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ABSTRACT. — A derivation with axiomatic methods of a pertubative
expansion for the Wightman functions of a relativistic field theory is
described. The method gives also the correlation functions of the fields
in KMS states. Using these results, a scattering formalism for QED is
introduced, which does not involve any infrared divergent quantities.

RESUME. — Nous décrivons un développement perturbatif des fonctions
de Wightman d’une théorie de champs relativistes, dérivée d’une méthode
axiomatique. Celle-ci fournit aussi les fonctions de corrélation des champs
dans des états KMS. Grice a ces résultats, nous pouvons introduire un
formalisme de théorie des collisions pour I’électrodynamique quantique,
libre de toute divergence infrarouge.

1. INTRODUCTION

I will report on a method of developing the perturbation theory of
relativistic quantum fields within the context of axiomatic field theory

* Talk delivered at the “Colloquium on New Problems in the General Theory of Fields and
Particles”, Paris, July 1994.
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400 0. STEINMANN

([1]-[3]). The central objects of the approach are the Wightman functions

where (---) denotes the vacuum expectation value, and ® (x;) is any of
the basic fields of the theory under consideration, taken at the point z;
of Minkowski space. Perturbative expansions, in the form of sums over
generalized Feynman graphs, are derived, starting from equations of
motion as dynamical input and using the Wightman properties [1] as
subsidiary conditions for the unambiguous solution of these equations.
The W-functions are known to determine the theory completely.

More generally, the method yields the following functions:
W(X1, s1]... | Xn, sn) = (T (X1) ... T* (X,)). )

Here the X; are finite sets of 4-vectors z;,, ..., Ti,, the s; are signs, and
T*(X), T~ (X) is a time-ordered or anti-time-ordered product respectively
of fields @ (x1), ..., ®(z,), X = {z1, ..., T }. These functions include
as special cases the Wightman functions (all o; = 1), the completely time
ordered Green’s functions 7 (zy, ..., T,) (for n = 1), and the functions

(T* (z1, -y 20) T (Y1, -+ vy Ym)) 3)

which occur in unitarity relations and play an important part in the
description of particle scattering (see Section 4).

The method can also be applied to thermal field theories, in which case
the symbol (... ) stands for the expectation value in a thermal equilibrium
state with temperature T > 0, these states being characterized by the KMS
condition [4]. The two cases (vacuum and thermal) will be discussed in
parallel.

The interest of being able to calculate the correlation functions W in
thermal field theories is obvious. In the vacuum case they are held to
be somewhat remoter from the quantities of direct physical interest: S-
matrix elements are easier to calculate from 7 than from W. But the W are
more suitable than the 7 for studying some fundamental problems of field
theory, because their properties are more directly related to the fundamental
assumptions of the theory like locality, spectral properties, and the like.
An example of such a problem is finding the exact relation between the
physical state space of a gauge theory and its state space in a non-physical
gauge, especially a Gupta-Bleuler gauge. This problem has not yet been
satisfactorily solved, especially in the Yang-Mills case, where it is connected
with the confinement problem. Also, for setting up a convincing scattering
formalism for the particles of a gauge theory, for which the customary
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AXIOMATIC APPROACH TO PERTURBATIVE QFT 401

asymptotic conditions do not hold, the functions (3) turn out to be useful,
as will be indicated for QED in section 4. It is therefore an advantage of
the present method that it produces directly expressions for the general
W-functions.

Of course, these expressions can in principle also be derived from the
conventional Feynman rules for the 7-functions [5]. But our method is also
of a more fundamental significance, since it avoids some of the doubtful
ingredients of the conventional canonical formalism. Using W instead of
T as its basic objects, it avoids the notorious ambiguities of time-ordering.
It does not assume asymptotic conditions, which are not satisfied for the
charged fields of gauge theories. And it does not need the canonical
commutation relations, which have a doubtful status in relativistic field
theory, because, according to the available evidence, interacting relativistic
fields cannot in general be restricted to sharp times.

And, finally, these considerations show that the methods of axiomatic
field theory can be used to handle dynamical problems.

For the sake of simplicity I will only discuss the ¢j-model. But the
method can be applied to any relativistic, local, field theory, in particular
to gauge theories in covariant, local, gauges. The assumptions underlying
our formalism will be stated and briefly discussed in Section 2. The results
will be described in Section 3. In the time available it will be impossible
to give proofs, even in a sketchy form. For the proofs I must refer to the
original publications ([6], [7]). Finally, in Section 4, an application of these
ideas to a proper description of scattering events in QED will be discussed.

