence of the results in [8, Sec. 9.6].

(i) If the theory has a pure quantum scaling limit there exists for each
triple 2t()~R4?~o a bounded spacetime region 0 such that the space of
vectors is infinite dimensional, cf. Lemma 3.1. Since is

invertible, the space is then infinite dimensional as well,
thus the map 0398(0)03B2,O has infinite rank. Consequently ~ ~ as

e ~ 0 for any finite p &#x3E; 0. Because of relation (4.7) this proves the

necessity of the given condition. On the other hand, if for some region
(9o there holds oo as e ~ 0, relation (4.7) implies that

e2 N~°~ (e) 2014~ oo as 6- ~ 0, provided 0  /3  /3o and 0 contains the
closure of 00 in its interior. Thus the map 8~~6 has rank larger than 1.

From Lemma 3.1 and the covariance of the net 2to? ~ it then follows that
the maps 0~~ have infinite rank for any region Oi containing the closure
of 0 in its interior. This proves the sufficiency of the given condition.

(ii) The theory has a scaling limit of Haag-Swieca type if and only if
the maps 8~~6 are compact for all /3 &#x3E; 0 and bounded regions 0, i.e.,
if and only if N~°~ (e)  oo, e &#x3E; 0. The statement therefore follows from
relation (4.7).

(iii) If the theory has a classical-scaling limit all maps 8~~6 are of rank 1
and consequently e2  const as e B 0. The necessity of the given
condition then follows from relation (4.7). On the other hand, if for some
p &#x3E; 0,  const as e ~ 0, there holds also ep  const

as e B 0 and consequently the map 0~~ has finite rank. But in view

of Lemma 3.1 this is impossible for arbitrary bounded regions (9 unless
all maps 0~~ are of rank 1. This proves the sufficiency of the stated
condition. D

We mention as an aside that in the interesting case (ii) of this proposition
(scaling limit of Haag-Swieca type) the representation spaces of the

scaling limit theories 0152~~) , no are separable. This can be seen from the
fact that the countable union of compact sets

is dense in if the bounded regions C~n tend to jR4 in the limit of large n.
Another class of criteria characterizing the nature of the scaling limit

of a theory is obtained by looking at the dependence of N~ _ 1 ~ (~ ) and
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N,~-1 ~ (~) on the spacetime region C. As is apparent from the definition,
these quantities depend, for fixed ~ and /3, monotonically on 0. We make
use of this fact in the formulation of the subsequent result.

PROPOSITION 4.4. - The underlying theory has a

(i) pure quantum scaling limit if, for some ~ &#x3E; 0, N03B2-1O(~) ~ oo as
o / R4.

classical scaling limit if, for some 0  ~  21/2, N03B2-1O(~)  const

as 0 / jR4.

Proof - (i) If L is a complex linear map of rank 1 between two Banach
spaces and if  1, its epsilon content satisfies N~(~)  (1 + ~-1)2,
c &#x3E; 0. This is a straightforward consequence of the fact that the image of
the unit ball under the action of L can be identified with a circle of radius

in the complex plane.
The defining relation (4.1 ) and the spectrum condition imply that

!!0~b!t ~ 1. Hence if for some triple 2to~~B~o the maps 8~~~ would
be of rank 1 for any /3 &#x3E; 0 and any bounded region 0, it would follow that

 ( 1 + ~-1 ~2 and consequently N~_ 1 ~ (c)  00, E &#x3E; 0,
because of relation (4.7). This shows that if the condition in the first part
of the statement is satisfied, not all of the maps 8~~~ can be of rank 1.

Thus, as was explained before, the underlying theory has a pure quantum
scaling limit.