2. ASSUMPTIONS

The ¢3 model is the theory of a scalar, hermitian, Wightman field ® (x)
on 4-dimensional Minkowski space, satisfying the equation of motion

(O+m*) @ (x) =~ N (2* (2). @

In the vacuum case, m is the physical mass of a stable particle with ® as
interpolating field, g is a coupling constant, and N, standing for “normal
product”, denotes the renormalization prescription needed to make sense out
of the a priori undefined third power of the distribution-valued field ® ().
Renormalization, leading to the disappearence of all ultraviolet divergences,
can be handled by conventional methods and will not be discussed further.

In thermal field theory we demand that the field equation (4) is exactly
the same independently of the temperature 7. In other words: the KMS
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402 0. STEINMANN

states with any value of 7" should all generate representations of the same
abstract field algebra. This means that the parameters m and g, and the
subtraction prescription N are indenpendent of T'. In particular, m denotes
the mass of the ®-particle at 7" = 0. It is not the mass of any corresponding
quasi-particle at positive temperatures, which physical mass is temperature-
dependent. Such an independence prescription is necessary to make the
temperature dependence of physical quantities like specific heats, transport
coefficients, and others [8], [9] unambiguous.

The equation of motion (4) implies the following infinite system of partial
differential equations for the Wightman functions:

(O; + m2) (@ (z1) ... D () ... ®(x,))

:—%(...N(i)?’(xi))...), i=1,...,n ©)

The right-hand side can be expressed in terms of W-functions, once the
normalization prescription N has been fixed.

These equations must be solved, using the Wightman properties of the W
as subsidiary conditions. In our perturbative approach we will not need all
of these properties. Needed in an essential way are: translation invariance,
locality, the cluster property in a weak formulation (see below), and for
T = 0 the spectral property. In the thermal case the latter is replaced by
the KMS condition [4], which we use in its p-space form: let W be the
Fourier transform of W, and let {p1, ..., pn}, {q1, -, @m}, be two sets
of 4-momenta. Then

W(plv ceey Pny 41, - -0 (Im)zeﬂPOW((Ib «evy Qm, P1, --~7pn)7 (6)

where 5 = (k T)_1 is the inverse temperature, and F, is defined as
Py = Z Di,0- @)
For # — oo the equation (6) becomes the spectral condition in the vacuum
W1, ..., qm) =0 if Py<O0. 8)

Lorentz invariance is only used in a marginal manner, for fixing the N-
prescription in such a way that the field equation (4) transforms covariantly.
This condition is implemented at 7' = 0 and fixes then N also for T > 0
because of its required T-independence.

Not used are: positivity, asymptotic conditions, and canonical com-
mutation relations. These are decided advantages of the method. The
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dubious state of CCR’s has already been remarked upon in the Introduction,
and positivity and asymptotic conditions are not satisfied in gauge theories
in local gauges.

In addition, we also demand the usual renormalization conditions fixing
m, g, N, and the field normalization. These conditions, with the exception
of the last one, need again be applied at 7' = 0 only, and are then transferred
to the termal case by means of the T-independence of m, g, N.

A perturbative solution of the stated problem is constructed as follows.
We insert the perturbative expansion

W(xl,...,xn):Zg"W,,(xl,...,xn) 9)

o=0

into the equations (5) and equate the terms of order g on both sides:

@ +mOW, (., @i, .. ) = —é (. N(@(2) .. Yor.  (10)

For o = 0 the right-hand side is zero. For higher o we solve the equations by
induction with respect to o. Assuming the problem to have been solved up
to order o — 1, the right-hand side of (10) is known, and W, is determined
as solution of the system of n linear differential equations (10), using
the Wightman properties and the normalization conditions as subsidiary
conditions. All the needed conditions except the cluster property are linear
in W, and must therefore be satisfied separately in each order of perturbation
theory. The cluster property states that

lim W(zy,...,zp, 140, ..., Yym +a)
=Wz, ..., 20) W (Y1, -+ oy Ym) 11

if a tends to infinity in a space-like direction. Since the a-limit need not
commute with the derivation of W with respect to g, this condition cannot
be easily transformed into a perturbative statement. We will therefore only
postulate a rather weak corollary of the condition. As is well known, the
perturbative expansion of 7, and therefore also of W, can be considered
to be an expansion in powers of % instead of in powers of g. And we
demand that the equation (11) hold for each W (z, ..., z,) in the lowest
non-vanishing order in % contributing to it. This suffices to guarantee the
uniqueness of our solution. In my formulas the 7-dependence is, however,
suppressed by setting A = 1.

Vol. 63, n° 4-1995.



404 0. STEINMANN
3. RESULTS

The problem described in the previous section is solved in two steps
([6], [7]). Firstly one proves that the subsidiary conditions single out a
unique solution of the system (10) in every order 0. Secondly, a solution
of these equations satisfying all subsidiary conditions is written down
explicitly as a sum over generalized Feynman graphs.

These graphs, for the general case of the functions W, are defined as
follows. First draw an ordinary Feynman graph, called a “scaffolding”,
of the ®* theory, with o vertices and with external points corresponding
to the arguments of W. This graph is then partitioned into a number
of mutually non-overlapping subgraphs, called “sectors”. To each factor
Ts= (X,) in W corresponds an “external sector” containing all the external
points of the variables in X,, but no other external points. This sector
carries the number « and is said to be of type s, (remember s, = *).
If the adjacent external sectors with numbers o, o + 1, are of the same
type, there may also exist an “internal sector” not containing any external
points, with number o + 1/2, and of type sot1/2 # Sa = Sa41. In the
thermal case there may also be an internal sector with number n + 1/2 if
the extremal external sectors 1 and n are of the same type. In this case
we have s,41/2 # S, = $1. Such extremal internal sectors are not present
in the vacuum case.

To such a partitioned graph we assign an integrand as follows. Each
external point carries a variable x;, each vertex an integration variable u;.
Within a sector of positive type the usual Feynman rules apply, with vertex
factors -ig and propagators

Dr (&) = Ar (§) + Cr (§), (12)

where Ap is the familiar Feynman propagator and Cr is the thermal
correction

OT(£)=z‘(2vr)‘3/d4p[e""’°'—1]‘16(p2~m2)e"‘1”~‘“, (13)

which is only present for T > 0. In sectors of negative type the complex-
conjugate Feynman rules apply. A line connecting two points (external or
internal) in different sectors, with variables z;, z;, carries the propagator
—i D4 (z; — z;). Here z; is the variable in the lower-numbered sector, and

Dy (§) = A4 (&) +Cr(9), (14)
where again A, is the familiar invariant function and Cr is only present
for T > 0. The graph is then integrated over the internal variables u;,
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and W is obtained as a formal sum over all partitioned graphs satisfying
the above rules.

Primitively UV divergent subgraphs exist only within sectors, and
the corresponding divergences are removed by any of the conventional
renormalization procedures. The individual renormalized graphs give then
finite contributions if T = 0 and m > 0. For m = 0 and T = 0 the
individual graphs may be infrared divergent, but these divergences cancel
in the sum over all partitioned graphs with the same scaffolding. For T' > 0
the existence problem is open even in finite orders of perturbation theory.

4. ASYMPTOTIC CONDITIONS IN QED

Experimentalists usually observe particles, not fields. In order to make
contact with experiment, a field theory must therefore be able to describe
particles. Traditionally this is achieved by means of “asymptotic conditions”
stating that the interacting fields of the theory, or appropriate local functions
of them, converge for large negative or positive times to free fields, whose
connections with a particle picture are well understood. In axiomatic field
theory there are essentially two different versions of such conditions:
the Haag-Ruelle condition ([2], [3]) involving strong convergence of time
dependent states, and the LSZ condition [3] involving weak convergence
of suitably averaged field operators. Both these condition can be proved in
theories possessing discrete mass hyperboloids in their momentum spectrum.
Unfortunately, gauge theories do not fall in this class. Indeed, all available
evidence shows that neither of the two conditions is satisfied for fields
carrying gauge charges. (An exception are theories like the electroweak
model with spontaneously broken gauge symmetry.) This raises the problem
of a proper description of particle scattering in such theories. And a
concomitant problem is that of formulating asymptotic completeness in
such theories, i.e. the statement that the scattering states span the full state
space.

In the following I propose a solution of these problems in the case
of QED. The solution is based on a theorem which can be proved in
perturbation theory with the same kind of methods as used for what
was explained in the previous sections. Again, the results will be stated
without proofs. The proofs can be found in refs. [10]. In the first reference
a particularly suitable Gupta-Bleuler gauge is used, in the second it is
shown how the results obtained can be transferred to physical gauges like
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the Coulomb gauge, and how to use them for establishing a scattering
formalism.

I shall use a rather condensed notation, not explicitly distinguishing
between the various fundamental fields v, 10, A,, of the theory. The
symbol & will denote any of these fields, as the case may be. We define,
for suitably normalized ®’s (the normalization condition is non-trivial):

S(...,pi, ey t)
_ / L dpio exp {~it (pio — (p% + m2)Y/2)} T (I, & (py)). (15)

Here T'(...) is the Fourier transform of the time ordered product of the
fields ® (z;). Let o be the number of 4 in this product, 3 that of 1, v+’
that of A’s. Let A C R3*, B C R3?, C C R® be smooth sets and C; C R3
a smooth set containing the origin in its interior. Then the following
statements hold to every finite order of perturbation theory.