(ii) If the scaling limit theory is not classical, there is a non-trivial

scaling limit net ~t°, a~°~ acting on an infinite dimensional Hilbert space
Whence, given 0  ~  2~ and any finite number N, there exist a

/30 &#x3E; 0 and N unit vectors ~n E = l, ... N, such that

This assertion is a simple consequence of the facts that tends to

1 in the strong operator topology if /3 tends to 0 and the norm distance
of orthogonal unit vectors is equal to 2~. Now since 3to acts irreducibly
on there exist by Kaplansky’s density theorem [15] some bounded

region 00 and N operators E such that the norm distances

(~ _ are so small that

It follows that (~) ~ N and, by relation (4.7), N03B2-10 O0 ~ N.
Consequently N,~-1 ~ (~) 2:: N as 0 ~’ 1~4. Since N was arbitrary,
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lV~- ~ ~ (~ ~ diverges as 0 /’ R4 for any choice of 0  ~  2~~. Thus
we conclude that the condition in the second part of the statement can only
be satisfied if the theory has a classical scaling limit. D

Since in physically relevant theories the maps 0~,o are expected to be
not only compact but also nuclear [5, 10], the following results involving
the nuclear of these maps are of interest.

THEOREM 4.5. - Given a theory where the maps 039803B2,O, defined in (2.8),
are p-nuclear for some 0  p  1/3 and lim sup03BB~0~039803BB03B2,03BBO~p  oo.

The theory has a classical scaring limit only if there exists a constant
c such that

uniformly for all bounded regions (9.

Proof - For the proof of the if-part of the statement we make use of
the first part of Lemma 2.1 which, under the given conditions, implies that
for q &#x3E; 2p/(l - 2p)

uniformly in 0. Hence the theory has a classical scaling limit according
to the second part of Proposition 4.4.

For the proof of the only-if-part we have to rely on the following more
refined version of Lemma 4.2: let ~30, C~o, ~o be fixed and let 
be some sequence, tending to 0 such that the sequence of epsilon contents

converges or tends to +00. The corresponding
subnet of lifted and scaled vacuum states still has limit

points cvo E SL(w). For the epsilon contents of the resulting maps 
one obtains the estimate (using the same arguments and notation as in the
proof of Lemma 4.2)

Hence if there exist ,~o, C~o, ~a and a sequence ~~.,.z, as just described,
for which

the maps 8~~b cannot be of rank 1 for all /3, (9. Assuming that the theory
has a classical scaling limit it follows from this remark and Lemma 3.1 that

for all /?, 0 and ~ &#x3E; 0.
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Now according j to the second 0 part of Lemma o 2.1 there ~ holds

4.10 .

provided the right hand side of this inequality exists for some 0  r  1 and
a suitable sequence Since all maps are p-nuclear for
some 0  p  1/3 this condition is satisfied. In fact, putting = 

where q &#x3E; p/ ( 1 - p), it follows from the assumptions and the first part
of Lemma 2.1 that

where the constant c does not depend on Putting q = 3p/2, r = 2p,
we conclude that the limes superior on the right hand side of the estimate

(4.10) can be pulled under the sum, thereby leading to a larger upper bound
on the left hand side. Hence, taking into account relation (4.9), we arrive at

Since the right hand side of this inequality is finite and does not depend on

/3, 0, the only-if-part of the statement follows. D

As has been pointed out in [ 10, Sec. 5], the quantities ~0/3,0!!~ are a
certain substitute for the partition function of the Gibbs canonical ensemble
at temperature (p,~) -1 in a container of size proportional to 0. Thus the
nature of the scaling limit is intimately related to thermal properties of the

underlying theory. It would be desirable to clarify this relation further.

We conclude this section with a result pertaining to the nuclearity

properties of the maps 0~.
THEOREM 4.6. - Consider a theory where the maps 8/3,0 are p-nuclear for

some 0  p  1/3 and lim sup03BB~0 ~039803BB03B2,03BBO~p  oo. Then the maps 0398(0)03B2,O,
defined in relation (4.1 ), are &#x3E; 2p/(2 - 3p), and there holds

where c depends only on p, q.

Proof. - Given 0  p  1/3, we pick q, r such that there holds

1 &#x3E; q &#x3E; 2r/(2 - r) &#x3E; 2p/(2 - 3p). Then r &#x3E; p~(1 - p), so it follows from
relation (4.7) and the first part of Lemma 2.1 that
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and consequently

Since r  2/3, the statement then follows from the last part of
Lemma 2.1. D

The preceding proposition provides the basis for a more detailed

investigation of the properties of the scaling limit theories. It can be

used, for example, to establish the so-called (distal) split-property [7] in
the scaling limit, provided the underlying theory has decent phase-space
properties. The crucial step is the demonstration that the maps 8~~b have
certain specific nuclearity properties which can be expressed in various
ways [5, 10, 16, 17]. In view of the preceding proposition these properties
follow from corresponding properties of the maps 0~ in the underlying
theory. We refrain from stating here the pertinent conditions and refer to
the quoted publications.