THEOREM
a) The limit

< 4 ot By
7 2 : 3
Iypc = lim - / , H d’ p;
t—o0 v=o 1 JAaxBxexeX” i1

exists and is a projection operator. The K, are kernels whose exact form
depends on the type of the i field.
b) For A, = R3*, Bs = R*, C = 0, C, = R® we have

1
Zﬂ a!—ﬂ!HAaBﬂ@ =1. a7)

[} is the vacuum ket. The same results hold, of course, also for t — —oo.

These results compare as follows with the traditional formulation. S*|) is
the kind of state considered in the Haag-Ruelle condition and can be proved
under favorable conditions to converge strongly to a state of free particles.
Under these conditions the limit (16) without the summation over 7’ exists
in the strong operator topology, and is a projection. The expression on
the left-hand side of (17) exists then also, if all summations, including the
one over v/, are carried out after taking the t-limit. In an asymptotically
complete theory the result is the identity. Our result is thus distinguished
from the usual formulation by summing first over soft photons and taking
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the ¢-limit afterwards. A price to be paid for this change is this: the
limit is now not attained in the strong operator topology, but only in the
sense of sesquilinear forms. What converges are the matrix elements of
the expression (16) between smooth states, i.e. states obtained by applying
polynomials in the fields @ (x), averaged over sufficiently smooth test
functions, to the vacuum |).

The method amounts to introducing the time development as a natural
infrared regularization. For finite ¢ the terms in the «’-sum exist individually,
but the t-limit exists only for the sum, not for the individual terms. The
time ¢ thus takes over the role usually played by ad hoc regularization
parameters like a positive photon mass or a IR momentum cutoff.

The statement b) in the Theorem is the promised new formulation of
asymptotic completeness.

For establishing a scattering formalism we use part a) of the Theorem for
describing the outgoing state. In terms of particles we can interpret I 45¢
as the projection onto the set of states with @ observed electrons with
momenta in A, 3 observed positrons in B, v observed photons in C, and
any number ' of non-observed soft photons with momenta in C;. C, need
not be small: no “small” terms are neglected in (16).

The inclusive cross section for finding such a final state is then given by
Oincl (A X B x C) = (‘Ilznv HABC \Ilzn) (18)

For the description of the initial state ¥;,, we must use a different method.
Let me just briefly indicate this for a two-particle initial state prepared at
time ¢ = 0, with particles localized at that time in neighbourhoods of the
points 0 and x with a macroscopic distance |x|. We define provisionally

U, = / &' pér () ® (—p) / 432 (q) e @D B (—q)),  (19)

where the wave functions ¢; are sufficiently smooth test functions with
compact supports in small neighbourhoods of two linearly independent
points Py, P,, on the respective mass shells, and whose Fourier transforms
@i (u) in configuration space are negligibly small (relative to a given
experimental accuracy) outside of a small neighbourhood of the origin.
The asymptotic behaviour of the expression (18) for |x| — oo can then be
determined. It is found that the dominant contribution D (x) decreases like
|x|~2, provided that the initial configuration corresponds to a classically
possible scattering event. This means that straight world lines through
u; = 0 and uz = (0, x) in the directions P; » meet approximately in a
point, the point where the interaction actually takes place, and that a final
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408 0. STEINMANN

configuration in A X B X C is compatible with momentum conservation. For
sufficiently large |x| this dominant contribution is a sufficient approximation
to (18), and we can define

Oinet = |x|? D (x). (20)

A detailed evaluation leads to an expression which can be considered as a
generalization to inclusive cross sections of the LSZ reduction formula. No
detour through a non-existent S-matrix is needed in this derivation.

Consider a process with two initial particles with 4-momenta Py, and n

observed final particles with momenta Q1, ..., Q,. If P is an electron
momentum we define
N(P)=-2ni(P—m)7 (P), 21

where 7' is the clothed electron propagator, and similarly for positrons. For
photons we set N (P) = 1. Observed photons must of course be in physical
states (spinor and vector indices have been suppressed in my formulas).
The inclusive cross section for the process in question is then given by

o (P — Q) =[N (=P)IIN (Q))]7 (P} = m})? ... (Q} — m2)?
(T (Q1, -, Qny=P1, =P) T(Q1, ..., —P)])" (22)

where the prime in (| ... [)’ denotes omission of the §* factor from
momentum conservation. All momenta P;, Q);, lie on the respective mass
shell. At the mass shell N (+£P) is IR divergent in the electron case, and so
is the amputated function (|7 T'|). The expression (22) must therefore be
calculated as a limit taken from momenta with P? < m?, Q% < m?. The
function (|7™ T'|) is one of the W discussed before, and can be calculated
from the rules given in Section 3.
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