5. CONCLUDING REMARKS

Making use of the novel concept of scaling algebra, introduced in [ 1 ], we
have established an interesting relation between the phase space properties
of a theory and the nature of its scaling limit. It turned out that some

rough information on the number of degrees of freedom affiliated with
certain specific regions of phase space is sufficient to distinguish between
theories with a classical and (pure) quantum scaling limit. Moreover, one
can deduce rather precise information on the phase space properties of the
scaling limit from corresponding properties of the underlying theory.
The present results are a promising step towards the general understanding

and the classification of the short distance properties of local nets of
observables. But there are still many open problems. It is, for example,
an intriguing question under which circumstances a theory has a unique
quantum scaling limit, cf. Sec. 3. Phase space properties of the theory seem
to matter also in this context, but there do not yet exist any definitive
results. The uniqueness of the scaling limit has been established so far only
in certain models and in dilation invariant theories [ 1 ] .

It would be instructive to have a supply of examples illustrating also
the various other possibilities appearing in the general classification of the
structure of scaling limits, such as theories with a classical or degenerate
scaling limit. A simple example of the classical type ought to be the
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net which is obtained from a generalized free field with continuous

mass spectrum according to the following procedure: the local algebras
corresponding to regions of diameter A are generated by the fields 
where the numbers nÀ tend to infinity as A tends to 0. In this way one
obtains a local, Poincare-covariant and weakly additive net. But, as is

apparent from the construction, the algebras corresponding to shrinking
regions contain, apart from multiples of the identity, operators with rapidly
worsening ultraviolet properties. As has been pointed out in [ 1, Sec. 4]
one may expect that such nets have a classical scaling limit. The model
resembles to a certain extent the situation in field theories without ultraviolet

fixed point, where one cannot remove the cutoff and proceed to point-like
fields.

A model with a degenerate scaling limit ought to be the infinite tensor

product theory constructed from free scalar fields with masses m E 21 mo,
where mo &#x3E; 0 is fixed. This theory is invariant under the subgroup 21 of
dilations and consequently should coincide with one of its scaling limits.
But the set of scaling limit states of a theory is invariant under arbitrary
scaling transformations, hence there should appear in the scaling limit also
the theories with scaled mass spectrum ~c 2~ mo, which are in general non-
isomorphic for different &#x3E; 0. The details of these simple but instructive

examples will be worked out elsewhere.

It would also be desirable to understand better the relation between

the present algebraic approach to the renormalization group [1] ] and the
conventional field theoretic treatment [2]. By a combination of these

methods one may hope to gain new insights into the possible ultraviolet

properties of local field theories. To this end it would be necessary to

identify in the algebraic setting invariants, in analogy to the beta function
and the anomalous dimensions of local operators in field theory, which
are apt to describe in a more quantitative manner the ultraviolet properties
of a local net. A certain step in this direction is the purely algebraic
characterization of asymptotically free theories, proposed in [1, Sec. 4].

Another interesting problem is the analysis of the supers election and
particle structure emerging in the scaling limit. As has been pointed out in
[12], cf. also [ 1 ], one can identify the ultraparticles, i. e., the particle-like
structures appearing at small scales, such as quarks, gluons and leptons,
with the particle content (in the sense of Wigner) of the scaling limit theory.
Similarly, the ultrasymmetries of a theory, i.e., the symmetries which are
visible at small scales, such as colour and flavour, can be identified with
the global gauge group of the scaling limit theory. The discussion of

interesting issues, such as the reconstruction of the local gauge group from
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the local observables or the confinement problem can then be based on
a comparison of the particle and symmetry content of a theory with the
ultraparticle and ultrasymmetry content of its scaling limit. Thus the concept
of scaling algebra seems also a useful tool for the investigation of these
more conceptual problems.
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